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Abstract

Purpose The mineralization/immobilization of nutrients from
the crop residues is correlated with the quality of the plant
material and carbon compartments in the recalcitrant and la-
bile soil fractions. The objective of this study was to correlate
the quality and quantity of crop residues incubated in the soil
with carbon compartments and CO,-C emission, using multi-
variate analysis.

Materials and methods The experiment was conducted in fac-
torial 4 +2 + 5 with three replicates, referring to three types of
residues (control, sugarcane, Brachiaria, and soybean), and
two contributions of the crop residues in constant rate, CR
(10 Mg ha™! residue), and agronomic rate, AR (20, 8, and 5
Mg ha™' residue, respectively, for sugarcane, soybean, and
Brachiaria), evaluated five times (1, 3, 6, 12, and 48 days
after incubation). At each time, we determined the CO,-C
emission, nitrogen and organic carbon in the soil, and the
residues. In addition, the microbial biomass and water-solu-
ble, labile, and humic substance carbons fractionated into
fulvic acids, humic acids and humin were quantified.
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Results and discussion Higher CO,-C emissions occurred in
the soil with added residue ranging from 0.5 to 1.1 g CO,-C
m 2 h™! in the first 6 days of incubation, and there was a
positive correlation with the less labile organic soil fractions
as well as residue type. In the final period, after 12 days of soil
incubation, there was a higher relation of CO,-C emission
with carbon humin. The sugarcane and soybean residue
(20 Mg ha™") promoted higher CO,-C emission and the re-
duction of carbon residue. The addition of residue contributed
to an 82.32 % increase in the emission of CO,-C, being more
significant in the residue with higher nitrogen availability.
Conclusions This study shows that the quality and quan-
tity of residue added to soil affects the carbon sequestra-
tion and CO,-C emission. In the first 6 days of incuba-
tion, there was a higher CO,-C emission ratio which cor-
relates with the less stable soil carbon compartments as
well as residue. In the final period of incubation, there is
no effect of quality and quantity of residue added to soil
on the CO,-C emission.

Keywords Multivariate analysis - Residue - Soil carbon
pools - Soil respiration

1 Introduction

The no-till system has been a conservative management sys-
tem used since 1970 in Brazil (Embrapa 2010), one of the
leaders in the use of this system, which occupies more than
half of its area planted with annual crops (Mapa 2014). Studies
have shown significant ecological, economic, environmental,
and social benefits of this system in maintaining crop residue
(stubble, pointers, and green leaves) on the ground (Heinz
etal. 2011).
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The residues added to the soil surface help to increase the
organic matter (SOM), an important source of soil organic
carbon (TOC-S), and that, when decomposed/mineralized, re-
leases large amounts of nutrients (Balota et al. 2014) and CO,
via microbial activity (Gassen and Gassen 1996). With the
addition of residue, C sequestration in the soil also occurs
(Bordonal et al. 2013), mitigating the concentration of green-
house gases (GHG) (Alvaro-Fuentes and Paustian 2011),
mainly carbon dioxide (CO,) (Glaser et al. 2001; Lehmann
etal. 2011).

The main crops used in no-till systems are grasses or
legumes, among them sugarcane (Saccharum officin
arum), soybean (Glycine max), and Brachiaria
(Brachiaria decumbens). These materials differ in chemi-
cal composition, specifically regarding free sugars,
fructans, starch, pectin, hemicellulose, cellulose
(Gunnarsson et al. 2008), and lignin (Trinsoutrot et al
2000; Wang et al. 2004), besides the N content and their
C/N ratio (Trinsoutrot et al. 2000; Moritsuka et al. 2004;
Six et al. 2006; Dorodnikov et al. 2011), leading to dif-
ferent decomposition times. The material quality is one of
the most important parameters in nutrient dynamics in
agricultural soils (Lal 2004), besides the amounts added.
The real benefits of the no-till system to increase and
sequester C have recently been questioned (Baker et al.
2007) since it will depend on the quality or quantity of the
residue added to soil.

Thus, the aim of this study was to correlate, using multi-
variate analysis, the influence of time and the quality and
quantity of different types of residues incubated on carbon
sequestration and CO,-C emission from the soil.

2 Materials and methods
2.1 Soil sampling and analysis

The experiment was conducted at the Pedology Laboratory,
Federal University of Uberlandia, Brazil. A factorial 4+2+5
was established with three replicates, referring to three types
of residues (control, sugarcane, Brachiaria, and soybean), and
two contributions of the crop residues at constant rate, CR
(10 Mg ha ! residue), and agronomic rate, AR (20, 8, and
5 Mg ha ! residue, respectively, for sugarcane, soybean, and
Brachiaria), in five different times (1, 3, 6, 12, and 48 days
after incubation). In addition, we analyzed the control treat-
ment (soil without residue input).

The residue contributions added to soil have the objective
of assessing the quality of the plant material at a CR of 10 Mg
ha™'. The objective of the AR is to evaluate the effect of the
quantity with the average contribution of sugarcane, soybean,
and Brachiaria residue to the soil. For this, Eq. 1 was used. In
this equation, the sum of the agronomic rate (AR) of

sugarcane (20 Mg ha '), soybean (8 Mg ha '), and
Brachiaria (5 Mg ha™') is subtracted from the number of
residues (3) and then divided by the number of residues (3).

CR = ARsugarcane + soybean +brachiaria -N / N (1)

The soil was collected in June 2013 in the 0.0-20.0 cm
layer from an area cultivated with sugarcane under a
Dystrophic Red-Yellow Latosol, loamy texture located be-
tween the cities of Uberlandia and Uberaba in the Tridngulo
Mineiro (latitude 19°13'00.22"S and longitude 48°08'24.80"
W). In the laboratory, the soil was air-dried, sieved (<2 mm) to
obtain fine air-dried soil (FADS), and moistened to 60 % of'its
water holding capacity (WHC) for the experiment setup.

For characterization, a soil fraction was utilized for the
determination of chemical and physical properties. The soil
texture was measured using the pipette method. Potassium
(K", calcium (Ca®*), magnesium (Mg>*), pH (soluble in
H,0), and available phosphorus (P) were measured using
the methodologies described by Embrapa (1997). The total
nitrogen content of the soil (N-S) and residue (N-St) were
determined according to the Kjeldahl method using the meth-
odologies of Embrapa (1997) and total organic carbon (TOC-
St) and residue (TOC-St) by the method suggested by
Yeomans and Bremner (1988) (Table 1).

The value of lignin (%) was obtained in Costa et al. (2013),
Santos et al (2004), and Reddy and Yang (2009), respectively,
for sugarcane, Brachiaria, and soybean residues. The cellu-
lose value (%) was obtained in Almeida et al. (2009),
Gongalves et al (2007), and Reddy and Yang (2009) and crude
protein value (%) in Pereira et al (2000), Santos et al (2004),
and Maheri-Sis et al (2011), respectively, for sugarcane,
Brachiaria, and soybean residues.

During the time of the residue sampling (sugarcane,
Brachiaria decumbens, and soybean), no distinction was
made between stem and leaves in order to obtain a
homogeneous sample, and the moisture retention of the
material was not considered. In the laboratory, the sam-
ples were cut to an average size of 2 cm? and placed in
an oven at 60 °C for 48 h for subsequent analyses and
incubation.

2.2 Soil incubation

For incubation, a column of 700 g of soil, reaching a height of
13 cm, was placed in a 15-cm-height, 10.5-cm-diameter PVC
(polyvinylchloride) pot and total volume of 1298.8 cm® fixed
on a Styrofoam base properly insulated to prevent soil water
loss.

The setup was left in an open laboratory environment at a
controlled temperature of 25 °C. This temperature is appropri-
ate for microbial activity (Stanford et al. 1973) since the
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Table 1 Chemical and physical characteristics of sugarcane,
Brachiaria, and soybean residues and Red-Yellow Latosol used in the
experiment

Characteristics® Soil Residue
SC BR SO

Sand (g kg™ 630 - - -
Silt (g kg ™) 140 - - -
Clay (gkg ™) 230 - - -
pH (H,0) 5.60 - - -
P (mg dm>) 247 - - -
K* (mg dm™) 208.08 - - -
Mg>* (cmol, dm ) 0.56 - - -
Ca** (cmol, dm3) 220 - - -

TN (N-St or N-S) (g kg ") 0.69 1.44 1.68 2.49

TOC (N-StorN-S) (gkg ™)  7.40 120.00 12240  142.12
C/N - 83.63 7285 50.22
Lignin (%) 2580 1276 14.0@
Cellulose (%) 72900 29717 44.00?
Crude protein (%) 2.509 2.80© 5.10%

#In table: SC sugarcane, SO soybean, BR Brachiaria decumbens; potas-
sium (K*); calcium (Ca2+ ); magnesium (Mg2+ ); pH (H,0); phosphorus
(P); total nitrogen (TN) content of the soil (N-S) and residue (N-St) and
total organic carbon (TOC) content of the soil (TOC-S) and residue
(TOC-St); C/N: relationship between soil organic carbon (TOC and
TOC-St) and nitrogen total nitrogen content of the soil (N-S and N-St).
M Almeida et al. 2009; @ Reddy and Yang 2009; ® Maheri-Sis et al.
2011; “ Costa et al. 2013; © Pereira et al. 2000; © Santos et al. 2004;
@ Gongalves et al. 2007

temperature and humidity of the soil contribute to the increase
in soil biological activity (Almeida et al. 2009).

For incubation of the sugarcane residue in the soil, 17.31 g
pot ! of residue corresponding to 20 Mg ha ' was added,
equivalent to an average deposition of between 10 and
30 Mgha ' year ' of dry matter on the soil surface in a mech-
anized planting system (Urquiaga et al. 1991) composed of
pointers and green leaves cut to a size of 1012 cm (Oliveira
et al. 1999).

In the treatment with soybean residue, 6.92 g pot ' was
added, related to the input of 8 Mg ha ' Soybean cultivation
provides low dry matter contribution to the soil surface
(Embrapa—Empresa Brasileira de Pesquisa Agropecuaria
2014), ranging from 4.81 to 2.81 Mg ha ", consisting of stems,
petiole, trifoliate leaves, and pods (Kurihara et al. 2013).

The input of 5 Mg ha™' of Brachiaria pasture residue
(Brachiaria decumbens) was obtained with the addition of
432 g pot ' of dry residue. The average Brazilian covering
dry matter production of Brachiaria decumbens is 6.0 Mg
ha! (Torres et al. 2005; Rossi et al. 2011) and can range from
4.8t0 11.17 Mg ha ' (Nunes et al. 2006).

To evaluate the quality of plant material, we added the
same dose of 10 g pot ™' for all types of residue related to input
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of 11.57 Mg ha'. After setting, 120 plots were maintained at
60 % of field capacity during the experiment. The water con-
tent was kept constant by monitoring the weight of the pots to
assure optimum microbial activity in the studied treatments
(Barros 2012).

2.3 Emission of CO,-C and soil C compartments

Evaluation of CO,-C emissions from the soil were conducted
atl,2,3,4,6,8,10, 13, 16, 19, 22, 25,28, 31, 34, 37, 44, and
48 days after incubation (DAI), using a portable infrared gas
analyzer system. This instrument consists of a closed chamber
with an internal volume of 854.2 cm® and ground contact area
of 83.7 cm® (LI 8100; Li-Cor Inc., Lincoln, NE, USA). After
closing, the system quantifies the variations in the concentra-
tion of CO,-C within the chamber over time by optical ab-
sorption spectroscopy in the infrared spectral region.

On the Ist, 3rd, 6th, 12th, and 48th day after incubation,
respectively, the 24 setups with all the soil sampling treat-
ments were dismantled. They were subsequently sieved in a
2-mm mesh, homogenized, and the remaining residue sepa-
rated. With the soil still damp, the measurement of soil micro-
bial biomass carbon (C-Mic) was conducted by the method
described by Vance et al. (1987) using a microwave oven for
irradiation (Islam and Weil 1998).

After drying the samples, soil organic carbon (TOC-S) and
residue (TOC-St) were determined using oxidation with potassi-
um dichromate method in acid medium (Yeomans and Bremner
1988). It should be noted that for characterizing the soil and
residue TOC before incubation, we used the same method.

The water-soluble carbon (C-WSC) was extracted with de-
ionized water. For carbon oxidation, we followed the proce-
dures recommended by Yeomans and Bremner (1988). The
quantitative extraction and fractionation of humic substances
(HS) in humin (C-HU), fulvic acid (C-FA), and humic acid
(C-HA) were determined by differential solubility, established
by the International Humic Substances Society (Swift 1996),
and the labile C (C-labile) was performed with the methodol-
ogy proposed by Mendonca and Matos (2005), determined by
sample oxidation with 0.033 mol 1" potassium permanganate
and the reading of the extracts in a spectrophotometer at
565 nm.

Nitrogen from soil (N-S) and residue (N-St) was deter-
mined using the Kjeldahl method described by Black
(1965). For the soybean residue treatment, it was not possible
to perform the N-St analysis in the final period (48th DAI)
because there was not enough plant material due to its high
decomposition rate.

2.4 Data processing and statistical analysis

The variability of the studied properties was previously eval-
uated by means of descriptive statistics by calculating the
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mean, standard deviation, and minimum and maximum
values.

Subsequently, the variables were subjected to multivar-
iate exploratory analysis by hierarchical clustering and
principal component methods. For the cluster analysis, a
similarity matrix was constructed with the Euclidean dis-
tance and the connections of the clusters were conducted
with the Ward method (Sneath and Sokal 1973). In this
method, the distance between two groups is defined as the
sum of squares between the two groups through all vari-
ables (Hair 2007). The Euclidean distance among accesses
to the set of variables was calculated, distinguishing be-
tween the studied factors (residue types, doses, and time)
and exposing the group structure contained within the
data in a dendrogram.

For principal component analysis (PCA), we used the
variables CO,-C emission, nitrogen soil (N-S) and residue
(N-St), and carbon soil (TOC-S) and residue (TOC-St), in
addition to humic substance carbon (C-HS) fractionated in
fulvic acids (C-FA), humic acid (C-HA), and humin (C-
HU). Subsequently, we scaled up the number of variables
according to their characteristics to better visualize the
interaction between the variables in the coordinate axes.
These new axes, the eigenvectors (new variables) called
principal components (PC), are generated by linear com-
binations of the original variables constructed from the
eigenvalues of the covariance matrix (Hair 2007;
Piovesan et al. 2008). In order to obtain a simpler and
more parsimonious model, we used the Kaiser criterion
(1958) with eigenvectors above the unit. Analyses were
conducted in the STATISTICA 7.0 software (StatSoft Inc.,
Tulsa, OK, USA).

3 Results
3.1 Effect of time on the soil CO,-C emission

In the soil incubation, the lowest CO,-C emission oc-
curred in the treatment without residue addition (Fig. 1)

Fig. 1 CO,-C emission of soil

Agronomic Rate (AR)

with an average from 0.1 to 0.2 g m > h™' at the final and
initial period, respectively (Tables 2 and 3). The addition
of residue to the soil provided the formation of two dis-
tinct conditions, more pronounced in the CR treatment
than the AR. Initially (1, 3, and 6 DAI), there occurred
an increase in the average of CO,-C emissions in the first
6 days for soybean (2.0 g CO,-C m 2 h™"), sugarcane
(2.0 g CO,-C m 2 h'Y), and Brachiaria residue (1.1 g
CO,-C m > h™") (Fig. 1 and Table 2). In the second period
(1, 3, and 6 DAI), there was an emission decay and sub-
sequent stability after 12 days of incubation in plots with
soybean (1.1 g CO,-C m2hh, sugarcane (0.7 g CO,-C
m 2 h™Y), and Brachiaria residue (0.5 g CO,-C m2hh,
as shown in Fig. 1 and Table 3.

3.2 Effects of residue quality and quantity

Evaluating the quantity (AR) and quality (CR) of residue
added to the soil, it was found that the AR soybean residue
dose presented the highest emission of accumulated CO,-C
(48.57 g kg1, followed by sugarcane (49.06 g kg ') and
Brachiaria (23.30 g kg '), and with respective increases of
86.98, 87.11, and 72.87 % compared to the control treatment
(6.32 g kg '; Fig. 2).

The CR showed the highest emission of accumulated CO,-
C with soybean residue (80.53 g kg ' C-CO,), followed by
Brachiaria (47.30 gkg ' C-CO,) and sugarcane (33.21 gkg '
C-CO,) and with respective increases of 92.15, 86.63, and
80.96 % compared to the control treatment (6.32 g kg ';
Fig. 2).

The greater decreases in TOC-St with AR doses oc-
curred with soybean incubation, followed by Brachiaria
and sugarcane residue, respectively 90.74, 67.30 g, and
73.84 kg ' of carbon. At the CR, greater decreases were
obtained from soybean, sugarcane, and Brachiaria resi-
due, respectively 64.80, 60.00, and 45.60 g kg~' TOC-St
(Fig. 3). The higher the residue dose added to the soil,
under C/N ratio conditions ranging from 50.22 to 83.63 g
kg_1 (Table 1), the greater the increase in the CO,-C
emission.

Constant Rate (CR)

with residue of soybean,
Brachiaria, sugarcane, and
treatment control with two
contributions of the residue crops
in agronomic rate (AR) and
constant rate (CR) during 48 days
of incubation

~ i 211
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Table 2 Descriptive statistics in
the initial period of variables™:
humin C (C-HU), fulvic acid (C-
FA), humic acid (C-HA), water-
soluble carbon (C-WSC), carbon
labile (C-Labile), microbial
biomass carbon (C-Mic), total
carbon organic soil (TOC-S),
carbon organic soil residue (TOC-
St), nitrogen organic soil (N-S),
nitrogen organic residue (N-St),
and emission of CO,-C of soil

Mean SD Max Min Mean SD Max Min

No residue Sugarcane
C-HU 12.0 0.7 13.1 10.9 124 1.2 14.9 10.0
C-HA 2.1 0.2 2.6 1.9 22 0.4 3.1 1.6
C-FA 3.5 0.3 3.8 3.0 35 1.1 7.5 1.8
C-WSA 0.2 0.1 04 0.1 0.2 0.0 0.2 0.1
C-Labile 5.2 0.0 5.2 52 5.2 0.0 5.2 5.2
C-Mic 1631.8 497.1 2336.9 1018.5 2515.5 1128.4 49544 1094.7
TOC-S 224 1.5 24.8 20.1 22.7 2.1 26.2 18.4
N-S 1.3 0.2 1.8 1.1 1.6 0.5 34 1.3
TOC-St - - - - 933 30.9 133.8 45.0
N-St - - - - 8.0 1.5 11.5 3.9
CO,-C 0.2 0.5 1.9 0.8 2.0 1.3 9.8 4.6

Brachiaria Soybean
C-HU 12.4 1.1 14.0 10.6 124 1.1 14.0 10.0
C-HA 2.3 0.3 2.8 1.9 2.3 0.5 33 1.2
C-FA 3.4 0.5 42 2.4 3.7 0.4 4.8 3.1
C-WSA 0.2 0.1 0.3 0.1 0.2 0.1 0.4 0.0
C-Labile 5.2 0.0 5.2 5.2 5.2 0.0 5.2 5.2
C-Mic 21177 1049.7 3900.8 681.9 2239.6 865.4 3481.7 1150.1
TOC-S 23.1 2.8 26.7 18.0 23.4 2.2 26.5 18.9
N-S 1.5 0.2 1.8 1.3 1.7 0.3 22 1.3
TOC-St 115.5 30.0 1524 54 87.0 37.9 135 24.6
N-St 7.9 1.8 11.5 3.1 10.6 4.4 19.6 49
CO,-C 1.1 2.9 13.4 3.6 2.0 3.0 154 5.5

#Values of C-HU, C-HA, C-FA, C-WSA, C-Labile, TOC-S, N-S, TOC-St, and N-Stin g kg71 . The values of C-
Mic and emission, respectively, are in ug g ' ha™' and g CO-Cm > h™!

In soil with addition of 20 Mg ha ' (AR) of sugarcane residue,
the C loss via CO,-C emission was 72.9 % from the residue
decomposition. As for the doses of 8 and 5 Mg ha ", respectively,
of soybean and Brachiaria, CO,-C losses through the decompo-

sition of residue are lower, respectively 53.2 and 31.5 %.

Table 3 Descriptive statistics in
the final period of variables™:
humin C (C-HU), fulvic acid (C-
FA), humic acid (C-HA), water-
soluble carbon (C-WSC), carbon
Labile (C-Labile), microbial
biomass carbon (C-Mic), total
carbon organic soil (TOC-S),
carbon organic residue (TOC-St),
nitrogen organic soil (N-S),
nitrogen organic residue (N-St),
and emission of CO,-C of soil
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At the CR of added sugarcane residue, C-loss through the
CO,-C emission is 55.3 % from the residue decomposition.
For the soybean and Brachiaria residue, there was a 100 % C-
loss from the residue decomposition and 3.7 and 24.2 % of C
from the soil, respectively (Fig. 2).

Mean SD Max Min Mean SD Max Min

No residue Sugarcane
C-HU 17.5 0.9 18.8 16.0 17.0 2.6 19.2 10.0
C-HA 1.1 0.4 1.8 0.6 1.0 0.3 1.3 0.6
C-FA 2.1 0.3 2.4 1.7 1.8 0.5 2.4 0.5
C-WSA 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.0
C-Labile 5.2 0.0 5.2 5.2 5.2 0.0 5.2 5.2
C-Mic 1847.1 1023.0 2988.9 2059.2 1212.4 4309.7 824.3
TOC-S 21.6 2.8 26.6 19.5 22.7 1.5 25.4 19.7
N-S 1.4 0.1 1.5 1.3 1.6 0.2 2.0 1.4
TOC-St - - - - 42.0 22.5 86.9 12.8
N-St - - - - 9.8 1.9 12.9 7.7
CO,-C 0.1 0.3 1.1 04 0.7 2.0 8.0 2.0

Brachiaria Soybean
C-HU 18.5 1.6 23.0 17.2 18.7 1.0 20.0 17.6
C-HA 1.0 0.3 1.3 0.3 1.1 0.3 1.5 0.3
C-FA 22 0.4 2.6 14 22 0.7 3.1 1.2
C-WSA 0.3 0.9 3.2 0.0 0.9 1.4 32 0.1
C-Labile 52 0.0 5.2 5.2 5.2 0.0 5.2 5.2
C-Mic 1276.1 359.3 1752.5 721.1 1560.5 929.6 3260.0 750.0
TOC-S 21.1 2.0 24.8 17.7 22.8 3.0 30.8 19.7
N-S 14 0.2 1.7 1.2 1.6 0.2 2.0 1.2
TOC-St 75.8 30.5 113.4 32.1 60.1 38.0 129.6 17.4
N-St 7.8 0.55 8.7 7.0 - - - -
CO,-C 0.5 1.3 5.2 1.4 1.1 3.7 13.7 2.8

*Values of C-HU, C-HA, C-FA, C-WSA, C-Labile, TOC-S, N-S, TOC-St, and N-Stin g kgﬁl . The values of C-
Mic and emission, respectively, are in pg g ' ha ' and g CO,-Cm > h'
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Fig. 2 Carbon losses (C-Losses) 100 AgrononicRato (AR) e —— o
of residue and soil (g kg "), and 00 ] TOC-St

. o 80 {C—J TOC-S
cumulative emission of CO,-C (g 7 c-co,

kg ") of soil with residue of
soybean, Brachiaria, sugarcane,
and treatment control in two
contributions of the residue crops
in agronomic rate (AR) and
constant rate (CR) in 48 days after
incubation

C-Losses(g kg"' )

100%

55,3%

24.2%

No-Straw Sugarcane Brachiaria Soybean Sugarcane  Brachiaria Soybean

3.3 Multivariate analyses of variables

In the principal component analysis (PCA), there was the for-
mation of a two-dimensional plane (Fig. 4) with three princi-
pal components (PC), PC1, PC2, and PC3, accounting for
70.02 % of the original information. The first PC1 has
36.95 % of variance, followed by CP2 with 20.67 % and
CP3 with 12.40 %. This result is in agreement with the criteria
established by Sneath and Sokal (1973), wherein the number
of PCs used in the interpretation must be such that it explains
at least 70 % of the total variance.

The most significant attributes retained in PC1 are related
to the soil CO,-C emission process. The C-HA and C-FA are
related directly (same sign) with the emission of CO,-C dur-
ing the initial soil incubation period (1, 3, and 6 DAI).

The C-HU attribute is inversely related to the CO,-C emis-
sion from the soil (Table 4). The C-HU had mean values
ranging from 12.0 to 12.4 g kg~ C at the initial time
(Table 2) and 17.0 to 18.7 g C kg ' at the end time
(Table 3). In PCA, the C-HU positioned near the end of the
incubation period (12 and 48 DAI) showed a close relation
(Fig. 4). The mean values of the C-HU were above the aver-
ages obtained in the C-FA and C-HA at the two times
(Tables 2 and 3).

At the initial time (Table 2), the C-FA obtained the
higher average C amount ranging from 3.4 to 3.7 g kg™

Fig.3 Remaining carbon from of 60

Soil Incubated

(0.3 to 1.1) when compared with the end time, 1.8 to
22gcC kgf1 (£0.3 to 0.7) (Table 2). Decreases were also
observed for the C-HA fraction, with averages from 2.1 to
23¢gC kg_l (£0.3 to 0.7) at the initial time (Table 2) and
1.0 to 1.1 g C kg ' (0.3 to 0.7) at the end (Table 3).
These variables showed high positive correlation, very
close vectors at the initial time (Fig. 4).

In PC2, the CO,-C emission is proportionally related to the
TOC-S and N contents, respectively, of the soil and residue
(N-S and N-St). However, it is inversely related to the TOC-St
(Table 4). The higher the amount of N in the soil and residue,
as well as TOC-S, the higher the CO,-C emission. However,
the TOC-St in the residue contributes to lower the CO,-C
emissions.

The N-S was also retained in PC3, providing little informa-
tion and no significant correlation with the other variables
(Fig. 4 and Table 4).

The TOC-S showed averages ranging from 22.4 to 23.4 g
C kg ' (£1.5 to 2.8) in the initial period and 21.1 to 22.8 g C
kgfl (£1.5 to 3.0) at the end (Tables 2 and 3). Lower C-Mic
levels in the soil without added residue occurred in the two
times, respectively 1631.8 to 2515.1 ug g ' ha ' and 1276.1
t0 2059.2 pg g ' ha '. When residue was added to the soil,
there occurred 18.13, 39.74, and 30.32 % reductions of C-Mic
during the experiment, respectively, for the sugarcane, soy-
bean, and Brachiaria residue (Tables 2 and 3).

Agronomic Rate (AR) Constant Rate (CR)

residue of soybean, Brachiaria, e Sugarcane
and sugarcane in two 1751 © Soybean
contributions of the residue crops *  Brachiaria
in agronomic rate (AR) and
constant rate (CR) (divided in 5
times T1, T2, T3, T4, and T5,
respectively 1, 3, 6, 12, and

48 days after incubation of soil)

Remaining Carbon (g kg'|)

T4

% \i—,‘k\,/ﬁ
TS L = 3

0 3 6 9 1215

18 21 24 27 30 33 36 39 42 45 480 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Days
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Fig.4 Component analysis (PCA) with the variables CO,-C emission, soil organic nitrogen (N-S) and residue (N-St) and the soil organic carbon (TOC-
S) and residue (TOC-St), humic substance carbon (C-HS) fractionated in fulvic acids (C-FA), humic acid (C-HA), and humin (C-HU)

The C-Mic showed a positive correlation with CO,-C
emission (»=0.70). So with increase of the C-Mic in the soil,
an increase of emission from soil occurred (Fig. 5). However,
this variable was not used in the principal component since it
did not retain a large amount of information as well as the C-
labile.

4 Discussion

4.1 Effect of residue incubation time on the CO,-C
emission

The low CO,-C emission in the treatment without residue is
due to the absence of organic substrate and decreases in mi-
crobial activity. Similar results were found by Babujia et al.
2010. The emission of the CO,-C results from the decay of the
soil C, mainly the C-WSC, C-HA, C-FA, TOC-S, and C-HU

Table 4 Correlation coefficient of the main components (CP1, CP2,
and CP3), carbon of humin (C-HU), fulvic acid (C-FA), humic acid (C-
HA), total organic carbon and nitrogen organic (TOC-S/N-S) and residue
carbon (TOC-St), nitrogen (N-St), and emission of CO,-C

Attribute CP1* cp2* CP3*
(36.95 %) (20.67 %) (12.40 %)
C-HU 0.88 0.06 0.10
C-HA -0.87 0.02 —-0.02
C-FA —0.85 —-0.05 —-0.03
TOC-S —-0.31 0.50 0.46
N-S —-0.09 0.53 =0.79
TOC-St —0.45 —0.53 0.10
N-St 0.20 0.77 0.23
CO,-C —0.56 0.50 0.11

Correlations in italic (>0.50 in absolute value) were regarded as highly
significant in the interpretation of the main significant

 These values represent the variance total in component 1 (CP1), 2 (CP2),
and 3 (CP3)

@ Springer

fractions (Badia et al. 2013; Knicker et al. 2013). The emis-
sion of soil CO,-C in the absence of substrate is inversely
related to the stored organic C and the potential loss of soil
C (Cookson et al. 1998).

The low TOC-S variation is due to its colloidal and phys-
ical stability considering the addition of all fractions with a
high degree of affinity with the soil particles (Stevenson
1994). In the clay fraction, the TOC-S is stabilized primarily
by its intimate association with soil minerals, which protects
against biological degradation (Kaiser et al. 2002), implying
greater TOC stability and consequently less significant
changes.

The peaks in the CO,-C emissions from the soil with res-
idue were for 6 days of incubation followed by an exponential
decrease until the end of the experiment with 48 days of in-
cubation. The quality and quantity of residue affects the in-
crease of CO,-C in the first 6 days. Depending on the type of
plant material, such increases can be reduced to hours

70000
r=0.70 (P=0.04)
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Fig. 5 Correlation between microbial biomass carbon (C-Mic) and
cumulative emission of CO,-C (g C-CO, m 2 h™') of soil with residue
of soybean, Brachiaria, sugarcane, and treatment control in two
contributions of the residue crops in agronomic rate (AR) and constant
rate (CR) in 48 days after incubation
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(Franzluebbers et al. 1994; Wang et al. 2004), considered as an
initial rapid phase (Duong et al. 2009).

Soil CO,-C emission peaks after 3 days of incubation
followed by an exponential decrease until the end of the ex-
periment with 56 days of incubation were obtained by Guilou
et al. (2011) working with CO,-C emission rates in Luvisol
with surface addition of wheat residue. Cayuela et al. (2009),
evaluating cotton wool incubated on the surface of a Regosol
for 25 days, also showed that initial peak in the emission of
CO,-C, as did Almeida et al. (2014) incubating sugarcane
residue in Latosol for 79 days.

These initial increases in the CO,-C emission are related to
the addition of 5 to 20 Mg ha ' of the plant material and
microbial biomass activity (C-Mic), with higher expression
in the treatments with soybean, Brachiaria, and sugarcane
residue, respectively, of 27.13, 22.94, and 3.80 % during the
first period (Tables 2 and 3). Under these conditions, the CO,-
C emission in the soil is the result of microbial respiration (C-
Mic) with greater activity during the decomposition of organic
matter (Luo et al. 2006), the C-Mic considered as a fraction of
easy and rapid decomposition (Six et al. 1999; Duong et al.
2009), and with high correlation with the CO,-C emissions
(Cheng and Coleman 1990).

The high soil CO,-C emission contributes to the reduc-
tion of sugars, while the lignin percentage concomitantly
increases (Aneja et al. 2006) the decomposition of starch
and proteins as well as some carbohydrates that start at a
lower rate (Gunnarsson et al. 2008), among them the C
and N present in the compounds of fructans. Another im-
portant aspect to note is that, in general, with the addition
of the residue, CO,-C emissions show a monotonic de-
crease over time, some more pronounced than others,
which is characteristic of a behavior induced by the car-
bon availability of the organic matter in the labile fraction
added in the beginning of the experiment (¢=0) (Scala
et al. 2008).

The greatest increase in soil CO,-C emission with the ad-
dition of the residue causes high metabolic activity of the
microorganisms which are able to degrade not only the C of
the residues but also of the soil (Badia et al. 2013). This result
is explicit in PC1 with inverse correlations at the final time of
the CO,-C (r=—0.56) with the C-HU (»=0.88) (Table 4), the
most recalcitrant fraction of the humic substances (Duong
et al. 2009; Zavalloni et al. 2011). Thus, as described by
Fontaine et al. (2007), with the higher respiration, there is a
decrease of the more stable SOM fractions. This is known as
the priming effect because with the high soil respiration and
the addition of plant residues, the breakdown of a few more
resistant organic matter fractions is stimulated (Kuzyakov
et al. 2000). However, residues with a high C/N ratio and
lignin quantity contribute to increases in the amount of the
C-HU fraction (Martens 2000) but require a longer time
(decades).

The C-HU had the highest concentration among the soil
HS. This result was also found by Conteh et al. (1998),
Canellas et al. (2003), Assis et al. (2006), and Rossi et al.
(2011) due to increased stability caused by the strong interac-
tion with the soil mineral fraction (Stevenson 1994).

In the PC1, the CO,-C emission (»=—0.56) was positively
correlated with C-HA (r=-0.87) and C-FA (r=-0.85) frac-
tions (Table 4). Besides, the C-FA fractions have the charac-
teristic highest mobility, solubility (Andreux and Becerra
1975), and mineralization rate among the HS fractions
(Fontana et al. 2006).

Franzluebbers et al. (1994) and Wang et al. (2004) also
found the decrease and subsequent stability of CO,-C emis-
sions after 12 days of incubation in all treatments with added
residue. These results are due to the high concentration of
recalcitrant compounds, such as lignin and cellulose and other
macromolecules (Wang et al. 2004), considered a slower
phase during which the most recalcitrant fraction is
decomposed (Duong et al. 2009).

4.2 Effect of quantity and quality of the residue added
to the soil on CO,-C emission

The increase in soil CO,-C emission is closely related to the
quality and quantity of residue added to soil. With the addition
of CO,-C, a concomitant decrease in the TOC-St occurs
(Stevenson 1994). Higher reductions of TOC-St in the
20 Mg ha ' dose of sugarcane residue, followed by doses of
8 and 5 Mg ha ' of soybean and Brachiaria, are due to in-
creased availability of substrate since even with the higher
C/N ratio (83.6 g N kgfl) and lignin (25.8 %), besides the
lower N amount (1.4 g N kgﬁl) and crude protein (2.50 %),
the sugarcane residue showed a higher amount of easily de-
gradable material (Table 1).

Adding large amounts of residue with a high C/N ratio
causes an increase in the amount of C in the organic matter,
compared with the addition of soybean residue with a lower
C/N (Mazzilli et al. 2014) and high quantity of crude protein
(Table 1).

The quality of plant material contributed to the increased
CO,-C emission in the soil from the decomposition, mainly of
residue. This loss of soil C was more pronounced with the
addition of soybean residue because of a higher concentration
of labile materials or materials readily metabolizable by mi-
crobial activity (Cunha et al. 2011). This is because with the
decomposition and mineralization of soybean residue, there is
N release into soil and to microorganisms (Siczek and Lipiec
2011), increasing the biological activity due to the essential
nature of N for the development of microorganisms, associat-
ed to the synthesis of compounds such as amino acids and
enzymes (Stevenson 1994). This increases the concentrations
of free sugars, starches, and pectins compared to grasses
(Gunnarsson et al. 2008).
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With high soil N availability and unavailability of plant
material, microorganisms act by decomposing the C present
in the soil and residue, promoting higher CO,-C emissions,
since the CO,-C has a high correlation with the TOC-S
(Panosso et al. 2011), and about 80 % of the plant material
C is released to the atmosphere in the form of CO,-C and with
an increase of 20 % in the soil in different fractions and de-
composition stages (Brady and Weil 2008).

Our results suggest that the quality of the residue is very
important for the increase in CO,-C emission. This condition
is preponderant for the time and intensity of the microbial
activity in the soil, with consequent higher CO,-C emission
and C loss from the soil and added residue. Residue added in
soil with C/N ratio under 20 decomposes rapidly, while mate-
rials with higher C/N ratios decompose slowly and may im-
mobilize N (Sanchez et al. 1989).

The decomposition can be evaluated with other methods
like N concentration and C/N, cellulose, and lignin ratios as
suggested by Berg (1986). Those methods can be better be-
cause the nutrient release rate during the crop residue decom-
position, especially the C/N ratio, depends on the characteris-
tics of the species of plant (Giacomini et al. 2003).

The 18.17 % N-St increase from sugarcane added to the
soil should be immobilized. The high C/N ratio of sugarcane,
ranging from 90 to 120, promotes N immobilization in the
residue in the absence of nitrogen fertilization (Meier et al.
2006). N immobilization in the sugarcane residue was also
found by Almeida et al. (2014).

In the treatment with Brachiaria residue, there occurred
consistency in the amount of TN (Tables 2 and 3) even with
a high C/N ratio (Table 1). Possibly, the constancy in TN
content in Brachiaria residue (Maciel et al. 2003) may be
due to allelopathic effects (Neal 1969) associated to soil mi-
croorganisms that can act in inhibiting available nutrients
(Olmsted and Rice 1970).

5 Conclusions

The quality and quantity of residue added to soil influences
the carbon sequestration and C-CO, emission. In the first
6 days of incubation, there was a higher C-CO, emission ratio
with the less stable soil carbon compartments (C-HA, C-FA,
N-S) as well as residue (TOC-St, N-St). In the final period,
there is no difference between quality and quantity of residue
added to soil.
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