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ABSTRACT 

The objective of this doctoral dissertation is to propose a new methodology to identify eight 

emergent tree species (i.e., that stood out from the canopy) belonging to highly diverse 

Brazilian Atlantic forest and with different ages and development stages. To achieve the 

objective, hyperspectral images were acquired in July/2017, June/208, and July/2019 in a 

transect area located in the western part of São Paulo State. The area is in Ponte Branca 

ecological station, where the forest is classified as submontane semideciduous seasonal with 

different stages of succession. Images with a spatial resolution of 10 cm were acquired with a 

hyperspectral camera (500–900 nm) onboard unmanned aerial vehicle (UAV) and 

geometrically and radiometrically post-processed. In sequence, the individual tree crowns 

(ITCs) were manually delineated in each dataset to be used as reference in the experiments. 

From the performed experiments, it is highlighted the use of mean normalized spectra to 

reduce the within-species spectral variability, the use of region-based classification with the 

Random Forest algorithm, and the use of superpixels to automatically delineate the ITCs in 

each dataset. Additionally, the multitemporal superpixels with different multitemporal 

features (normalized spectra, texture and vegetation indexes) and structural features derived 

from the canopy height model, combined or not, were assessed to the tree species 

classification. The best result was achieved merging normalized spectra and vegetation 

indexes, where the value of area under the receiver operating characteristics curve 

(AUCROC) achieved values up to 0.964. From the obtained results it is pointed out the 

challenge when working with this type of forest due to the lack of emergent trees, which 

restrict the number of samples recognized in the field, and the existence of different ages and 

stages of development to the same tree species. Besides, the use of structural and textural 

features did not improve the tree species identification. Besides, the high spatial resolution of 

the images showed the slight differences in the spatial position of the tree crowns between the 

datasets. Finally, despite the challenges the results are promising and showed the feasibility to 

identify the tree species using multitemporal information. 

 

Keywords: Tree species identification; Atlantic forest; multitemporal spectral information; 

superpixels, UAV. 

 



 
 

 

RESUMO 

O objetivo desse doutorado é propor uma nova metodologia para identificar oito espécies 

arbóreas emergentes (i.e., que se sobressaem do dossel florestal), em diferentes idades e 

estágios de desenvolvimento e pertencentes à Mata Atlântica brasileira. Para tal, imagens 

hiperespectrais foram adquiridas em Julho/2017, em Junho/2018, e em Julho/2019 em um 

transecto localizado no fragmento florestal Ponte Branca, localizado a Oeste do Estado de São 

Paulo, onde a floresta é considerada estacional semidecidual e submontana. As imagens com 

resolução espacial de 10 cm foram adquiridas com câmara hiperespectral (500–900 nm) 

acoplada em veículo aéreo não tripulado (VANT ou UAV, do inglês Unmanned aerial 

vehicle) e, posteriormente corrigidas geometricamente e radiometricamente. Em seguida, as 

copas arbóreas individuais (ITCs, do inglês Individual tree crows) foram delineadas 

manualmente em cada conjunto de dados para serem utilizadas como referência para os 

experimentos. Dentre os experimentos realizados, destaca-se o uso do espectro normalizado 

para redução da variabilidade espectral intra-espécies, o uso da classificação baseada em 

regiões utilizando o algoritmo Random Forest e o uso de superpixexls para delineamento 

automático das ITCs em cada conjunto de imagens. Além disso, avaliou-se o uso dos 

superpixels multitemporais com diferentes atributos multitemporais (espectro normalizado, 

textura e índices de vegetação) e estruturais (derivados do modelo de altura das copas), 

sozinhos ou combinados, para identificação das espécies arbóreas. O melhor resultado foi 

obtido a partir do uso combinado do espectro normalizado com os índices de vegetação, onde 

o valor da área sobre a curva característica de operação do receptor (AUCROC, do inglês 

Area under the receiver operating characteristics curve) atingiu valores de até 0.964. A partir 

dos resultados obtidos destaca-se o desafio ao trabalhar com esse tipo de floresta, devido à 

falta de árvores emergentes (que se sobressaem do dossel florestal), e a existência de árvores 

com diferentes idades e estágios de desenvolvimento, resultando em alta variabilidade 

espectral e estrutural para uma mesma espécie. Adicionalmente, foi verificado que o uso dos 

atributos estruturais e texturais não auxiliaram a tarefa de identificação de espécies e, que a 

alta resolução espacial das imagens mostrou as sutis diferenças de posição espacial das copas 

nas imagens dos diferentes anos. Por fim, apesar dos desafios, tem-se que os resultados são 

promissores e mostraram ser possível identificar espécies de árvores utilizando a informação 

multitemporal. 

 
Palavras-chave: Identificação de espécies arbóreas; Mata Atlântica, informação espectral 

multitemporal, superpixels, VANT.  
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1 INTRODUCTION 

Forests play an important role in biodiversity, carbon stocks, the water cycle, and 

feedstock, but they are rapidly being deforested. In Brazil, they are targets of illegal loggers or 

even converted to crops, pasture, and urbanization. Knowledge about the tree species of a 

forest is a fundamental information. Tree species recognition can be performed through 

fieldwork campaigns, but generally, this practice has limitations, since it is expensive and 

laborious because of the forest density and forest access, which can be far from roads and 

thus, it is a time-consuming task. Remote sensing, together with automatic analysis 

techniques, has become a prominent tool for tree species mapping. Since the ’80s, research 

papers related to “forest” and “Remote Sensing” exponentially increased (WEB-OF-

SCIENCE, [s.d.]) showing that forest researches are a trending topic. 

Most of the previous studies related to tree species identification using Remote 

Sensing have been performed in forests in the North hemisphere (FASSNACHT et al., 2016). 

There is a lack of studies in forests such as the Brazilian Atlantic forest, which encompasses 

different ecosystems, such as mixed ombrophilous, dense ombrophilous, open ombrophilous, 

semideciduous seasonal, and deciduous seasonal forests (BRASIL, 2006). Sothe et al. (2019) 

studied a mixed ombrophilous forest whose floristic compositions and forest structure 

characteristics differ from those of other types of Brazilian Atlantic forest, especially the 

semideciduous and deciduous seasonal forests (BRASIL, 2006), which highlights the 

importance of studying them separately. 

In addition, most studies have investigated well-developed forests or forests in 

which trees with different heights are spatially distinguished such as coniferous forests. Plots 

containing tree species in different successional stages and ages can present similar heights, 

and thereby, cause spectral mixing due to leaf mixture and the effect of neighborhood spectra 

because the number of emergent trees, i.e., trees that stood out from the canopy, is lower than 

the number of smaller trees. Notwithstanding the importance of monitoring mature forests, 

monitoring fragments that are in the initial or intermediary regeneration process is considered 

a key element in the connection of forest patches, and contributes to the maintenance of 

biodiversity (LIRA et al., 2012; RIBEIRO et al., 2009). Emergent trees are equally important 

when it comes to tropical forests. From its importance it is highlighted their use for the 

movement of primates, who also use the emergent trees to sleep (ALEXANDER et al., 2018) 

and because of its transpiration rate when considering the water cycle (KUNERT et al., 2017). 



18 
 

 

Bearing the Remote Sensing concept, Jensen (2007) defines Remote Sensing as 

the art and science of acquiring information without the physical contact with the objects. The 

information is extracted by the acquisition and interpretation of the reflected energy from the 

objects (JENSEN, 2007). Considering the vegetation as a target, the amount of reflected light 

depends on the leaves' content, such as pigments and structure (PONZONI; KUPLICH; 

SHIMABUKURO, 2012). The reflected light can be registered by different sensors, which 

can be classified according to its platform as orbital, aerial or terrestrial sensors. Satellite 

sensors and airborne passive and/or active sensors, combined with the use of field 

spectroscopy, provide valuable information for the identification of tree species (COLGAN et 

al., 2012; HEINZEL; KOCH, 2012; IMMITZER; ATZBERGER; KOUKAL, 2012; 

WAGNER et al., 2018; ZHANG et al., 2012). Besides, the use of unmanned aerial vehicles 

(UAVs) has become a powerful tool to acquire forest information (NEVALAINEN et al., 

2017; OTERO et al., 2018; SOTHE et al., 2020). 

UAVs enable fast information acquisition, and despite their constraints regarding 

the trade-off between resolution and coverage, they are low-cost alternatives for capturing 

information in areas that are endangered or need constant monitoring, such as mines or crops 

(COLOMINA; MOLINA, 2014; KANG et al., 2019; POPESCU et al., 2020; SHAKHATREH 

et al., 2019). UAVs can fly over many areas that are challenging for field data acquisition, 

such as water surfaces or dense forest areas. UAV missions can be quickly configured 

according to the user´s needs. Furthermore, in the past few years, UAVs have been rapidly 

developed to fly for several hours; an example of such a platform is the fixed-wing Batmap II 

UAV, which can fly for more than 2 hours (NUVEM UAV, [s.d.]). UAVs can capture very 

high or ultrahigh spatial resolution data with ground sampling distances (GSD) ranging from 

centimeters to decimeters (AASEN et al., 2018; COLOMINA; MOLINA, 2014; PANEQUE-

GÁLVEZ et al., 2014; SANCHEZ-AZOFEIFA et al., 2017) using small-format multispectral 

or hyperspectral cameras, such as MicaSense RedEdge-MX (MICASENSE, [s.d.]), Rikola 

hyperspectral imager (SENOP, [s.d.]), and Cubert FireflEYE (CUBERT, [s.d.]). Beyond that, 

UAVs can acquire information of surface targets, such as trees, with high temporal frequency, 

which is a promising option in forest monitoring, since it can measure dynamic phenological 

behavior according to seasons and tree characteristics. 

Besides the different platforms to acquire remotely sensed data, it is important to 

consider the need to interpret and label the registered information. This process is called as 

classification (RICHARDS; JIA, 2006). There are many methods to classify the data, where it 
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is highlighted the machine learning algorithms, which is a potential alternative to the 

traditional classification approaches (LARY et al., 2016). Santos et al. (2010) showed that 

genetic programming, a subset of the machine learning, presented better results to recognize 

coffee crops than using the maximum likelihood approach. Support vector machine (SVM) 

(MELGANI; BRUZZONE, 2004) and random forest (RF) (BREIMAN, 2001) are examples 

of machine learning algorithms that have been successfully applied to identify tree species in 

urban environments (LI et al., 2015), savannas (COLGAN et al., 2012), and different types of 

forests, including northern, boreal, temperate, and tropical forests (FERET; ASNER, 2013; 

FERREIRA et al., 2016; IMMITZER; ATZBERGER; KOUKAL, 2012; MASCHLER; 

ATZBERGER; IMMITZER, 2018; MATSUKI; YOKOYA; IWASAKI, 2015; WAGNER et 

al., 2018).  

Moreover, efforts concerning the best features extracted to tree species 

classification is also highlighted. Spectral features comprised from the visible (VIS) to short-

wave infrared (SWIR) region, texture, vegetation indexes, and structural features are among 

the most useful features to the tree species classification (BALDECK et al., 2015; 

DALPONTE et al., 2014; HEINZEL; KOCH, 2012; TUOMINEN et al., 2018). Textural and 

vegetation indexes can be extracted from the imagery information whereas structural features 

can be calculated from point clouds derived from aerial laser scanning (ALS), which can be 

used to obtain the canopy height model (CHM) of a forest (NEVALAINEN et al., 2017; 

SILVA et al., 2016). Besides, considering the vegetation context, relevant parameters can be 

extracted from multitemporal information. The differences in trees blossoming and defoliation 

depend on the season, weather conditions, and soil moisture. Consequently, the spectral 

response of crowns belonging to different tree species changes with the time. Although most 

of the previous studies conducted with seasonal/temporal information have not employed 

UAVs, they have shown spectral differences within tree species and reported whether the tree 

species classification was improved (CASTRO-ESAU et al., 2006; DEVENTER; CHO; 

MUTANGA, 2017; FERREIRA et al., 2019; HILL et al., 2010; IMMITZER et al., 2019; 

KARASIAK et al., 2019; KEY et al., 2001; LI et al., 2015; SOMERS; ASNER, 2014).  

In this regard, considering that UAVs can fly over many areas acquiring fast 

information with high spatial resolution and temporally, the joint use of this information could 

be helpful to identify the tree species. However, at the same time, it would be challenging 

because all the variations within a tree crown would be recorded in the high spatial resolution 

of images. Differences in tree growth from one year/season to the next one can appear even 
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coregistering the images. Thus, methods to handle with such small variations would be 

needed, not to mention the bidirectional reflectance distribution function (BRDF) effects 

because of the sunlit variations and different crown geometries. 

 

1.1 HYPOTHESIS AND OBJECTIVE 

The hypothesis of this doctoral dissertation is based on the knowledge that tree 

species have different characteristics depending on the weather conditions, and the recent 

availability of  UAVs, which can quickly acquire information and has been successfully 

applied in Northern forests to identify tree species. In this sense, the hypothesis is that tree 

species identification of a fragment from the Brazilian Atlantic forest can be improved by 

using temporal information acquired with sensors onboard UAV, integrated with structural 

data derived from ALS. Bearing the hypothesis, this doctoral dissertation aims to propose a 

new methodology to identify selected tree species belonging to the Brazilian Atlantic forest 

using temporal information acquired with sensor onboard UAV. Further objectives are to: 

 Evaluate the spectral differences among the tree species; 

 Evaluate the pixel-based and region-based classification approaches; 

 Delineate the individual tree crowns (ITCs); and 

 Identify the tree species. 

 

1.2 INTERNATIONAL COOPERATION 

This doctoral dissertation was developed under the framework of the international 

joint project called “Unmanned Airborne Vehicle - Based 4D Remote Sensing for Mapping 

Rain Forest Biodiversity and its Change in Brazil (UAV_4D_Bio)”. This Project is a 

partnership between researchers from São Paulo State University (UNESP), and Finnish 

Geospatial Research, part of the National Land Survey of Finland. UAV_4D_Bio project was 

supported in part by The São Paulo Research Foundation (FAPESP) (grant number 

2013/50426-4) and in part by the Academy of Finland (AKA) (grant number 273806). The 

project aimed to develop technologies to map and detect biodiversity changes in Brazilian 

Atlantic forests. 
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1.3 CONTENT 

Section 1 introduced the objectives of the doctoral dissertation. Section 2 shows 

the study area, which is used in all experiments. Section 3 presents the Remote Sensing data 

used, i.e., the ALS and the hyperspectral imagery data, how they were acquired and 

processed. In Section 4 the developed methodology is described. Section 5 shows the results 

and discussion from the performed experiments. The first experiment (Section 5.1) is based 

on the papers of Miyoshi et al. ([s.d.], 2020) which show and evaluate the spectral differences 

between and within-species of trees belonging to the Brazilian Atlantic forest. The second 

experiment (Section 5.2) is an improvement of the work from Miyoshi et al. (2019), where the 

comparison of the pixel-based and region-based classification approaches when using the 

mean spectra and the mean normalized spectra as features are performed. Section 5.3 shows 

the third experiment, which is based on Miyoshi et al. (2020). This experiment evaluates the 

usefulness of multitemporal spectral information to identify tree species. Section 5.4 

compares the superpixels and watershed methods to automatically delineate the ITCs in each 

imagery data. The last result is presented and discussed in Section 5.5. In this section, tree 

species identification using the findings from previous sections (5.1 to 5.4) and using 

additionals set of features (vegetation indexes, texture, and structural features) is carried out. 

Finally, Section 6 shows the conclusion, contribution and recommendations of this doctoral 

dissertation. 
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6 CONCLUSION 

The objective of this doctoral dissertation was to develop a methodology to 

improve the tree species identification and to evaluate whether the multitemporal information 

could improve the tree species identification. Hyperspectral images were acquired by Rikola 

camera onboard an unmanned aerial vehicle (UAV) over an area of the Brazilian Atlantic 

forest having great species diversity and different successional stages. Further objectives were 

the evaluation of spectral differences, the automatic ITC delineation and the combination of 

different temporal features to the classification task. 

The use of mean normalized spectral features showed a better performance than 

the non-normalized features in classifying tree species. Even applying the radiometric block 

adjustment, the pixel normalization indeed reduced the differences in shadowed and sunlit 

pixels and thus, increasing the tree species separability. Radiometric block adjustment was 

equally important and highlighted. Different cloud covering density affects the spectral 

response of samples from the same tree species because the incident light is different and the 

method to acquire the spectral response of the images is the empirical line method. The 

importance of the radiometric block adjustment should be emphasized because the high 

spatial resolution images show detailed information of the tree crown and are subject to the 

anisotropy effects when not properly corrected. 

Furthermore, the region-based approach presented the best results when compared 

with the pixel-based approach. Temporal spectral information improved the performance of 

the random forest classifier for three of the eight tree species analyzed, indicating that better 

accuracy could be obtained when using temporal spectral information. Separated analysis of 

single-date datasets showed that the weather pattern directly influenced the classification 

performance of some of the tree species. The analysis of datasets from several years of the 

same season showed that differences in weather conditions in different years resulted in some 

changes in the species spectra and these changes were useful for differentiating some of the 

selected tree species. 

Automatic ITC delineation was shown to be a highly complex task. The lack of a 

standard tree shape, the high forest density, its different development stages, and the 

similarity of heights directly affected the automatic ITC delineation, are weakness in all 

techniques for tree species identification. Considering the Syagrus romanzoffiana, this task is 

even more challenging. Its regular shape requires smaller superpixels, but it may cause the 

over-segmentation of wider crowns. Both assessed methods did not achieve an F-Score value 
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higher than 70%. However, the superpixels application provided similar AUCROC values 

when compared with the use of manually delineated polygons. 

The knowledge of the different tree heights was essential as well as the use of the 

spectral information. The use of spectral differences was crucial to deal with the different 

spatial positions of the ITC over the years. Concerning the spatial position of the trees, the 

initial EOP information from the camera GPS was important to geometrically produce the 

mosaic of hyperspectral images. There is a challenge to introduce GCPs inside of the forest 

because of its high density. Furthermore, even though the georeferencing of the three datasets 

was carried out in a single process there appeared small geometric differences as expected.  

Weather conditions directly affect the tree species bloom or defoliation because 

some species were better identified when using all temporal data, such as Hymenaea 

Courbaril and Inga vera. Further, the use of vegetation indexes is of fundamental importance. 

They were shown to provide similar results as the use of normalized features. The use of 

textural features was shown not to be relevant in our study area due to the high spatial 

resolution of the images, which might result in the textural features to be noisy and thus, not 

producing the best results. A similar analysis is applied to the use of structural features 

because the similar tree heights did not improve the tree species identification. Finally, despite 

the RF appeared to be insensitive to the number of attributes, the results showed its sensitivity 

to noisy features, as pointed out by other researches also. When using all textural, spectral, 

vegetation indexes and structural features, the results were worse than when using only the 

spectral features or the vegetation indexes. 

To the best of our knowledge, this is the first work to use hyperspectral UAV 

images acquired over several years to classify the highly diverse Atlantic Forest. 

Improvements should be applied regarding the number of samples per class and the 

seasonality for data acquisition. For some species, finding a higher number of tree samples is 

quite challenging, such as for Aspidosperma polyneuron which only had three individual 

samples identified in the field and was removed from the classification experiments.  

 

6.1 CONTRIBUTIONS AND FUTURE WORKS RECOMMENDATION 

As final remarks of this doctoral dissertation, it is highlighted the use of temporal 

information for tree species identification. Despite the images were not acquired in different 

seasons, it was possible to improve the identification of at least three tree species. The use of 
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an innovative lightweight hyperspectral sensor acquiring information from the VIS to the NIR 

over a small fragment of the Brazilian Atlantic forest in one of the novelties of this research. 

The multitemporal data analysis was a very challenging task because it involved not only the 

data acquisition, but the understanding of how to process and analyze all data together as well 

as the comprehension of forest components and behavior over the years. Another point to be 

reminded is the use of an area still not well-developed with similar tree heights surrounded by 

crops. Moreover, it was a protected area inside an ecological station, being required 

authorization from the environmental agencies to collect the data. It is worthy of mention the 

need for suitable forest management even when protected by laws. Therefore, the reported 

results are of great importance to decision-makers and can be used as key information to 

monitor this fragment. 

Bearing the recommendations, there is the use of a higher number of samples and 

tree species. Despite being a small fragment, a higher number of samples per tree species and 

the use of a higher number of classes can improve the monitoring task of this forest. The lack 

of samples could affect the classification results because of the unbalanced number of 

samples. Image acquisition in different seasons is another recommendation. Images acquired 

during Spring, Summer or Autumn can show higher discrepancies in the ITCs because of the 

different aspects of the soil moisture, weather and pigment content in each ITC. The use of a 

higher number of tree characteristics in different seasons could improve not only the tree 

species identification but also follow its evolution, consequently providing information to 

monitor the degree of forest restoration and conservation. 

The employment of recent deep learning approaches is encouraged. They are an 

emergent approach from the machine learning field being the state of the art of the 

classification methods in Remote Sensing. When using deep learning approaches, increasing 

the number of samples will be of higher importance, since the application of these algorithms 

requires a larger number of samples to properly model the classifiers. In the case of our study 

area it is possible to identify the Syagrus romanzoffiana because, during fieldworks and image 

interpretation, hundreds of samples were recognized. Nevertheless, the use of different 

machine learning algorithms is also suggested such as the SVM and the Multilayer 

perceptron. 

Considering the assessed features, there is the recommendation to apply different 

criteria to calculate the features importance and their application in classification experiments. 

Regarding the textural features, there is the use of different window sizes, the use of non-
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normalized pixel values, the use of different spatial resolution imagery and the use of other 

textural features not used in this doctoral dissertation. Regarding the vegetation indexes, 

different vegetation indexes assessment is encouraged. Hence, there is a recommendation to 

evaluate multispectral images in the multitemporal form. 

Finally, as a final recommendation, there is the application of the developed 

methodology in well-developed areas or even in different forest areas, such as the remaining 

types of Atlantic Forest, the Amazon forest or the Northern forests. 
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