UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE BAURU CAMPUS DE BAURU

A INFLUÊNCIA DO ACABAMENTO DA SUPERFÍCIE INTERNA DO TANQUE NO NÚMERO DE POTÊNCIA DE NOVOS IMPELIDORES

RAFAEL BUENO QUEIROZ

Dissertação apresentada à Faculdade de Engenharia de Bauru da UNESP - Câmpus de Bauru, para obtenção do título de Mestre em Engenharia Mecânica.

BAURU-SP Maio – 2009

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE BAURU CAMPUS DE BAURU

A INFLUÊNCIA DO ACABAMENTO DA SUPERFÍCIE INTERNA DO TANQUE NO NÚMERO DE POTÊNCIA DE NOVOS IMPELIDORES

RAFAEL BUENO QUEIROZ

Orientador: Prof. Dr. Paulo César Razuk

Dissertação apresentada à Faculdade de Engenharia de Bauru da UNESP - Câmpus de Bauru, para obtenção do título de Mestre em Engenharia Mecânica.

BAURU-SP Maio – 2009

"Qui desiderat pacem praeparet bellum" (Vegetius – 4 d.C.)

DEDICATÓRIA

Dedico esse trabalho à minha esposa Lígia; meus pais, Samuel e Marlene; e meus irmãos, Aline e Fernando; por todo amor, compreensão, paciência, discussões, dedicação e por todos os ensinamentos que me tornaram o que sou hoje.

AGRADECIMENTOS

- A minha esposa Lígia, por todo auxílio, paciência, compreensão e incentivo para terminar mais esse desafio.
 - Aos meus pais, por todo suporte e incentivo.
- Ao meu orientador, Professor Dr. Paulo César Razuk, por toda paciência e experiência.
- Ao engenheiro Dr. Celso Fernandes Joaquim Júnior, pelos conselhos, aprendizado e oportunidades.
- À Kroma equipamentos especiais LTDA. por toda experiência e autorização de uso das figuras.
- Ao amigo Gabriel Seber, por todo apoio e incentivo por começar mais este desafio.
- Aos projetistas: Carlos Eduardo Godoi (Toco), Rodrigo Lourenço, Thiago César Brandão e Cristiano Dittrich (Alemão), por todos os projetos e desenhos.
- Ao parceiro Vitor Manoel Salvadeo, pela ajuda durante a realização dos ensaios, pelas conversas e apoio nos momentos decisivos.
 - À servidora Célia Cristina do Espírito Santo Graminha por toda paciência.
- Ao técnico de laboratório do departamento de Engenharia Mecânica da UNESP/Campus de Bauru, Carlos Roberto Furlanetto, pela colaboração durante a realização dos ensaios.
- À empresa Starnox Bauru Indústria e Comércio de Equipamentos e Processos LTDA., pela fabricação dos impelidores.
- Aos amigos que entenderam minhas tão freqüentes ausências e deram apoio quando precisei.
 - A todos que, de alguma forma, tornaram esse trabalho possível.

RESUMO

Um dos processos mais comuns na indústria é a agitação (ou mistura). Nos dias de hoje, conhecer o comportamento das diversas variáveis envolvidas no processo é essencial para tornar a operação cada vez mais eficiente.

Determinar de forma precisa o número de potência é fundamental para o correto dimensionamento do sistema de agitação e, conseqüentemente, um melhor aproveitamento de energia.

Uma variável pouco analisada diz respeito à rugosidade da superfície interna do tanque onde é realizada a agitação. Essa característica também tem influência no consumo de potência.

Além disso, cada produto requer formas diferentes de agitação e também a utilização de diferentes geometrias de impelidores. Por isso, foram propostas, estudadas e ensaiadas agitações que empregaram dois impelidores com três pás retas a 120°, dotadas de 3 e 8 furos cada, em fluid os de viscosidades distintas, como água e óleo, além do impelidor de quatro pás retas inclinadas a 45° - referência já conhecida na literatura. Todos os testes foram realizados em tanques cilíndricos dotados de 4 defletores de costado removíveis.

Os resultados obtidos nos ensaios demonstraram que tanques com menor rugosidade interna demandam menor potência, especialmente quando processam fluidos mais viscosos. Além disso, foi possível determinar a variação do número de potência com o número de Reynolds para os impelidores propostos.

ABSTRACT

One of the most used process on the industry is the agitation (or mixing). Nowadays, to know the behavior of the several variables presents on the process is essential to become the operation most efficient.

To determine accurately the power number is necessary to correctly design of the mixing system and, consequently, a better energy exploitation.

A variable not often analized, relates to internal suface roughness of the equipment where the mixing is done. This characteristic also has influence on the power consumption.

Besides, each product needs differents forms of mixing and also needs differents impeller geometries. Because of this, it was proposed, studied and tested mixers that were used with two impellers with 3 blades (120°) with 3 or 8 holes in each one, in fluids with distinct viscosity, water and oil, besides the four pitch blades, reference already known on the literary.

The results obtained on the tests show that the tanks with better internal roughness need lower potency, specially when is used fluids with higher viscosity. Besides, it was possible to determine the power number and the Reynolds' number for the proposed impellers.

RELAÇÃO DE FIGURAS

Figura 1 – Modelo de placas paralelas utilizadas por Newton para explicar a viscosidade de
um líquido4
Figura 2 – Impelidor naval10
Figura 3 – Impelidor de pás retas inclinadas10
Figura 4 – Impelidor de alta eficiência11
Figura 5 – Turbina Rushton12
Figura 6 – Turbina radial com pás curvas12
Figura 7 – Impelidor tipo Cowles13
Figura 8 – Âncora tubular e âncora tubular com grades13
Figura 9 – Impelidor helicoidal14
<i>Figura 10 – Padrões de fluxo</i> 16
Figura 11 – Campo de velocidades do fluido quando utilizada a turbina radial17
Figura 12 – Exemplo de gráfico que relaciona o número de potência e o número de Reynolds
23
Figura 13 – Impelidores utilizados nos experimentos25
Figura 14 – Resultados para a agitação da água com o impelidor de 4 pás retas inclinadas a 45°27
Figura 15 – Resultados para a agitação da água com o impelidor de 3pás retas com 3 furos em cada pá28
Figura 16 – Resultados para a agitação da água com o impelidor de 3 pás retas com 8 furos em cada pá29
Figura 17 – Resultados para a agitação do óleo com o impelidor de 4 pás retas inclinadas a 45°30
Figura 18 – Resultados para a agitação do óleo com o impelidor de 3 pás retas com 3 furos em cada pá31
Figura 19 – Resultados para a agitação do óleo com o impelidor de 3 pás retas com 8 furos em cada pá

RELAÇÃO DE TABELAS

Tabela 1 -	– Relação da velocidade média do fluido (V_b) com o nível de agitação15
Tabela 2	– Relação das lixas utilizadas em polimentos e as rugosidades superficiais obtidas
	com seus usos24
Tabela 3 -	– Dimensional dos impelidores utilizados25
Tabela 4 -	– Equações para as agitações de óleo com impelidor de 4 pás retas inclinadas a 45°
	30
Tabela 5 -	– Equações para as agitações de óleo com impelidor de 3 pás retas com 3 furos em
	cada pá31
Tabela 6 -	– Equações para as agitações de óleo com impelidor de 3 pás retas com 8 furos em
	cada pá33
Tabela 7 -	- Equações e respectivas variações para as agitações de óleo33
Tabela 8 -	 Valores de número de potência utilizando água e impelidor de 4 pás retas a 45°,
	impelidor de 3 pás com 3 e com 8 furos em cada pá, no tanque de vidro com 4
	defletores
Tabela 9 -	– Valores de número de potência utilizando água e impelidor de 3 pás retas com 3
	furos em cada36
Tabela 10) – Valores de número de potência utilizando água e impelidor de 3 pás retas com 8
	furos em cada
Tabela 11	l — Valores de número de potência utilizando óleo e impelidor de 4 pás retas
	inclinadas a 45°36
Tabela 12	2 – Valores de número de potência utilizando óleo e impelidor de 3 pás retas com 3
	furos em cada37
Tabela 13	B – Valores de número de potência utilizando óleo e impelidor de 3 pás retas com 8
	furos em cada37
Tabela 14	l – Resultados da agitação de água em tanque de vidro com impelidor de 4 pás retas
	inclinadas a 45°, com 4 defletores38
Tabela 15	i – Resultados da agitação de água em tanque de vidro com impelidor de 3 pás retas
	com 3 furos em cada pá, com 4 defletores39

Tabela 16 – Resultados da agitação de água em tanque de vidro com impelidor de 3 pás retas
com 8 furos em cada pá, com 4 defletores40
Tabela 17 – Resultados da agitação de água em tanque de inox com impelidor de 4 pás retas
inclinadas a 45°, com 4 defletores41
Tabela 18 – Resultados da agitação de água em tanque de inox com impelidor de 3 pás retas
com 3 furos em cada pá, com 4 defletores42
Tabela 19 – Resultados da agitação de água em tanque de inox com impelidor de 3 pás retas
com 8 furos em cada pá, com 4 defletores43
Tabela 20 – Resultados da agitação de óleo em tanque de vidro com impelidor de 4 pás retas
inclinadas a 45°, com 4 defletores44
Tabela 21 – Resultados da agitação de óleo em tanque de vidro com impelidor de 3 pás retas
com 3 furos em cada pá, com 4 defletores45
Tabela 22 – Resultados da agitação de óleo em tanque de vidro com impelidor de 3 pás retas
com 8 furos em cada pá, com 4 defletores46
Tabela 23 – Resultados da agitação de óleo em tanque de inox com impelidor de 4 pás retas
inclinadas a 45°, com 4 defletores47
Tabela 24 – Resultados da agitação de óleo em tanque de inox com impelidor de 3 pás retas
com 3 furos em cada pá, com 4 defletores48
Tabela 25 – Resultados da agitação de óleo em tanque de inox com impelidor de 3 pás retas
com 8 furos em cada pá, com 4 defletores49

SIMBOLOGIA

A Área

dv Variação da velocidade

dy Variação da distância

D Diâmetro do impelidor

F Força

f_u Fator de correção da viscosidade

g Aceleração da gravidade

L_m Comprimento de análise da rugosidade

n Número de impelidores

N Rotação do impelidor

N_q Número de bombeamento

N_{q*} Número de bombeamento modificado

NA Nível de agitação

N_{Po} Número de Potência

N_{Re} Número de Reynolds

N_{Re*} Número de Reynolds modificado

N_{Fr} Número de Froude

Pot Potência

Q Capacidade efetiva do agitador

Ra Rugosidade média

T Diâmetro do tanque

V_b Velocidade média do fluido

μ Viscosidade

π Pi (3,14159...)

ρ Densidade

SUMÁRIO

1.	INTRODUÇÃO	1
	1.1. Objetivos	2
2.	REVISÃO DA LITERATURA	2
	2.1. Fluidos	2
	2.1.1. Reologia	3
	2.1.2. Viscosidade	3
	2.1.3. Fluidos Newtonianos	5
	2.1.4. Fluidos Não-newtonianos	5
	2.1.5. Viscoelásticos	7
	2.2. Agitação	7
	2.3. Principais tipos de impelidores rotativos	9
	2.3.1. Impelidor tipo hélice naval	9
	2.3.2. Impelidor de pás retas inclinadas	.10
	2.3.3. Impelidor de alta eficiência	.11
	2.3.4. Turbina radial	.11
	2.3.5. Impelidor tipo Cowles	.12
	2.3.6. Âncoras	.13
	2.3.7. Helicoidais	.14
	2.4. Grau de agitação	.15
	2.5. Principais correntes de fluxo	.16
	2.6. Equação de potência	.18
	2.7. A potência de agitação	.19
	2.8. Rugosidade superficial	.23
3.	MATERIAIS E MÉTODOS	.24
4.	RESULTADOS OBTIDOS	.26
	4.1. Ensaios realizados com água	.26

	4.1.1. Pás retas inclinadas a 45°	26
	4.1.2. Pás retas com 3 furos em cada pá	27
	4.1.3. Pás retas com 8 furos em cada pá	28
	4.2. Ensaios realizados com óleo	29
	4.2.1. Pás retas inclinadas a 45°	29
	4.2.2. Pás retas com 3 furos em cada pá	31
	4.2.3. Pás retas com 8 furos em cada pá	32
	4.3. Comparação devida redução de área	33
5.	. CONCLUSÕES	34
	5.1. Verificação das correntes de fluxo geradas pelos impelidores	34
	5.2. Influência da rugosidade da superfície interna do tanque	34
	5.3. Avaliação do número de potência	34
6.	. ANEXO 1 - TABELAS	35
	6.1. Verificação dos números de potência	35
	6.2. Resultados utilizando água em tanque de vidro	37
	6.2.1. Com impelidor de 4 pás retas a 45°, com 4 de fletores	37
	6.2.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 deflet	ores
		39
	6.2.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 deflet	ores
		40
	6.3. Resultados utilizando água em tanque de inox	41
	6.3.1. Com impelidor de 4 pás retas a 45°, com 4 de fletores	41
	6.3.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 deflet	ores
		42
	6.3.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 deflet	ores
		43
	6.4. Resultados utilizando óleo em tanque de vidro	44
	6.4.1. Com impelidor de 4 pás retas a 45°, com 4 de fletores	44
	6.4.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 deflet	ores
		45
	6.4.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 deflet	

em tanque de inox47	6.5. Resultados utilizando o
retas a 45°, com 4 de fletores47	6.5.1. Com impelidor de
s retas com 3 furos em cada pá, com 4 defletores	6.5.2. Com impelidor de
48	
s retas com 8 furos em cada pá, com 4 defletores	6.5.3. Com impelidor de
49	
50	7 BIBLIOGRAFIA

1. INTRODUÇÃO

Grande parte da indústria em geral utiliza a agitação (ou a mistura) em seu processo produtivo. São empregadas em unidades fabris de ponta, como a farmacêutica e a cosmética e também na fabricação de insumos utilizados por outras redes produtivas.

Tal processo geralmente ocorre em tanques cilíndricos verticais com eixoárvore centralizado ou descentrado. Atualmente, a agitação lateral somente é utilizada em equipamentos de grande volume, normalmente acima de 100 mil litros, apenas para lenta movimentação do fluido.

A agitação é empregada para evitar a precipitação dos sólidos, auxiliando, também, a sua dissolução. Facilita a transferência de calor, a uniformização da temperatura, a preparação de emulsões e a incorporação de gases em líquidos. Acelera reações químicas e a interação entre substâncias.

Devido à grande gama de necessidades e possibilidades de aplicação da agitação na indústria, cada processo requer determinado tipo de impelidor. A sua geometria depende das características reológicas dos produtos a serem agitados, bem como do fluxo gerado no interior do vaso, o qual pode ser radial, longitudinal ou tangencial. A rotação destes impelidores deve atender às necessidades do produto e está, também, relacionada com sua viscosidade. Para fluidos altamente viscosos a agitação, geralmente, gera um regime laminar, com baixo número de Reynolds, baixas rotações. Para produtos de baixa viscosidade, empregam-se o regime turbulento, altas rotações. Porém deve-se se atentar ao tipo de produto para não aerá-lo, como é o caso de sucos cítricos que se agitados em altas rotações (vórtices), podem oxidar.

Dependendo da utilização, o equipamento terá um desenho próprio. Quando é necessária a dissolução de gases, o tanque é comumente mais esbelto e com maior altura, para maximizar o tempo de contato entre o gás e o líquido. Quando o agitador é montado no centro do tanque, o vórtice é evitado com a colocação de chicanas, quebra-ondas ou difusores no costado cilíndrico.

O desenho do fundo do equipamento também é variável. Na sua confecção é considerada a sua finalidade. Se for empregado para a dissolução de sólidos, procura-se evitar fundos planos para se evitar a estagnação de partículas nos cantos. Já para fluidos muito viscosos, pode-se utilizar um fundo cônico para facilitar o esgotamento do produto.

A complexidade do assunto e suas variáveis levam a indústria a buscar novos agitadores para otimizar a produção e a qualidade do produto.

1.1. Objetivos

Neste estudo, foram propostos dois diferentes tipos de impelidores que tiveram os seus desempenhos avaliados em relação ao número de potência, utilizando-se de fluidos newtonianos de diferentes viscosidades: água e óleo lubrificante automotivo.

Para isso, foram observados: a potência consumida, o número de Reynolds e as correntes de fluxo geradas.

Mensurou-se a influência da rugosidade da superfície interna do tanque no valor do número de potência.

2. REVISÃO DA LITERATURA

2.1. Fluidos

Todas as substâncias são formadas por moléculas que se agrupam com maior ou menor afinidade. Podem-se dividir todas as substâncias em duas categorias: sólidos e fluidos.

Nos sólidos, segundo LIMA (1974), as moléculas se unem com grandes forças intermoleculares de coesão. Essa força de coesão é tão intensa que faz com

que os corpos sólidos se fragmentam em pedaços rígidos quando sujeitos a esforços externos e mantenham sua forma quando não estão sujeitas a forças externas.

Ainda segundo LIMA (1974), fluidos são substâncias que podem escoar, movendo-se as partículas e mudando de posição relativa, sem desintegração da massa, não oferecendo praticamente resistência à deformação e se adaptando às formas dos recipientes que os contém.

Os fluidos ainda podem ser subdivididos em líquidos e gases, que são substâncias capazes de se difundirem espontaneamente para ocupar o volume de qualquer recipiente.

Entretanto, muitas substâncias não preenchem convenientemente a descrição dessas duas classes, pois têm características de sólido e líquido.

FOX et al. (1981), analisa o comportamento de sólidos e líquidos quando os mesmos estão sujeitos à ação de uma força constante, concluindo que fluido é uma substância que não pode resistir a uma tensão de cisalhamento sem sofrer deformação.

STREETER (1975) define força de cisalhamento como a componente tangencial da força que age sobre a superfície. Tal componente dividida pela área da superfície dá origem à tensão de cisalhamento.

2.1.1. Reologia

Segundo Bird et al (1960), reologia é a ciência que estuda as propriedades de escoamento dos gases, líquidos e sólidos; do comportamento das deformações e do fluxo de matéria submetido a tensões, sob determinadas condições termodinâmicas ao longo de um intervalo de tempo. Inclui propriedades como: elasticidade, viscosidade e plasticidade.

2.1.2. Viscosidade

Isaac Newton, definiu a viscosidade de um fluido como a resistência ao deslizamento de suas moléculas devido à fricção interna e, quanto maior o grau de fricção interna de um fluido, maior é a sua viscosidade. Ele formulou a hipótese de

que uma força é necessária para superar a resistência viscosa de um fluido e estabeleceu a equação (1) como fundamental para o escoamento viscoso.

A figura 1 mostra o modelo utilizado por ele para definir viscosidade e mostra um fluido entre duas placas paralelas de área "A", separadas a certa distância e uma força "F" constante é aplicada na placa superior, movimentando-a com velocidade em relação à placa inferior, que permanece fixa. O experimento mostrou que a distribuição de velocidade é linear ao longo da distância "h" e que o gradiente de velocidade "dv/dy" é diretamente proporcional a força "F", por unidade de área.



Figura 1 – Modelo de placas paralelas utilizadas por Newton para explicar a viscosidade de um líquido

$$\frac{F}{A} = -\mu \cdot \left(\frac{dv}{dy}\right) \tag{1}$$

Viscosidade é a medida da resistência interna ou fricção interna de uma substância ao fluxo quando submetida a uma tensão. Quanto mais viscosa a massa, mais difícil de escoar e maior o seu coeficiente de viscosidade.

Segundo LIMA (1974) a viscosidade é uma resistência que tende a impedir que as moléculas dos fluidos movam-se livremente.

Um fluido é uma substância que se deforma continuamente quando sujeito à ação de uma força. Os fluidos reais, líquidos, gases, sólidos fluidizados, apresentam uma resistência à deformação ou ao escoamento quando submetidos a determinada tensão. Para os gases, a viscosidade está relacionada com a transferência de

impulso devido à agitação molecular. Já a viscosidade dos líquidos relaciona-se mais com as forças de coesão entre as moléculas.

Viscosidade absoluta: É a viscosidade medida por um sistema de geometria que não está influenciada pela gravidade para obtenção dessa medida. Pode ser expressa em unidades de Poise ou centiPoise.

Viscosidade cinemática: É a viscosidade medida por um sistema de geometria que usa a gravidade para obtenção dessa medida; sua unidade pode ser o Stokes ou centiStokes, em que o Stoke é igual ao Poise, dividido pela densidade do fluido.

Viscosidade aparente: É a viscosidade de um líquido não-newtoniano. É a viscosidade em um único ponto ou a uma taxa de cisalhamento única. É expressa em unidades de Poise ou centiPoise.

2.1.3. Fluidos Newtonianos

O comportamento newtoniano indica que a viscosidade do fluido é independente da taxa de deformação a que está submetido. Possui um único valor de viscosidade, em determinada temperatura. Exemplos: gases, água, leite e óleos vegetais.

2.1.4. Fluidos Não-newtonianos

Possui a relação entre taxa de deformação e tensão de cisalhamento mais complexa, pois a viscosidade varia com a taxa de deformação e com a necessidade da tensão de cisalhamento inicial.

São classificados naqueles que:

- possuem propriedades independentes do tempo de cisalhamento
- possuem propriedades dependentes do tempo de cisalhamento
- viscoelásticos

PSEUDOPLÁSTICOS (com ou sem tensão de deformação inicial): Demonstram decréscimo de viscosidade quando ocorre acréscimo na taxa de cisalhamento. Exemplos de fluido pseudoplásticos: tintas, emulsões e dispersões de vários tipos.

DILATANTE: POSSA & DE LIMA (2000) afirmam que nesses fluidos a viscosidade aumenta com o aumento da taxa de cisalhamento. Se o material é medido de baixa para alta velocidade e a viscosidade aumenta com o aumento da velocidade (gradiente de cisalhamento), então o material é classificado como dilatante. São exemplos de fluidos dilatantes: fluidos contendo alto nível de sólidos de floculados como lama, argila, compostos de doceria, como por exemplo ingrediente de balas, amido de milho em água e misturas de areia/água.

PLÁSTICO DE BINGHAM: Segundo COSTA (2007), caracteriza-se por apresentar uma tensão inicial a partir da qual o fluido apresenta uma relação linear entre tensão de cisalhamento e taxa de deformação, apresentando um comportamento newtoniano. Exemplos desses materiais são: maionese, catchup.

TIXOTRÓPICOS: Ainda segundo a mesma autora, caracterizam-se por apresentar decréscimo na viscosidade aparente, com o tempo de aplicação da tensão. Quando o fluido fica em repouso, retorna à condição original.

REOPÉTICOS: Caracterizam-se por apresentar acréscimo na viscosidade aparente com o aumento da taxa de deformação e quando o fluido fica em repouso, ele retorna à condição inicial. Conforme POSSA & DE LIMA (2000), esses fluidos reopéticos são raros e apresentam comportamento oposto ao dos tixotrópicos.

2.1.5. Viscoelásticos

Existem fluidos que exibem muitas características de sólidos, são os chamados viscoelásticos. Esses fluidos são substâncias que apresentam propriedades viscosas e elásticas acopladas. Pode-se definir que fluido viscoelástico apresenta inicialmente comportamento sólido e posteriormente líquido. Quando cessa a tensão de cisalhamento ocorre certa recuperação da deformação. Exemplos: massas de farinha de trigo, gelatinas, queijos.

2.2. Agitação

Segundo FOUST (2001), a agitação é uma das operações mais antigas e mais comuns na indústria. É a operação de produzir movimentos ou fluxos mais ou menos regulares no interior de um fluido. Quando se trata de uma só substância, a operação é de agitação propriamente dita, já para duas ou mais substâncias, tem-se uma mistura. Em seu aspecto tecnológico, RAZUK (1992) afirma que consiste em produzir movimentos no(s) fluido(s) por meio de dispositivos mecânicos. Esses dispositivos mecânicos são também chamados de impelidores.

Segundo RONCHI (1997) a agitação (ou mistura) pode ser classificada em cinco processos diferenciados: mistura de líquidos miscíveis, mistura de líquidos imiscíveis, suspensões e cristalizações, absorção de gás e transferência de calor.

- Mistura de líquidos miscíveis: processo que necessita mais circulação e menos cisalhamento hidráulico. As potências utilizadas podem varias muito de acordo com o impelidor utilizado, viscosidade e densidade dos fluidos. Os impelidores mais adequados são os que produzem um fluxo predominantemente axial.
- *Mistura de líquidos imiscíveis:* operação usualmente utilizada para gerar emulsões. Necessita de grande cisalhamento hidráulico, portanto os impelidores mais utilizados são as turbinas Rushton, Smith e o impelidor tipo Cowles.
- Suspensões e cristalizações: procedimentos em que de deseja evitar a decantação da partícula sólida e deve garantir que as partículas figuem suspensas

no fluido. Na operação de cristalização também é desejável que as partículas não decantem, aumentando assim a área de contato sólido-líquido.

- Absorção de gás: requer um alto esforço cortante controlado para propiciar uma dispersão fina e máxima área de contato interfacial entre o gás e o líquido. O gás é geralmente injetado abaixo das pás do impelidor. As turbinas de fluxo radial, tais como a turbina Smith e a turbina Rushton, são as mais indicadas para esse fim.
- Transferência de calor: Nesse procedimento deve-se assegurar uma recirculação tal qual possibilite uma temperatura uniforme na massa líquida. Quando se necessita de troca térmica em fluidos viscosos é indicada a âncora dotada de raspadores aumentando assim o coeficiente de película do fluido interno e evitando a incrustação da massa na parede do equipamento.

De acordo com JOAQUIM JR (1999), cada uma dessas aplicações requer do produto diferentes respostas dinâmicas e distintos padrões de fluxo, dificultando a seleção do sistema de agitação mais adequado. Segundo FOUST (2001), a eficiência e o consumo de energia na agitação dependem dos princípios básicos da Mecânica dos Fluidos e as configurações do escoamento nos vasos com agitação são tão complicados que a aplicação rigorosa dos referidos princípios básicos é impossível, sendo preciso utilizar aproximações empíricas.

DICKEY & HEMRAJANI (1992) chamam atenção para a importância de se compreender os objetivos do processo de mistura como um passo essencial para o correto dimensionamento e seleção do equipamento. Em alguns casos, os resultados desejáveis desse processo são difíceis de quantificar e eventualmente se faz necessária a utilização de mais de um sistema de agitação.

JOAQUIM JR et al. (2007) exemplificam alguns parâmetros a serem observados em cada processo: em um cristalizador algumas variáveis importantes são o calor transferido associado ao controle de temperatura e a suspensão dos cristais; já nos fermentadores são a transferência de oxigênio, a dispersão do ar e a estabilidade dos microorganismos.

O sistema de agitação é, também, integrado à geometria do tanque, para propiciar as melhores condições para o processo e a maior economia operacional possível. Por sua vez, a geometria do vaso resulta da otimização do uso de chapas que reduz o custo do equipamento, diminuindo o número de cortes e de soldas e

com uma padronização que atende à racionalização da produção e às necessidades do mercado.

A agitação (ou mistura) pode ser feita por impelidores:

- *de fluxo:* onde a própria turbulência do fluido provoca a agitação, como na recirculação por bombas ou nos misturadores estáticos.
- rotativos rápidos: o elemento mecânico possui grande velocidade angular.
 São exemplos as hélices navais, pás retas inclinadas ou não e a turbina radial.
 - rotativos lentos: âncoras e helicoidais utilizados em fluidos muito viscosos.

2.3. Principais tipos de impelidores rotativos

As lâminas dos impelidores podem assumir formas diferentes dependendo do serviço a ser realizado. O movimento da pá do agitador no fluido e o movimento resultante do fluido pelas paredes (ou quebra-ondas) provocam um atrito característico e um arraste que dependem da velocidade de rotação e do modelo do impelidor e da geometria do tanque. A geometria das pás tem influência direta na potência necessária para a agitação. Segundo RAZUK (1992), quanto maior o ângulo de inclinação das pás com a vertical, menor é a potência requerida. O efeito dessa redução depende do número de Reynolds: à medida que ele decresce menos significativa é a inclinação das pás na potência consumida.

2.3.1. Impelidor tipo hélice naval

Este impelidor está ilustrado na figura 2. É utilizado em fluidos pouco viscosos (até 3.000 cP) giram em altas rotações e produzem correntes longitudinais e tangenciais. Produzem alta turbulência e baixo consumo de potência.

Figura 2 – Impelidor naval

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_kin03.php. Acesso em 12 jul. 2007,21:01:23.

2.3.2. Impelidor de pás retas inclinadas

Atende a maioria das aplicações pelo fato de trabalhar com líquidos de viscosidades entre 1 e 100.000 cP. GATES & HENLEY (1975) e posteriormente BOWEN (1985) afirmam que o agitador de fluxo axial mais comum é o constituído por quatro pás retas inclinadas a 45°, conforme a f igura 3:

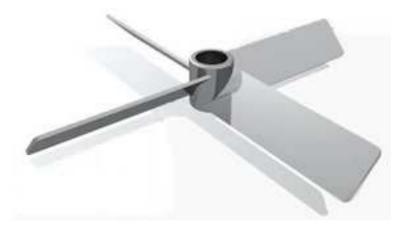


Figura 3 – Impelidor de pás retas inclinadas

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_kpri04_kpri02.php. Acesso em 12 jul. 2007,20:59:47.

2.3.3. Impelidor de alta eficiência

De acordo com JOAQUIM JR. (1999), é um impelidor semelhante ao de pás retas, porém devido sua geometria, propicia um maior aproveitamento da potência, mostrado na figura 4. É geralmente composto de 3 pás inclinadas entre 30 e 60°, com menor inclinação nas extremidades. Essa configuração permite minimizar a formação de vórtices na parte posterior das pás e conseqüentemente o consumo de potência. Pode ser empregado na mistura de líquidos miscíveis, suspensão de sólidos e na otimização da troca térmica em operações de mistura.

Figura 4 – Impelidor de alta eficiência

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_kae02_kae03.php. Acesso em 12 jul. 2007,21:25:37.

2.3.4. Turbina radial

Também chamada de turbina Rushton, mostrada na figura 5, determina ao produto um fluxo essencialmente radial, o que faz preponderar o efeito do cisalhamento sobre as correntes de recirculação. JOAQUIM JR. (1999) afirma que mostra-se muito eficiente na dissolução de gases. Também pode ser construída com as pás curvas, conforme a figura 6.

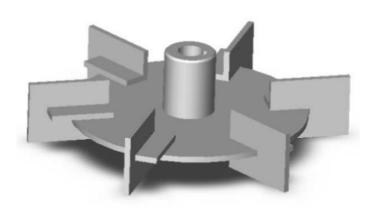


Figura 5 – Turbina Rushton

Fonte: http://www.postmixing.com/mixing%20forum/images/rt6.jpg. Acesso em 19 fev. 2008,22:17:05

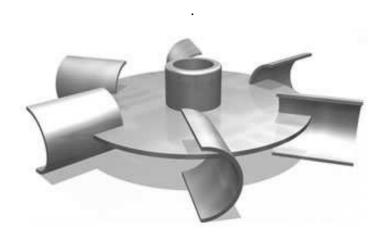


Figura 6 – Turbina radial com pás curvas

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_ktrpr_ktrpc.php. Acesso em 12 jul. 2007,21:29:59.

2.3.5. Impelidor tipo Cowles

Também conhecido como "dente de serra", provoca fortes turbulências nas extremidades das pás, com alto nível de cisalhamento hidráulico. É largamente utilizado na indústria de tintas e pigmentos, devido ao seu bom desempenho na preparação de soluções. Pode ser visto na figura 7.

Figura 7 – Impelidor tipo Cowles

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_kmd.php. Acesso em 12 jul. 2007,21:09:46.

2.3.6. Âncoras

Os impelidores da figura 8 são empregados em fluidos mais viscosos e regimes laminares, produzem baixa turbulência e alto consumo de potência. Promovem maior transmissão de calor nas operações de aquecimento ou resfriamento e neles é possível a instalação de raspadores a fim de se evitar a formação de depósitos de material nas paredes dos reatores.

Figura 8 – Âncora tubular e âncora tubular com grades

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_kat_katr.php. Acesso em 12 jul. 2007, 21:21:24.

2.3.7. Helicoidais

Com características semelhantes ao impelidor tipo âncora, porém com um rendimento um pouco inferior. Segundo BATTAGLINI (1998), os impelidores tipo helicoidais são utilizados em fluidos muito viscosos ou de características não newtonianas, em regimes laminares. Também podem ser dotados de raspadores, contribuindo para a transferência de calor em equipamentos com troca térmica. Os impelidores helicoidais podem ser de fita simples, fita dupla, fita simples com parafuso ou fita quádrupla. Exemplo desse tipo de impelidor pode ser visto na figura 9.

Figura 9 – Impelidor helicoidal

Fonte: http://www.kroma.com.br/linha_de_produtos_agitadores_ksh_kdh_kqh.php. Acesso em 12 jul. 2007,20:58:20.

2.4. Grau de agitação

Pode-se definir a agitação de maneira subjetiva através da observação da superfície livre do produto no tanque.

Posteriormente, ela foi definida através da potência transferida ao fluido por unidade de volume. Um critério melhor que o anterior, mas ainda relativo é o nível de agitação, que representa a velocidade média do fluido. Porém, para um mesmo nível de agitação (NA) pode-se dispor de um impelidor maior a uma rotação mais baixa ou vice-versa.

A operação básica de agitação é muito difícil de se sujeitar a uma análise científica em função do grande número de variáveis para pré-determinar a velocidade de um agitador sob determinadas condições.

O objetivo dos problemas de agitação é determinar a potência requerida, a rotação e o diâmetro do impelidor.

Para poder quantificar o grau de agitação fixa-se a velocidade média do fluido no tanque, em princípio, numa escala de 1,8 a 18 m/min e relaciona-se essa velocidade com valores de 1 a 10 para os níveis de agitação como mostra a tabela 1.

T 1 1 1 D 1 ~	1 1 1 1	/ 1. 1	M · 1 /TT \	,	11 . ~
Tabela 1 – Relação	i da velocidad	e media da	TIMIDO (Val)	com o nive	ี <i>สอ ส</i> อาร์ส <i>ะส</i> ก
India I Indiação	aa reiociaaa	c meana ao	juliuo (v p)	com o mive	ac aznação

Baixo		Médio		Alto	
NA	Vb (m/min)	NA	Vb (m/min)	NA	Vb (m/min)
1	1,8	3	5,4	7	12,6
2	3,6	4	7,2	8	14,4
		5	9	9	16,2
		6	10,8	10	18

O nível de agitação baixo é utilizado quando se utilizam fluidos miscíveis entre si, a incorporação de sólidos de fácil solubilidade, alta viscosidade ou produtos que não podem ter incorporação de ar.

O médio é caracterizado como o de maior utilização na indústria.

O nível de agitação alto é utilizado geralmente quando se necessita um grande cisalhamento do produto, como na dissolução de sólidos com grande granulometria.

2.5. Principais correntes de fluxo

Como indicado na figuras 10, a agitação gera três componentes básicas de fluxo:

- Componente radial: perpendicular ao eixo de giro do impelidor;
- Componente rotacional: tangencial ao circulo de rotação do impelidor e;
- Componente axial: paralela ao eixo de giro do impelidor.

Figura 10 – Padrões de fluxo

Fonte: Agitação e Mistura na Indústria, Joaquim Jr, C.F.; Cekinski, E.; Nunhez, J. R.; Urenha, L. C.; Figura 4.18, p 116

A figura 11 ilustra as velocidades do fluindo quando utilizada a turbina radial.

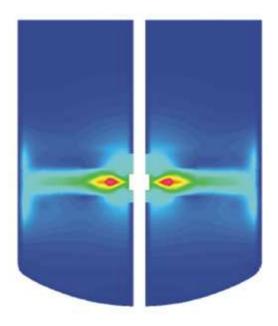


Figura 11 – Campo de velocidades do fluido quando utilizada a turbina radial Fonte: Agitação e Mistura na Indústria, Joaquim Jr, C.F.; Cekinski, E.; Nunhez, J. R.;

Urenha, L. C.; Figura 5.6 (a), p 168

As componentes radial e axial contribuem efetivamente para a mistura.

A componente tangencial produz uma camada de fluxo em rotação ao redor do eixo-árvore, em geral em escoamento laminar, e que praticamente impede a movimentação longitudinal. O resultado é que o conteúdo do tanque gira, sem produzir nenhuma ação de mistura. Essa componente tangencial pode ocasionar a formação de vórtice na superfície do líquido, que será cada vez mais profundo a medida que se aumenta a rotação do agitador.

Quando esse vórtice alcança a zona de sucção da hélice, a potência transferida ao fluido diminui subitamente devido ao arraste de ar para o interior do produto. Esse vórtice, na maioria dos casos, é indesejado pelo fato de aerar, que é incorporar gases/ar ao produto. Porém existem maneiras de se evitar a formação desse vórtice, com a instalação de chicanas ou quebra-ondas, nas paredes do tanque. Há um aumento de cinco a quinze vezes na potência consumida pelo impelidor, porém, segundo Foust (2001), as chicanas promovem maior ação de mistura. Pode-se descentralizar o agitador do centro do vaso e como conseqüência tem-se um aumento da potencia em até quatro vezes em relação ao mesmo agitador

centrado. Já foi demonstrado que o deslocamento a meio raio equivale ao sistema centrado com dois quebra-ondas.

2.6. Equação de potência

DICKEY (1984) estabeleceu três parâmetros para os problemas de agitação, que são: quantidade de fluido sendo representado pelo volume; viscosidade do fluido e a velocidade média do fluido que depende do nível de agitação.

O número de Reynolds (N_{Re}) representa a relação entre as forças inerciais e as forças viscosas e é definido pela equação (2):

$$N_{\rm Re} = \frac{D^2 \cdot N \cdot \rho}{\mu} \tag{2}$$

onde D é o diâmetro do impelidor, N a rotação, $^{\rho}$ e $^{\mu}$, a densidade e a viscosidade respectivamente.

Segundo DICKEY & HEMRAJANI (1992), faz-se a seguinte distinção de fluxos em função do (N_{Re}) gerado pelo impelidor:

- Fluxo laminar ou viscoso: N_{Re} ≤ 10;
- Fluxo de transição: 10 < N_{Re} ≤ 20.000 e
- Fluxo Turbulento: N_{Re} > 20.000.

Por outro lado, os vórtices turbulentos têm papel importante durante o contato de gases e líquidos, mistura de líquidos imiscíveis e incorporação de sólidos suspensos.

O número de Froude (N_{Fr}) representa a relação entre as forças inerciais e as forças gravitacionais e é definido pela equação (3):

$$N_{Fr} = \frac{D \cdot N^2}{g} \tag{3}$$

Onde g é a aceleração da gravidade.

A capacidade efetiva do agitador (Q) é uma grandeza que, segundo HICKS et al (1976) e DICKEY (1984) representa o volume do fluido deslocado na unidade de tempo. Pode ser determinada pela equação (4):

$$Q = V_b \cdot A \tag{4}$$

onde A é a área da seção transversal do tanque calculada por:

$$A = \frac{\pi \cdot T^2}{4} \tag{5}$$

sendo T, o diâmetro do tanque.

O número de bombeamento (N_q) interpretado pelos mesmos autores como a eficiência associada à capacidade efetiva do agitador, depende do tipo e do modelo geométrico do impelidor, da razão entre os diâmetros do impelidor e do tanque e também do número de Reynolds, pode ser determinado por:

$$N_q = \frac{Q}{N \cdot D^3} \tag{6}$$

2.7. A potência de agitação

NAGATA (1975) é um dos investigadores que estudou o consumo de potência em sistemas agitados. O autor verificou experimentalmente que o aumento na largura das pás dos impelidores provoca um aumento na potência consumida e esse acréscimo fica mais evidente à medida que o fluido for mais viscoso.

A altura da superfície livre do líquido, assim como o ângulo de inclinação das pás, sofre influência do número de Reynolds. Essas variáveis se tornam mais significativas à medida que o número de Reynolds aumenta. Porém, a posição do impelidor no tanque em relação a vertical, não influencia muito no consumo de potência.

Para a determinação da potência requerida deve-se primeiramente estimar o diâmetro do impelidor para possibilitar a determinação da capacidade de bombeamento e do número de Reynolds. Após o que se deve começar com a estimativa turbulenta para diâmetro de impelidor e então interagir, por aproximação sucessiva, até o valor do diâmetro do impelidor convergir. Segundo DICKEY (1984) no intervalo turbulento o número de bombeamento é uma constante para uma determinada relação de diâmetros do impelidor e do tanque (D/T). Nesse intervalo, o número de bombeamento turbulento pode ser expresso como:

$$N_{q} = 0.683 \cdot \left(\frac{0.394}{D_{/T}}\right)^{1/2} \tag{7}$$

O número de Reynolds modificado (N_{Re*}) utilizado pelo autor é corrigido por um fator que envolve a relação entre o diâmetro do impelidor e o diâmetro do tanque de acordo com a expressão:

$$N_{\text{Re}*} = N_{\text{Re}} \cdot \left(\frac{D/T}{0.394}\right)^{1/2}$$
 (8)

Dependendo do valor do número de Reynolds modificado, a relação estabelece um novo valor para o número de bombeamento (N_{q^*}) :

- Para N_{Re^*} > 20000 tem-se:

$$N_{q^*} = 0.683 \tag{9}$$

- Para 20000 ≥ N_{Re*} > 300 tem-se:

$$N_{q^*} = \exp\left\{-5.71 + 1.683 \cdot \ln(N_{\text{Re}^*}) - 0.179 \cdot \left[\ln(N_{\text{Re}^*})^2\right] + 0.0064 \cdot \left[\ln(N_{\text{Re}^*})^3\right]\right\}$$
 (10)

- Para 300 ≥ N_{Re*} > 25 tem-se:

$$N_{q^*} = \exp\left\{-0.947 - 0.231 \cdot \ln(N_{\text{Re}^*}) + 0.0467 \cdot \left[\ln(N_{\text{Re}^*})^2\right]\right\}$$
 (11)

- Para N_{Re*} ≤ 25 tem-se:

$$N_{q^*} = 0.3 {(12)}$$

O valor gerado para (N_{q*}) corrige o número de bombeamento:

$$N_{q} = N_{q^{*}} \cdot \left[\frac{0.394}{D_{T}} \right]^{1/2} \tag{13}$$

Que pode ser reorganizada para determinar o diâmetro do impelidor e calcular um novo valor para o diâmetro do impelidor comparado com a estimativa prévia:

$$D = 0.394 \cdot T \cdot \left(\frac{N_{q^*}}{N_q}\right)^2 \tag{14}$$

Quando o fluido apresenta viscosidade elevada, isto é, baixo (N_{Re}), o número de potência sofre um acréscimo. O efeito desse acréscimo é caracterizado por um fator de correção da viscosidade determinado utilizando o número de Reynolds modificado, através das equações apresentadas por DICKEY (1984):

- Para N_{Re*} > 900 tem-se:

$$f_u = 1 \tag{15}$$

- Para 900 ≥ N_{Re*} > 8 tem-se:

$$f_u = \exp\{3,154 - 0.848 \cdot \ln(N_{\text{Re}}) + 0.0565 \cdot \left[\ln(N_{\text{Re}})\right]^2\}$$
 (16)

- Para 8 ≥ N_{Re*} > 1 tem-se:

$$f_u = \exp\left\{3,649 - 0.942 \cdot \ln(N_{\text{Re}^*}) - 0.106 \cdot \left[\ln(N_{\text{Re}^*})^2\right] + 0.0448 \cdot \left[\ln(N_{\text{Re}^*})\right]^3\right\}$$
 (17)

- Para N_{Re*} ≤ 1 tem-se:

$$f_u = \frac{38,4}{N_{\text{Re}}} \tag{18}$$

A estimativa da potência consumida, segundo GARRISON (1981), é de grande importância nos processos que envolvem agitação. Uma vez definido o regime de agitação, o cálculo da potência necessária (Pot), para obtenção do nível desejado pode ser feito através da equação:

$$Pot = NPo \cdot f_u \cdot \rho \cdot N^3 \cdot D^5 \cdot n \tag{19}$$

Onde n é o número de impelidores.

A figura 12 mostra alguns exemplos de curvas de números de potência em função do número de Reynolds para diversos produtos utilizando impelidor tipo âncora plana em um tanque com fundo toroesférico.

Figura 12 – Exemplo de gráfico que relaciona o número de potência e o número de Reynolds

Fonte: BATTAGLINI, N. M. P.; Avaliação do Comportamento de Impelidores Especiais na mistura de Fluidos. Botucatu, 1998. p 54

2.8. Rugosidade superficial

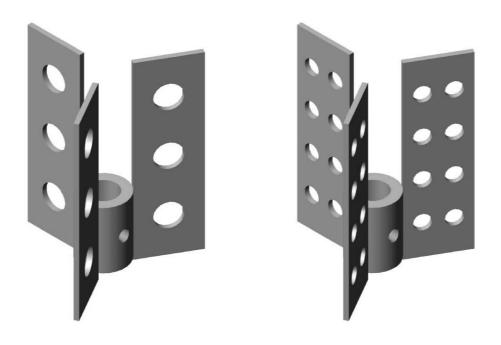
O acabamento superficial é o grau de irregularidade superficial existente em uma peça. Dependendo do trabalho final executado em uma área, ela pode ou não atingir os parâmetros superficiais desejados. Esse acabamento é medido através da rugosidade superficial, a qual, de acordo com PALMA (2006), a Associação Brasileira de Normas Técnicas (ABNT) recomenda que seja expressa em microns (µm). São inúmeras as possibilidades de acabamento superficial existentes, porém o mais comum no uso de equipamentos de processo é o polimento mecânico.

Segundo FACCIO (2003) a rugosidade média (Ra) é, possivelmente, o mais antigo conceito de rugosidade ainda em uso. Pode ser calculada utilizando-se a equação 20.

$$R_a = \frac{1}{L_m} \cdot \int_0^{L_m} |y(x)| \cdot dx \tag{20}$$

O polimento é o processo utilizado para melhorar a característica superficial de uma peça, trazendo uma excelente aparência superficial. É realizado com o auxílio de lixas que com auxílio de pastas polidoras retiram a mínima imperfeição superficial de uma peça. A tabela 2 apresenta a correlação da lixa utilizada com a rugosidade superficial.

Tabela 2 – Relação das lixas utilizadas em polimentos e as rugosidades superficiais obtidas com seus usos


Fonte: <u>www.humma.com.br</u> – acesso em 22 fev. 2009

	RA (μm)
Polimento com lixa Grana 50	1,02 - 1,30
Polimento com lixa Grana 80	0,67 - 0,80
Polimento com lixa Grana 120	0,42 - 0,50
Polimento com lixa Grana 150	0,40 - 0,47
Polimento com lixa Grana 180	0,35 - 0,42
Polimento com lixa Grana 220	0,27 - 0,32
Polimento com lixa Grana 320	0,23 - 0,27

3. MATERIAIS E MÉTODOS

Foram realizados ensaios em uma bancada construída em pequena escala onde se permite a leitura da corrente, tensão com o uso de um multímetro e a variação de rotação do impelidor utilizando-se um potenciômetro. Foram utilizados:

- três impelidores de geometrias distintas (4 pás inclinadas a 45° conforme figura 3; e 3 pás retas com furos conforme figura 13);
- dois tanques de fundo plano: um em vidro e um em aço inoxidável com diâmetro interno de 130 mm, capacidade total de 2,0 litros com defletores (chicanas) removíveis espaçados a 90° entre si e;
- dois fluidos de viscosidades diferentes: água e óleo. Na tabela 3 são destacadas as principais dimensões dos impelidores.

Figura~13-Impelidores~utilizados~nos~experimentos

Tabela 3 – Dimensional dos impelidores utilizados

	4 pás retas inclinadas a 45º	3 pás com 3 furos em cada	3 pás com 8 furos em cada
Diâmetro das pás (mm)	52,0	52,0	52,0
Relação (D/T)	0,4	0,4	0,4
Largura das pás (mm)	10,0	18,5	18,5
Altura das pás	10,0	60,0	60,0
Diâmetro das furações (mm)	-	8,0	5,0
Área perfurada (mm² por pá)	-	150,80	157,08
Redução de área (%)	-	4,53%	4,72%

Dados para os ensaios:

Diâmetro dos tanques: 130,0 mm

Densidade do óleo: 866 kg/m³ (a 25℃)

Viscosidade do óleo: 245,6 cP (a 25℃)

Largura dos defletores: 16,0 mm

Altura dos defletores: 130,0 mm

Espessura dos defletores: 1,0 mm

Distância entre os defletores e a parede: 1,0 mm

Altura da superfície livre do fluido: 130,0 mm

Os ensaios consistiram em variar a rotação do impelidor e com os valores verificados de corrente e tensão demandados pelo produto, calculou-se a potência e a partir daí N_{Re} , N_{Re^*} e o f_u conforme definidos nas equações 2, 8 e 15 a 18. Com esses valores, pode-se determinar o N_{Po} .

Esse procedimento foi realizado para água com 4 defletores de costado no tanque de vidro (não apresentou rugosidade) e no tanque de inox – rugosidade RA de 0,142 ± 0,04 e com os três impelidores. Concluída essa etapa, repetiu-se o experimento utilizando-se óleo cuja viscosidade é igual a 245,6 cP a 25℃, novamente com 4 defletores e nos tanques de vidro e inox.

4. RESULTADOS OBTIDOS

4.1. Ensaios realizados com água

4.1.1. Pás retas inclinadas a 45°

A figura 14 ilustra o comportamento do número de potência em função do número de Reynolds utilizando-se o impelidor de 4 pás retas inclinadas em 45° com 4 defletores de costado nos tanques de vidro e de inox.

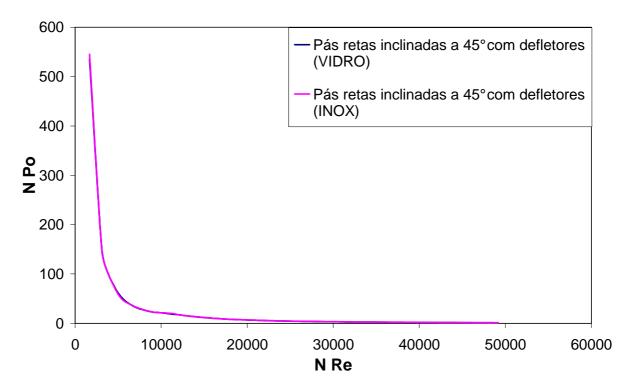


Figura 14 – Resultados para a agitação da água com o impelidor de 4 pás retas inclinadas a 45°

Pode-se verificar que as curvas se sobrepõem para ambas as situações. São representadas pela equação (21) cuja correlação é de 99,58%.

$$N_{Po} = 2,08194 \cdot 10^8 \cdot N_{Re}^{-1,74826} \tag{21}$$

4.1.2. Pás retas com 3 furos em cada pá

A figura 15 ilustra o comportamento do número de potência em função do número de Reynolds utilizando-se o impelidor de 3 pás planas com 3 furos em cada pá com 4 defletores de costado nos tanques de vidro e de inox.

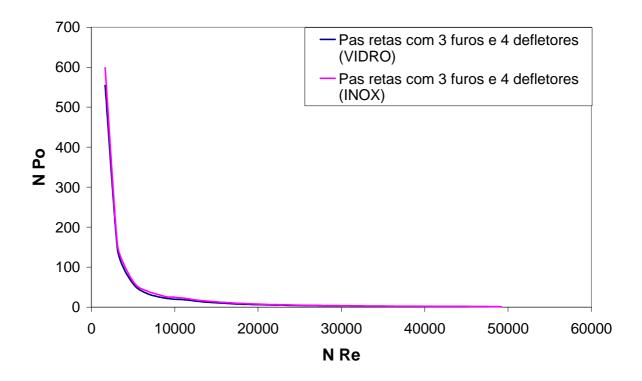


Figura 15 – Resultados para a agitação da água com o impelidor de 3pás retas com 3 furos em cada pá

Pode-se verificar que as curvas se sobrepõem para as duas situações e são representadas pela equação (22) com uma correlação de 99,57%.

$$N_{Po} = 2,40502 \cdot 10^8 \cdot N_{Re}^{1,75258} \tag{22}$$

4.1.3. Pás retas com 8 furos em cada pá

A figura 16 ilustra o comportamento do número de potência em função do número de Reynolds utilizando-se o impelidor de 3 pás retas com 8 furos em cada pá com 4 defletores de costado nos tanques de vidro e de inox.

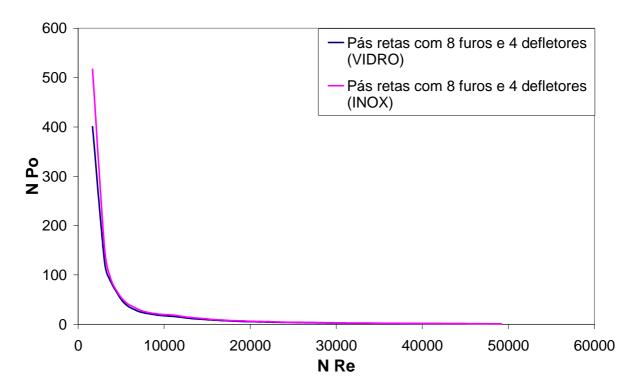


Figura 16 – Resultados para a agitação da água com o impelidor de 3 pás retas com 8 furos em cada pá

Pode-se verificar que as curvas coincidem e são representadas pela equação (23) que apresenta uma correlação de 99,66%.

$$N_{P_0} = 1,77845 \cdot 10^8 \cdot N_{Re}^{1,75597} \tag{23}$$

4.2. Ensaios realizados com óleo

4.2.1. Pás retas inclinadas a 45°

A figura 17 ilustra o comportamento do número de potência em função do número de Reynolds utilizando-se o impelidor de 4 pás retas inclinadas em 45° com 4 defletores de costado nos tanques de vidro e de inox.

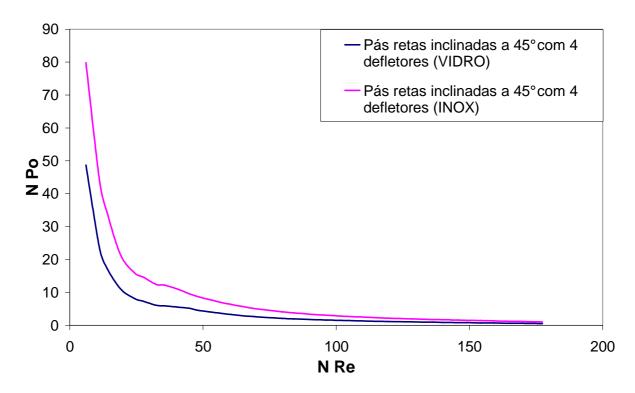


Figura 17 – Resultados para a agitação do óleo com o impelidor de 4 pás retas inclinadas a 45°

As equações que representam as curvas mostradas na figura 18 estão na tabela 4:

Tabela 4 – Equações para as agitações de óleo com impelidor de 4 pás retas inclinadas a 45°

TANQUE	EQUAÇÃO	NÚMERO DA EQUAÇÃO	CORRELAÇÃO
Vidro com 4 defletores	$N_{Po} = 648,82 \cdot N_{\text{Re } y}^{-1,3288}$	(24)	R ² = 98,65 %
Inox com 4 defletores	$N_{Po} = 1213.8 \cdot N_{\text{Re } y}^{-1.3226}$	(25)	R² = 98,49 %

Pode-se verificar um aumento de cerca de 100% no valor do número de potência quando utilizado o tanque de inox devido o acabamento superficial do tanque.

4.2.2. Pás retas com 3 furos em cada pá

A figura 18 ilustra o comportamento do número de potência em função do número de Reynolds utilizando-se o impelidor de 3 pás planas com 3 furos em cada pá com 4 defletores de costado nos tanques de vidro e de inox.

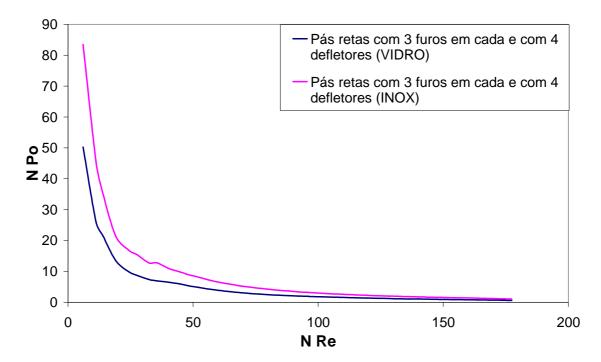


Figura 18 – Resultados para a agitação do óleo com o impelidor de 3 pás retas com 3 furos em cada pá

As equações que representam as curvas mostradas na figura 20 estão na tabela 5:

Tabela 5 – Equações para as agitações de óleo com impelidor de 3 pás retas com 3 furos em cada pá

TANQUE	EQUAÇÃO	NÚMERO DA EQUAÇÃO	CORRELAÇÃO
Vidro com 4 defletores	$N_{Po} = 722,54 \cdot N_{\text{Re }y}^{-1,3146}$	(26)	R ² = 98,64 %
Inox com 4 defletores	$N_{Po} = 1222, 7 \cdot N_{\text{Re } y}^{-1,3151}$	(27)	R ² = 98,66 %

Nos ensaios realizados com o impelidor de 3 pás com 3 furos em cada pá pode-se verificar novamente o aumento significativo, da ordem de 70%, quando se agita óleo no tanque de inox ao invés do tanque de vidro.

4.2.3. Pás retas com 8 furos em cada pá

A figura 19 ilustra o comportamento do número de potência em função do número de Reynolds utilizando-se o impelidor de 3 pás planas com 8 furos em cada pá com 4 defletores de costado nos tanques de vidro e de inox.

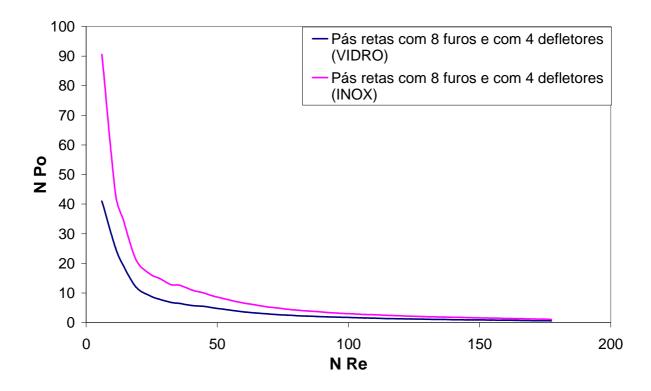


Figura 19 – Resultados para a agitação do óleo com o impelidor de 3 pás retas com 8 furos em cada pá

As equações que representam as curvas mostradas na figura 20 estão na tabela 6:

Tabela 6 – Equações para as agitações de óleo com impelidor de 3 pás retas com 8 furos em cada pá

TANQUE	EQUAÇÃO	NÚMERO DA EQUAÇÃO	CORRELAÇÃO
Vidro com 4 defletores	$N_{Po} = 620,89 \cdot N_{\text{Re }y}^{-1,2957}$	(28)	R ² = 98,34 %
Inox com 4 defletores	$N_{Po} = 1219, 2 \cdot N_{\text{Re } y}^{-1,3132}$	(29)	R ² = 98,71 %

Verifica-se um acréscimo de cerca de 100% quando se modifica o tanque em que o fluido é agitado de vidro para inox.

4.3. Comparação devida redução de área

Na tabela 7 são apresentadas as equações referentes as curvas de potência para os impelidores de 3 pás com 3 e com 8 furos e as respectivas reduções nos números de potência.

Tabela 7 – Equações e respectivas variações para as agitações de óleo.

	EQUAÇÃO				
TANQUE	IMPELIDOR COM 3 FUROS	EQ.	IMPELIDOR COM 8 FUROS	EQ.	VARIAÇÃO
Vidro com 4 defletores	$N_{Po} = 722,54 \cdot N_{\text{Re }y}^{-1,3146}$	(26)	$N_{Po} = 620,89 \cdot N_{\text{Re }y}^{-1,2957}$	(28)	-14,07%
Inox com 4 defletores	$N_{Po} = 1222, 7 \cdot N_{\text{Re } y}^{-1,3151}$	(27)	$N_{Po} = 1219, 2 \cdot N_{\text{Re } y}^{-1,3132}$	(29)	-0,29%

Esse decréscimo ocorre pela variação de área e é mais significativo quando o tanque apresenta menor rugosidade superficial.

5. CONCLUSÕES

5.1. Verificação das correntes de fluxo geradas pelos impelidores

Durante a realização dos ensaios foi possível observar as correntes de fluxo geradas pelos impelidores, com a utilização de purpurina.

A utilização do impelidor de 4 pás retas inclinadas a 45° gerou fluxos predominantemente radial e axial, com uma menor, porém presente, incidência de uma componente tangencial.

Já com a utilização dos impelidores propostos, 3 pás retas com furos, ocorreram grandes correntes tangenciais e radiais na altura dos impelidores e uma composição dos 3 fluxos nas outras posições do tanque. O que foi observado se assemelha a figura 13.

5.2. Influência da rugosidade da superfície interna do tanque

De acordo com a tabela 7, pode-se concluir que quando se utiliza fluidos com viscosidades mais elevadas, a rugosidade superficial da parede interna do tanque se mostra uma variável a ser considerada, já que é responsável por uma alteração do número de potência e consequentemente da potência requerida pelo produto durante o processo.

5.3. Avaliação do número de potência

Verificou-se que o número de potência varia mesmo na região de regime turbulento ou quando as curvas se mostram assintóticas, (com N_{Re} superior a 20.000 para a água e com N_{Re} superior a 50 para o óleo).

É possível verificar uma redução, observada entre 40 a 80%, no número de potência ao se utilizar os impelidores de 3 pás retas com furos ao invés do impelidor de 4 pás retas inclinadas a 45°.

Avalia-se também que uma pequena variação na área perfurada de 4,53 para 4,72% do impelidor, pode representar uma alteração de 20 a 90% no número de potência, dependendo do número de Reynolds.

6. ANEXO 1 - TABELAS

6.1. Verificação dos números de potência

Tabela 8 – Valores de número de potência utilizando água e impelidor de 4 pás retas a 45°, impelidor de 3 pás com 3 e com 8 furos em cada pá, no tanque de vidro com 4 defletores

		N Po	
N Rey	4 pás retas inclinadas a 45°	3 pás retas com 3 furos	3 pás retas com 8 furos
20000	6,30	2,61	4,98
25000	4,26	1,94	3,37
30000	3,10	1,53	2,45
35000	2,37	1,25	1,87
40000	1,87	1,05	1,48
45000	1,53	0,90	1,20
50000	1,27	0,78	1,00
55000	1,07	0,69	0,84
60000	0,92	0,61	0,72

Tabela 9 – Valores de número de potência utilizando água e impelidor de 3 pás retas com 3 furos em cada

	N Po		
N Rey	Vidro com 4 defletores	Inox com 4 defletores	Variação
20000	2,61	6,97	167,40%
25000	1,94	4,71	142,50%
30000	1,53	3,42	123,89%
35000	1,25	2,61	109,27%
40000	1,05	2,07	97,39%
45000	0,90	1,68	87,46%
50000	0,78	1,40	79,01%
55000	0,69	1,18	71,69%
60000	0,61	1,02	65,27%

Tabela 10 – Valores de número de potência utilizando água e impelidor de 3 pás retas com 8 furos em cada

	N F		
N Rey	Vidro com 4 defletores	Inox com 4 defletores	Variação
20000	4,98	4,42	-11,23%
25000	3,37	3,30	-2,02%
30000	2,45	2,60	6,22%
35000	1,87	2,12	13,73%
40000	1,48	1,78	20,65%
45000	1,20	1,53	27,11%
50000	1,00	1,33	33,18%
55000	0,84	1,17	38,92%
60000	0,72	1,05	44,38%

Tabela 11 – Valores de número de potência utilizando óleo e impelidor de 4 pás retas inclinadas a 45°

	N Po		
N Rey	Vidro com 4 defletores	Inox com 4 defletores	Variação
50	3,59	6,87	91,67%
75	2,09	4,02	92,15%
100	1,43	2,75	92,50%
125	1,06	2,05	92,76%
150	0,83	1,61	92,98%
175	0,68	1,31	93,17%
200	0,57	1,10	93,33%
225	0,49	0,94	93,47%
250	0,42	0,82	93,59%

Tabela 12 – Valores de número de potência utilizando óleo e impelidor de 3 pás retas com 3 furos em cada

	N Po		
N Rey	Vidro com 4 defletores	Inox com 4 defletores	Variação
50	4,22	7,13	68,89%
75	2,48	4,18	68,86%
100	1,70	2,86	68,83%
125	1,27	2,14	68,81%
150	1,00	1,68	68,80%
175	0,81	1,37	68,79%
200	0,68	1,15	68,77%
225	0,58	0,99	68,76%
250	0,51	0,86	68,76%

Tabela 13 – Valores de número de potência utilizando óleo e impelidor de 3 pás retas com 8 furos em cada

-	N Po		
N Rey	Vidro com 4 defletores	Inox com 4 defletores	Variação
50	3,91	7,16	83,37%
75	2,31	4,20	82,07%
100	1,59	2,88	81,16%
125	1,19	2,15	80,45%
150	0,94	1,69	79,88%
175	0,77	1,38	79,39%
200	0,65	1,16	78,97%
225	0,56	0,99	78,61%
250	0,49	0,87	78,28%

6.2. Resultados utilizando água em tanque de vidro

6.2.1. Com impelidor de 4 pás retas a 45°, com 4 defletore s

Tabela 14 – Resultados da agitação de água em tanque de vidro com impelidor de 4 pás retas inclinadas a 45°, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	N. Davi	N.Dau*	£	N De
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	9,0	5,3	0,048	1667,467	1680,115	1,0	534,996
20%	69	14,4	6,0	0,086	3109,600	3133,188	1,0	149,418
22%	86	18,2	6,1	0,111	3875,733	3905,132	1,0	99,161
24%	117	23,6	6.6	0,156	5272,800	5312,797	1,0	55,250
26%	149	29,3	7,0	0,205	6714,933	6765,869	1,0	35,224
28%	171	33,2	7,5	0,249	7706,400	7764,856	1,0	28,291
30%	199	38,2		0,317	8968,267	9036,295	1,0	22,857
32%	219	42,5	8,3 9,3	0,395	9869,600	9944,465	1,0	21,378
34%	248	46,8	10,8	0,505	11176,533	11261,312	1,0	18,826
36%	275	51,8	11,5	0,596	12393,333	12487,342	1,0	16,273
38%	297	55,5	11,7	0,649	13384,800	13486,330	1,0	14,081
40%	322	60,4	11,9	0,719	14511,467	14621,543	1,0	12,231
42%	349	65,0	12,1	0,787	15728,267	15847,573	1,0	10,511
44%	372	69,2	12,2	0,844	16764,800	16891,968	1,0	9,317
46%	398	73,6	12,3	0,905	17936,533	18072,590	1,0	8,158
48%	425	78,3	12,5	0,979	19153,333	19298,620	1,0	7,243
50%	448	82,3	12,5	1,029	20189,867	20343,016	1,0	6,500
52%	470	87,2	12,6	1,099	21181,333	21342,003	1,0	6,012
54%	490	89,9	12,6	1,133	22082,667	22250,173	1,0	5,470
56%	517	94,2	12,7	1,196	23299,467	23476,203	1,0	4,918
58%	542	98,6	12,8	1,262	24426,133	24611,416	1,0	4,503
60%	567	102,6	12,9	1,324	25552,800	25746,629	1,0	4,125
62%	592	107,1	13,0	1,392	26679,467	26881,842	1,0	3,812
64%	626	113,2	13,1	1,483	28211,733	28425,732	1,0	3,434
66%	653	117,6	13,2	1,552	29428,533	29651,762	1,0	3,167
68%	670	120,9	13,3	1,608	30194,667	30423,707	1,0	3,037
70%	707	127,0	13,3	1,689	31862,133	32103,822	1,0	2,715
72%	735	131,1	13,4	1,757	33124,000	33375,260	1,0	2,514
74%	762	135,8	13,4	1,820	34340,800	34601,290	1,0	2,337
76%	790	139,9	13,6	1,903	35602,667	35872,729	1,0	2,192
78%	818	144,6	13,6	1,967	36864,533	37144,167	1,0	2,041
80%	838	149,1	13,7	2,043	37765,867	38052,338	1,0	1,972
82%	861	152,4	13,7	2,088	38802,400	39096,733	1,0	1,858
84%	896	158,4	13,8	2,186	40379,733	40686,032	1,0	1,726
86%	917	161,8	13,8	2,233	41326,133	41639,610	1,0	1,645
88%	949	166,9	13,9	2,320	42768,267	43092,683	1,0	1,542
90%	979	172,2	13,6	2,342	44120,267	44454,938	1,0	1,418
92%	1008	176,0	13,4	2,358	45427,200	45771,785	1,0	1,308
94%	1036	182,0	13,4	2,439	46689,067	47043,224	1,0	1,246
96%	1072	187,6	13,2	2,476	48311,467	48677,931	1,0	1,142
98%	1083	190,1	13,0	2,471	48807,200	49177,424	1,0	1,105
100%	1091	190,8	12,8	2,442	49167,733	49540,692	1,0	1,068

6.2.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Tabela 15 – Resultados da agitação de água em tanque de vidro com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	NIB	N.D. *		N/D
%	rpm	(V)	(A)	(W)	N Rey	N Rey*	fu	N Po
18%	37	9,5	5,2	0,049	1667,467	1680,115	1,0	554,063
20%	69	15,0	5,8	0,087	3109,600	3133,188	1,0	150,456
22%	86	18,2	6,0	0,109	3875,733	3905,132	1,0	97,536
24%	117	23,7	6,2	0,147	5272,800	5312,797	1,0	52,122
26%	149	29,5	6,7	0,198	6714,933	6765,869	1,0	33,945
28%	171	33,5	7,2	0,241	7706,400	7764,856	1,0	27,405
30%	199	38,5	7,2 8,0	0,308	8968,267	9036,295	1,0	22,204
32%	219	42,1	8,8	0,370	9869,600	9944,465	1,0	20,039
34%	248	47,0	10,6	0,498	11176,533	11261,312	1,0	18,556
36%	275	51,8	10,9	0,565	12393,333	12487,342	1,0	15,424
38%	297	55,6	11,0	0,612	13384,800	13486,330	1,0	13,263
40%	322	60,7	11,2	0,680	14511,467	14621,543	1,0	11,568
42%	349	65,4	11,3	0,739	15728,267	15847,573	1,0	9,877
44%	372	69,4	11,4	0,791	16764,800	16891,968	1,0	8,731
46%	398	74,0	11,3	0,836	17936,533	18072,590	1,0	7,535
48%	425	78,9	11,5	0,907	19153,333	19298,620	1,0	6,715
50%	448	82,9	11,7	0,970	20189,867	20343,016	1,0	6,128
52%	470	86,5	11,7	1,012	21181,333	21342,003	1,0	5,538
54%	490	90,1	11,9	1,072	22082,667	22250,173	1,0	5,178
56%	517	94,9	12,0	1,139	23299,467	23476,203	1,0	4,682
58%	542	99,0	12,2	1,208	24426,133	24611,416	1,0	4,310
60%	567	102,9	12,4	1,276	25552,800	25746,629	1,0	3,977
62%	592	107,3	12,6	1,352	26679,467	26881,842	1,0	3,702
64%	626	113,2	12,7	1,438	28211,733	28425,732	1,0	3,329
66%	653	117,7	12,9	1,518	29428,533	29651,762	1,0	3,098
68%	670	121,1	13,0	1,574	30194,667	30423,707	1,0	2,974
70%	707	126,2	13,0	1,641	31862,133	32103,822	1,0	2,637
72%	735	131,4	13,2	1,734	33124,000	33375,260	1,0	2,482
74%	762	135,9	13,2	1,794	34340,800	34601,290	1,0	2,303
76%	790	140,5	13,4	1,883	35602,667	35872,729	1,0	2,169
78%	818	145,7	13,3	1,938	36864,533	37144,167	1,0	2,011
80%	838	149,9	13,4	2,009	37765,867	38052,338	1,0	1,939
82%	861	153,1	13,5	2,067	38802,400	39096,733	1,0	1,840
84%	896	159,2	13,4	2,133	40379,733	40686,032	1,0	1,685
86%	917	162,1	13,4	2,172	41326,133	41639,610	1,0	1,600
88%	949	168,2	13,4	2,254	42768,267	43092,683	1,0	1,498
90%	979	172,4	13,4	2,310	44120,267	44454,938	1,0	1,399
92%	1008	177,0	13,3	2,354	45427,200	45771,785	1,0	1,306
94%	1036	182,6	13,0	2,374	46689,067	47043,224	1,0	1,213
96%	1072	188,0	12,6	2,369	48311,467	48677,931	1,0	1,092
98%	1083	190,3	12,4	2,360	48807,200	49177,424	1,0	1,055
100%	1091	191,1	12,3	2,351	49167,733	49540,692	1,0	1,028

6.2.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Tabela 16 – Resultados da agitação de água em tanque de vidro com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	N.B	N.D. *	,	N.B
%	rpm	(V)	(A)	(W)	N Rey	N Rey*	fu	N Po
18%	37	8,5	4,2	0,036	1667,467	1680,115	1,0	400,406
20%	69	14,6	4,8	0,070	3109,600	3133,188	1,0	121,195
22%	86	18,4	5,1	0,094	3875,733	3905,132	1,0	83,817
24%	117	23,8	5,3	0,126	5272,800	5312,797	1,0	44,744
26%	149	28,8	5,7	0,164	6714,933	6765,869	1,0	28,193
28%	171	33,3	6,1	0,203	7706,400	7764,856	1,0	23,079
30%	199	38,5	6,9	0,266	8968,267	9036,295	1,0	19,151
32%	219	42,4	7,6	0,322	9869,600	9944,465	1,0	17,429
34%	248	47,3	9,0	0,426	11176,533	11261,312	1,0	15,856
36%	275	51,9	9,3	0,483	12393,333	12487,342	1,0	13,185
38%	297	55,5	94	0,522	13384,800	13486,330	1,0	11,313
40%	322	60,8	9,5	0,578	14511,467	14621,543	1,0	9,829
42%	349	65,4	9,6	0,628	15728,267	15847,573	1,0	8,391
44%	372	69,3	9,7	0,672	16764,800	16891,968	1,0	7,418
46%	398	73,7	9,6	0,708	17936,533	18072,590	1,0	6,376
48%	425	78,8	9,8	0,772	19153,333	19298,620	1,0	5,715
50%	448	82,7	9,9	0,819	20189,867	20343,016	1,0	5,173
52%	470	86,8	10,0	0,868	21181,333	21342,003	1,0	4,750
54%	490	89,8	10,1	0,907	22082,667	22250,173	1,0	4,380
56%	517	94,6	10,3	0,974	23299,467	23476,203	1,0	4,006
58%	542	98,6	10,4	1,025	24426,133	24611,416	1,0	3,659
60%	567	102,9	10,6	1,091	25552,800	25746,629	1,0	3,399
62%	592	107,3	10,7	1,148	26679,467	26881,842	1,0	3,144
64%	626	113,5	10,9	1,237	28211,733	28425,732	1,0	2,865
66%	653	118,0	11,0	1,298	29428,533	29651,762	1,0	2,648
68%	670	121,3	11,0	1,334	30194,667	30423,707	1,0	2,520
70%	707	126,9	11,2	1,421	31862,133	32103,822	1,0	2,285
72%	735	131,9	11,2	1,477	33124,000	33375,260	1,0	2,114
74%	762 790	136,6	11,2	1,530	34340,800	34601,290	1,0	1,964
76%	790	141,1	11,3	1,594	35602,667	35872,729	1,0	1,837
78%	818	146,0	11,2	1,635	36864,533	37144,167	1,0	1,697
80%	838	149,9	11,3	1,694	37765,867	38052,338	1,0	1,635
82%	861	153,3	11,3	1,732	38802,400	39096,733	1,0	1,542
84%	896	159,0	11,3	1,797	40379,733	40686,032	1,0	1,419
86%	917	162,4	11,3	1,835	41326,133	41639,610	1,0	1,352
88%	949	168,2	11,4	1,917	42768,267	43092,683	1,0	1,275
90%	979	172,6	11,3	1,950	44120,267	44454,938	1,0	1,181
92%	1008	177,3	11,2	1,986	45427,200	45771,785	1,0	1,101
94%	1036	181,8	11,1	2,018	46689,067	47043,224	1,0	1,031
96%	1072	188,4	10,7	2,016	48311,467	48677,931	1,0	0,930
98%	1083	190,9	10,5	2,004	48807,200	49177,424	1,0	0,896
100%	1091	191,8	10,4	1,995	49167,733	49540,692	1,0	0,873

6.3. Resultados utilizando água em tanque de inox

6.3.1. Com impelidor de 4 pás retas a 45°, com 4 defletore s

Tabela 17 – Resultados da agitação de água em tanque de inox com impelidor de 4 pás retas inclinadas a 45°, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	N.Day	N Dav *	4	N.D.
%	rpm	(V)	(A)	(W)	N Rey	N Rey*	fu	N Po
18%	37	9,0	5,4	0,049	1667,467	1680,115	1,0	545,090
20%	69	14,0	6,1	0,085	3109,600	3133,188	1,0	147,689
22%	86	17,7	6,3	0,112	3875,733	3905,132	1,0	99,599
24%	117	23,1	6,4	0,148	5272,800	5312,797	1,0	52,441
26%	149	29,3	7,1	0,208	6714,933	6765,869	1,0	35,728
28%	171	33,0	7,7	0,254	7706,400	7764,856	1,0	28,870
30%	199	38,1	8,4	0,320	8968,267	9036,295	1,0	23,072
32%	219	42,1	9,4	0,396	9869,600	9944,465	1,0	21,405
34%	248	47,6	11,3	0,538	11176,533	11261,312	1,0	20,034
36%	275	51,7	11,6	0,600	12393,333	12487,342	1,0	16,383
38%	297	56,2	11,9	0,669	13384,800	13486,330	1,0	14,503
40%	322	60,7	12,1	0,734	14511,467	14621,543	1,0	12,498
42%	349	65,1	12,3	0,801	15728,267	15847,573	1,0	10,702
44%	372	69,6	12,4	0,863	16764,800	16891,968	1,0	9,524
46%	398	73,6	12,3	0,905	17936,533	18072,590	1,0	8,158
48%	425	78,6	12,6	0,990	19153,333	19298,620	1,0	7,329
50%	448	82,3	12,8	1,053	20189,867	20343,016	1,0	6,656
52%	470	87,3	12,9	1,126	21181,333	21342,003	1,0	6,162
54%	490	89,9	13,0	1,169	22082,667	22250,173	1,0	5,644
56%	517	94,6	13,0	1,230	23299,467	23476,203	1,0	5,056
58%	542	99,0	13,1	1,297	24426,133	24611,416	1,0	4,627
60%	567	103,2	13,2	1,362	25552,800	25746,629	1,0	4,246
62%	592	107,7	13,4	1,443	26679,467	26881,842	1,0	3,952
64%	626	113,7	13,5	1,535	28211,733	28425,732	1,0	3,555
66%	653	118,1	13,7	1,618	29428,533	29651,762	1,0	3,301
68%	670	121,7	13,9	1,692	30194,667	30423,707	1,0	3,195
70%	707	128,0	14,0	1,792	31862,133	32103,822	1,0	2,881
72%	735	131,8	14,1	1,858	33124,000	33375,260	1,0	2,659
74%	762	136,1	14,2	1,933	34340,800	34601,290	1,0	2,482
76%	790	140,9	14,6	2,057	35602,667	35872,729	1,0	2,370
78%	818	145,6	14,4	2,097	36864,533	37144,167	1,0	2,176
80%	838	149,7	14,4	2,156	37765,867	38052,338	1,0	2,081
82%	861	152,9	14,5	2,217	38802,400	39096,733	1,0	1,973
84%	896	159,4	14,5	2,311	40379,733	40686,032	1,0	1,825
86%	917	162,5	14,4	2,340	41326,133	41639,610	1,0	1,724
88%	949	168,4	14,3	2.408	42768,267	43092,683	1,0	1,601
90%	979	173,1	14,2	2,458	44120,267	44454,938	1,0	1,488
92%	1008	177,4	14,2	2,519	45427,200	45771,785	1,0	1,397
94%	1036	182,6	13,9	2,538	46689,067	47043,224	1,0	1,297
96%	1072	188,2	13,6	2,560	48311,467	48677,931	1,0	1,180
98%	1083	190,9	13,5	2,577	48807,200	49177,424	1,0	1,153
100%	1091	191,8	13,4	2,570	49167,733	49540,692	1,0	1,124

6.3.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Tabela 18 – Resultados da agitação de água em tanque de inox com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	5		,	5
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	9,2	5,8	0,053	1667,467	1680,115	1,0	598,477
20%	69	14,1	6,6	0,093	3109,600	3133,188	1,0	160,936
22%	86	17,9	6,8	0,122	3875,733	3905,132	1,0	108,719
24%	117	23,1	7,0	0,162	5272,800	5312,797	1,0	57,357
26%	149	29,6	7,9	0,234	6714,933	6765,869	1,0	40,160
28%	171	33,5	8,8	0,295	7706,400	7764,856	1,0	33,495
30%	199	37,3	8,8 9,6	0,358	8968,267	9036,295	1,0	25,814
32%	219	42,1	10,9	0,459	9869,600	9944,465	1,0	24,821
34%	248	47,2	12,6	0,595	11176,533	11261,312	1,0	22,151
36%	275	51,7	12,9	0,667	12393,333	12487,342	1,0	18,219
38%	297	55,4	13,2	0,731	13384,800	13486,330	1,0	15,858
40%	322	60,7	13,5	0,819	14511,467	14621,543	1,0	13,944
42%	349	65,1	13,7	0,892	15728,267	15847,573	1,0	11,920
44%	372	69,3	13,9	0,963	16764,800	16891,968	1,0	10,631
46%	398	73,9	14,0	1,035	17936,533	18072,590	1,0	9,323
48%	425	78,7	14,0	1,102	19153,333	19298,620	1,0	8,154
50%	448	82,7	14,2	1,174	20189,867	20343,016	1,0	7,420
52%	470	86,9	14,3	1,243	21181,333	21342,003	1,0	6,800
54%	490	89,9	14,5	1,304	22082,667	22250,173	1,0	6,295
56%	517	94,5	14,6	1,380	23299,467	23476,203	1,0	5,672
58%	542	98,9	14,7	1,454	24426,133	24611,416	1,0	5,187
60%	567	102,9	14,9	1,533	25552,800	25746,629	1,0	4,778
62%	592	107,0	15,1	1,616	26679,467	26881,842	1,0	4,424
64%	626	113,3	15,1	1,711	28211,733	28425,732	1,0	3,962
66%	653	117,8	15,3	1,802	29428,533	29651,762	1,0	3,677
68%	670	120,9	15,4	1,862	30194,667	30423,707	1,0	3,517
70%	707	126,8	15,5	1,965	31862,133	32103,822	1,0	3,160
72%	735	121,3	15,6	1,892	33124,000	33375,260	1,0	2,707
74%	762	135,8	15,7	2,132	34340,800	34601,290	1,0	2,738
74% 76%	790	140,4	15,7	2,204	35602,667	35872,729	1,0	2,540
78%	818	145,1	15,7	2,278	36864,533	37144,167	1,0	2,365
80%	838	148,9	15,8	2,353	37765,867	38052,338	1,0	2,271
82%	861	152,6	15,9	2,426	38802,400	39096,733	1,0	2,160
84%	896	158,2	15,8	2,500	40379,733	40686,032	1,0	1,974
86%	917	161,3	15,9	2,565	41326,133	41639,610	1,0	1,890
88%	949	166,6	16,0	2,666	42768,267	43092,683	1,0	1,772
90%	979	171,7	15,9	2,730	44120,267	44454,938	1,0	1,653
92%	1008	175,6	15,7	2,757	45427,200	45771,785	1,0	1,529
94%	1036	181,3	15,5	2,810	46689,067	47043,224	1,0	1,436
96%	1072	186,9	15,2	2,841	48311,467	48677,931	1,0	1,310
98%	1083	189,4	15,2	2,879	48807,200	49177,424	1,0	1,288
100%	1091	190,1	15,0	2,852	49167,733	49540,692	1,0	1,247

6.3.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Tabela 19 – Resultados da agitação de água em tanque de inox com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	5		,	5
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	9,6	4,8	0,046	1667,467	1680,115	1,0	516,826
20%	69	15,2	5,6	0,085	3109,600	3133,188	1,0	147,205
22%	86	17,7	5,6	0,099	3875,733	3905,132	1,0	88,533
24%	117	23,4	5,9	0,138	5272,800	5312,797	1,0	48,972
26%	149	29,3	6,5	0,190	6714,933	6765,869	1,0	32,708
28%	171	32,8	6,9	0,226	7706,400	7764,856	1,0	25,714
30%	199	32,8 38,0	6,9 7,9	0,300	8968,267	9036,295	1,0	21,642
32%	219	42,0	8,7	0,365	9869,600	9944,465	1,0	19,764
34%	248	47,7	10,3	0,491	11176,533	11261,312	1,0	18,299
36%	275	51,7	10,7	0,553	12393,333	12487,342	1,0	15,112
38%	297	55,6	11,0	0,612	13384,800	13486,330	1,0	13,263
40%	322	60,5	11,1	0,672	14511,467	14621,543	1,0	11,427
42%	349	65,0	11,2	0,728	15728,267	15847,573	1,0	9,730
44%	372	69,4	11,4	0,791	16764,800	16891,968	1,0	8,731
46%	398	73,5	11,3	0,831	17936,533	18072,590	1,0	7,484
48%	425	78,3	11,7	0,916	19153,333	19298,620	1,0	6,780
50%	448	82,3	11,8	0,971	20189,867	20343,016	1,0	6,136
52%	470	86,2	11,8	1,017	21181,333	21342,003	1,0	5,566
54%	490	89,5	12,0	1,074	22082,667	22250,173	1,0	5,186
56%	517	94,2	12,1	1,140	23299,467	23476,203	1,0	4,686
58%	542	98,5	12,2	1,202	24426,133	24611,416	1,0	4,288
60%	567	102,7	12,4	1,273	25552,800	25746,629	1,0	3,969
62%	592	106,9	12,6	1,347	26679,467	26881,842	1,0	3,688
64%	626	113,2	12,8	1,449	28211,733	28425,732	1,0	3,356
66%	653	117,3	12,8	1,501	29428,533	29651,762	1,0	3,063
68%	670	120,7	12,8	1,545	30194,667	30423,707	1,0	2,918
70%	707	127,1	12,7	1,614	31862,133	32103,822	1,0	2,595
72%	735	131,3	12,9	1,694	33124,000	33375,260	1,0	2,423
74%	762	135,9	13,0	1,767	34340,800	34601,290	1,0	2,268
76%	790	140,4	13,1	1,839	35602,667	35872,729	1,0	2,119
78%	818	144,6	13,1	1,894	36864,533	37144,167	1,0	1,966
80%	838	149,1	13,1	1,953	37765,867	38052,338	1,0	1,886
82%	861	152,3	13,0	1,980	38802,400	39096,733	1,0	1,762
84%	896	158,4	13,0	2,059	40379,733	40686,032	1,0	1,626
86%	917	161,3	13,1	2,113	41326,133	41639,610	1,0	1,557
88%	949	167,6	13,1	2,196	42768,267	43092,683	1,0	1,459
90%	979	171,9	13,1	2,252	44120,267	44454,938	1,0	1,363
92%	1008	176,9	12,9	2,282	45427,200	45771,785	1,0	1,266
94%	1036	181,6	12,7	2,306	46689,067	47043,224	1,0	1,178
96%	1072	188,0	12,5	2,350	48311,467	48677,931	1,0	1,084
98%	1083	190,2	12,4	2,358	48807,200	49177,424	1,0	1,055
100%	1091	191,0	12,3	2,349	49167,733	49540,692	1,0	1,028

6.4. Resultados utilizando óleo em tanque de vidro

6.4.1. Com impelidor de 4 pás retas a 45°, com 4 defletore s

Tabela 20 – Resultados da agitação de óleo em tanque de vidro com impelidor de 4 pás retas inclinadas a 45°, com 4 defletores

Velocio	dade	Tensão	Corrente	Potência	N Pov	N Dov.*	fu	N Po
%	rpm	(V)	(A)	(A)	N Rey	N Rey *	iu	IN FO
18%	37	8,6	2,9	0,025	6,015	6,061	6,484	48,689
20%	69	14,1	3,5	0,049	11,218	11,303	4,178	23,056
22%	86	17,1	3,7	0,063	13,982	14,088	3,692	17,276
24%	117	22,8	3,8	0,087	19,022	19,166	3,135	11,066
26%	149	27,8	4,2	0,117	24,224	24,408	2,777	8,150
28%	171	32,7	4,5	0,147	27,801	28,012	2,600	7,258
30%	199	37,1	4,9	0,182	32,353	32,598	2,424	6,103
32%	219	41,6	5,4	0,225	35,605	35,875	2,322	5,907
34%	248	46,1	6,3	0,290	40,319	40,625	2,199	5,552
36%	275	51,3	6,9	0,354	44,709	45,048	2,105	5,185
38%	297	54,5	6,9	0,376	48,286	48,652	2,039	4,514
40%	322	60,2	7,0	0,421	52,350	52,747	1,973	4,101
42%	349	64,8	7,1	0,460	56,740	57,170	1,912	3,631
44%	372	68,9	7,1	0,489	60,479	60,938	1,865	3,267
46%	398	73,2	7,1	0,520	64,706	65,197	1,818	2,908
48%	425	77,8	7,2	0,560	69,095	69,620	1,774	2,638
50%	448	82,0	7,2	0,590	72,835	73,387	1,740	2,420
52%	470	86,0	7,3	0,628	76,411	76,991	1,710	2,267
54%	490	89,1	7,3	0,650	79,663	80,267	1,685	2,104
56%	517	93,7	7,4	0,693	84,053	84,690	1,654	1,946
58%	542	98,4	7,5	0,738	88,117	88,785	1,627	1,827
60%	567	102,1	7,6	0,776	92,182	92,881	1,602	1,703
62%	592	106,3	7,7	0,819	96,246	96,976	1,580	1,601
64%	626	112,3	7,8	0,876	101,774	102,546	1,551	1,476
66%	653	116,8	7,9	0,923	106,163	106,968	1,530	1,389
68%	670	120,3	7,9	0,950	108,927	109,753	1,517	1,335
70%	707	125,5	8,0	1,004	114,942	115,814	1,492	1,221
72%	735	130,5	8,0	1,044	119,495	120,401	1,474	1,144
74%	762	135,0	8,1	1,094	123,884	124,824	1,458	1,087
76%	790	139,3	8,2	1,142	128,436	129,411	1,442	1,030
78%	818	144,8	8,2	1,187	132,989	133,997	1,428	0,974
80%	838	148,6	8,2	1,219	136,240	137,273	1,418	0,937
82%	861	152,2	8,2	1,248	139,979	141,041	1,406	0,891
84%	896	158,2	8,2	1,297	145,670	146,775	1,390	0,832
86%	917	161,2	8,2	1,322	149,084	150,215	1,381	0,796
88%	949	166,7	8,1	1,350	154,286	155,457	1,368	0,740
90%	979	171,3	8,0	1,370	159,164	160,371	1,357	0,690
92%	1008	175,6	7,8	1,370	163,878	165,121	1,346	0,637
94%	1036	181,3	7,7	1,396	168,430	169,708	1,336	0,603
96%	1072	186,7	7,5	1,400	174,283	175,605	1,324	0,551
98%	1083	189,8	7,3	1,386	176,072	177,407	1,320	0,530
100%	1091	190,7	7,3	1,392	177,372	178,718	1,318	0,522

6.4.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Tabela 21 – Resultados da agitação de óleo em tanque de vidro com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Veloci	dade	Tensão	Corrente	Potência	N.D.	N.D*	t	NI D-
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	7,8	3,3	0,026	6,015	6,061	6,484	50,251
20%	69	13,9	4,0	0,056	11,218	11,303	4,178	25,976
22%	86	17,9	4,4	0,079	13,982	14,088	3,692	21,506
24%	117	23,1	4,6	0,106	19,022	19,166	3,135	13,572
26%	149	29,1	4,9	0,143	24,224	24,408	2,777	9,952
28%	171	33,0	5,3	0,175	27,801	28,012	2,600	8,627
30%	199	38,0	5,8	0,220	32,353	32,598	2,424	7,399
32%	219	41,9	6,3	0,264	35,605	35,875	2,322	6,941
34%	248	46,4	7,3	0,339	40,319	40,625	2,199	6,475
36%	275	50,6	8,0	0,405	44,709	45,048	2,105	5,930
38%	297	54,9	8,1	0,445	48,286	48,652	2,039	5,338
40%	322	60,2	8,2	0,494	52,350	52,747	1,973	4,804
42%	349	64,9	8,3	0,539	56,740	57,170	1,912	4,251
44%	372	69,2	8,3	0,574	60,479	60,938	1,865	3,836
46%	398	73,2	8,4	0,615	64,706	65,197	1,818	3,441
48%	425	78,0	8,4	0,655	69,095	69,620	1,774	3,085
50%	448	82,2	8,5	0,699	72,835	73,387	1,740	2,864
52%	470	85,9	8,6	0,739	76,411	76,991	1,710	2,668
54%	490	89,3	8,6	0,768	79,663	80,267	1,685	2,484
56%	517	93,9	8,8	0,826	84,053	84,690	1,654	2,319
58%	542	98,3	8,9	0,875	88,117	88,785	1,627	2,165
60%	567	102,4	9,0	0,922	92,182	92,881	1,602	2,023
62%	592	106,5	9,2	0,980	96,246	96,976	1,580	1,917
64%	626	111,7	9,3	1,039	101,774	102,546	1,551	1,751
66%	653	116,8	9,4	1,098	106,163	106,968	1,530	1,653
68%	670	120,2	9,5	1,142	108,927	109,753	1,517	1,604
70%	707	125,7	9,5	1,194	114,942	115,814	1,492	1,452
72%	735	130,5	9,6	1,253	119,495	120,401	1,474	1,372
74%	762	134,5	9,7	1,305	123,884	124,824	1,458	1,297
76%	790	139,1	9,7	1,349	128,436	129,411	1,442	1,217
78%	818	143,8	9,6	1,380	132,989	133,997	1,428	1,133
80%	838	148,0	9,7	1,436	136,240	137,273	1,418	1,103
82%	861	151,3	9,7	1,468	139,979	141,041	1,406	1,048
84%	896	157,4	9,8	1,543	145,670	146,775	1,390	0,989
86%	917	160,5	9,7	1,557	149,084	150,215	1,381	0,937
88%	949	165,5	9,7	1,605	154,286	155,457	1,368	0,880
90%	979	171,1	9,6	1,643	159,164	160,371	1,357	0,827
92%	1008	175,1	9,5	1,663	163,878	165,121	1,346	0,774
94%	1036	180,7	9,3	1,681	168,430	169,708	1,336	0,725
96%	1072	186,3	9,0	1,677	174,283	175,605	1,324	0,659
98%	1083	189,3	8,9	1,685	176,072	177,407	1,320	0,644
100%	1091	190,4	8,8	1,676	177,372	178,718	1,318	0,628

6.4.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Tabela 22 – Resultados da agitação de óleo em tanque de vidro com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Velocio	dade	Tensão	Corrente	Potência	N.D.	N.D*	£	N.D.
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	7,0	3,0	0,021	6,015	6,061	6,484	40,997
20%	69	14,2	3,8	0,054	11,218	11,303	4,178	25,210
22%	86	17,9	4,0	0,072	13,982	14,088	3,692	19,551
24%	117	22,9	4,1	0,094	19,022	19,166	3,135	11,992
26%	149	28,3	4,6	0,130	24,224	24,408	2,777	9,086
28%	171	32,8	4,9	0,161	27,801	28,012	2,600	7,928
30%	199	37,6	5,4	0,203	32,353	32,598	2,424	6,817
32%	219	41,7	5,9	0,246	35,605	35,875	2,322	6,469
34%	248	45,7	6,6	0,302	40,319	40,625	2,199	5,766
36%	275	50,5	7,4	0,374	44,709	45,048	2,105	5,474
38%	297	54,6	7,6	0,415	48,286	48,652	2,039	4,981
40%	322	60,1	7,7	0,463	52,350	52,747	1,973	4,504
42%	349	64,7	7,8	0,505	56,740	57,170	1,912	3,982
44%	372	68,6	7,8	0,535	60,479	60,938	1,865	3,574
46%	398	72,1	8,0	0,577	64,706	65,197	1,818	3,228
48%	425	77,9	8,0	0,623	69,095	69,620	1,774	2,935
50%	448	82,1	8,0	0,657	72,835	73,387	1,740	2,692
52%	470	85,8	8,1	0,695	76,411	76,991	1,710	2,510
54%	490	89,2	8,2	0,731	79,663	80,267	1,685	2,366
56%	517	93,5	8,3	0,776	84,053	84,690	1,654	2,177
58%	542	98,2	8,5	0,835	88,117	88,785	1,627	2,066
60%	567	101,3	8,6	0,871	92,182	92,881	1,602	1,912
62%	592	106,3	8,8	0,935	96,246	96,976	1,580	1,830
64%	626	111,7	8,9	0,994	101,774	102,546	1,551	1,675
66%	653	116,6	8,9	1,038	106,163	106,968	1,530	1,562
68%	670	119,9	8,9	1,067	108,927	109,753	1,517	1,499
70%	707	125,5	8,9	1,117	114,942	115,814	1,492	1,358
72%	735	130,7	9,0	1,176	119,495	120,401	1,474	1,288
74%	762	134,7	9,0	1,212	123,884	124,824	1,458	1,205
76%	790	139,2	9,0	1,253	128,436	129,411	1,442	1,130
78%	818	144,1	9,1	1,311	132,989	133,997	1,428	1,076
80%	838	148,2	9,1	1,349	136,240	137,273	1,418	1,037
82%	861	151,3	9,1	1,377	139,979	141,041	1,406	0,983
84%	896	157,4	9,1	1,432	145,670	146,775	1,390	0,918
86%	917	160,4	9,2	1,476	149,084	150,215	1,381	0,888
88%	949	166,1	9,1	1,512	154,286	155,457	1,368	0,829
90%	979	171,2	9,0	1,541	159,164	160,371	1,357	0,776
92%	1008	175,1	8,9	1,558	163,878	165,121	1,346	0,725
94%	1036	180,3	8,7	1,569	168,430	169,708	1,336	0,677
96%	1072	186,4	8,4	1,566	174,283	175,605	1,324	0,616
98%	1083	189,3	8,2	1,552	176,072	177,407	1,320	0,594
100%	1091	190,0	8,2	1,558	177,372	178,718	1,318	0,584

6.5. Resultados utilizando óleo em tanque de inox

6.5.1. Com impelidor de 4 pás retas a 45°, com 4 defletore s

Tabela 23 – Resultados da agitação de óleo em tanque de inox com impelidor de 4 pás retas inclinadas a 45°, com 4 defletores

Velocio	dade	Tensão	Corrente	Potência	N Rey	N Rey *	fu	N Po
%	rpm	(V)	(A)	(W)		IN INCY		INFU
18%	37	7,3	5,6	0,041	6,015	6,061	6,484	79,808
20%	69	14,1	6,6	0,093	11,218	11,303	4,178	43,477
22%	86	17,9	7,0	0,125	13,982	14,088	3,692	34,214
24%	117	23,0	7,3	0,168	19,022	19,166	3,135	21,445
26%	149	28,6	8,0	0,229	24,224	24,408	2,777	15,970
28%	171	32,7	9,0	0,294	27,801	28,012	2,600	14,516
30%	199	37,8	9,8	0,370	32,353	32,598	2,424	12,437
32%	219	41,7	11,1	0,463	35,605	35,875	2,322	12,171
34%	248	45,8	12,6	0,577	40,319	40,625	2,199	11,032
36%	275	50,6	13,0	0,658	44,709	45,048	2,105	9,636
38%	297	54,5	13,2	0,719	48,286	48,652	2,039	8,636
40%	322	59,9	13,4	0,803	52,350	52,747	1,973	7,812
42%	349	64,7	13,6	0,880	56,740	57,170	1,912	6,944
44%	372	68,8	13,8	0,949	60,479	60,938	1,865	6,342
46%	398	73,2	14,0	1,025	64,706	65,197	1,818	5,734
48%	425	77,7	13,9	1,080	69,095	69,620	1,774	5,086
50%	448	82,2	14,1	1,159	72,835	73,387	1,740	4,750
52%	470	85,9	14,2	1,220	76,411	76,991	1,710	4,405
54%	490	89,4	14,2	1,269	79,663	80,267	1,685	4,106
56%	517	93,8	14,3	1,341	84,053	84,690	1,654	3,764
58%	542	98,7	14,4	1,421	88,117	88,785	1,627	3,518
60%	567	102,2	14,5	1,482	92,182	92,881	1,602	3,253
62%	592	106,7	14,6	1,558	96,246	96,976	1,580	3,048
64%	626	112,4	14,7	1,652	101,774	102,546	1,551	2,785
66%	653	116,8	14,9	1,740	106,163	106,968	1,530	2,619
68%	670	120,4	15,0	1,806	108,927	109,753	1,517	2,537
70%	707	125,9	15,1	1,901	114,942	115,814	1,492	2,312
72%	735	130,9	15,1	1,977	119,495	120,401	1,474	2,165
74%	762	135,4	15,3	2,072	123,884	124,824	1,458	2,059
76%	790	139,8	15,5	2,167	128,436	129,411	1,442	1,954
78%	818	144,6	15,4	2,227	132,989	133,997	1,428	1,827
80%	838	148,5	15,4	2,287	136,240	137,273	1,418	1,758
82%	861	152,7	15,5	2,367	139,979	141,041	1,406	1,691
84%	896	158,3	15,6	2,469	145,670	146,775	1,390	1,583
86%	917	161,7	15,6	2,523	149,084	150,215	1,381	1,518
88%	949	167,6	15,5	2,598	154,286	155,457	1,368	1,424
90%	979	172,1	15,3	2,633	159,164	160,371	1,357	1,326
92%	1008	176,0	15,2	2,675	163,878	165,121	1,346	1,245
94%	1036	181,5	14,9	2,704	168,430	169,708	1,336	1,167
96%	1072	186,9	14,5	2,710	174,283	175,605	1,324	1,066
98%	1083	189,9	14,3	2,716	176,072	177,407	1,320	1,038
100%	1091	190,8	14,2	2,709	177,372	178,718	1,318	1,015

6.5.2. Com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Tabela 24 – Resultados da agitação de óleo em tanque de inox com impelidor de 3 pás retas com 3 furos em cada pá, com 4 defletores

Velocio	dade	Tensão	Corrente	Potência	N.D.	N.D*	£	N.D.
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	7,5	5,7	0,043	6,015	6,061	6,484	83,458
20%	69	14,3	6,8	0,097	11,218	11,303	4,178	45,430
22%	86	18,1	7,1	0,129	13,982	14,088	3,692	35,091
24%	117	23,1	7,3	0,169	19,022	19,166	3,135	21,538
26%	149	29,2	8,3	0,242	24,224	24,408	2,777	16,916
28%	171	33,4	9,3	0,311	27,801	28,012	2,600	15,321
30%	199	37,3	10,2	0,380	32,353	32,598	2,424	12,773
32%	219	42,2	11,5	0,485	35,605	35,875	2,322	12,761
34%	248	46,1	12,4	0,572	40,319	40,625	2,199	10,928
36%	275	51,0	13,2	0,673	44,709	45,048	2,105	9,861
38%	297	55,0	13,5	0,743	48,286	48,652	2,039	8,913
40%	322	60,2	13,8	0,831	52,350	52,747	1,973	8,086
42%	349	65,0	13,9	0,904	56,740	57,170	1,912	7,130
44%	372	69,1	14,0	0,967	60,479	60,938	1,865	6,462
46%	398	73,6	14,3	1,052	64,706	65,197	1,818	5,889
48%	425	78,3	14,3	1,120	69,095	69,620	1,774	5,273
50%	448	82,6	14,5	1,198	72,835	73,387	1,740	4,909
52%	470	86,4	14,6	1,261	76,411	76,991	1,710	4,556
54%	490	89,6	14,7	1,317	79,663	80,267	1,685	4,260
56%	517	94,3	14,8	1,396	84,053	84,690	1,654	3,916
58%	542	98,9	15,0	1,484	88,117	88,785	1,627	3,672
60%	567	102,4	15,0	1,536	92,182	92,881	1,602	3,372
62%	592	106,9	15,2	1,625	96,246	96,976	1,580	3,179
64%	626	112,9	15,3	1,727	101,774	102,546	1,551	2,911
66%	653	116,9	15,4	1,800	106,163	106,968	1,530	2,710
68%	670	120,6	15,5	1,869	108,927	109,753	1,517	2,626
70%	707	126,1	15,6	1,967	114,942	115,814	1,492	2,392
72%	735	131,3	15,8	2,075	119,495	120,401	1,474	2.272
74%	762	135,4	15,8	2,139	123,884	124,824	1,458	2,126
76%	790	139,9	16,1	2,252	128,436	129,411	1,442	2,031
78%	818	144,9	16,1	2,333	132,989	133,997	1,428	1,914
80%	838	148,8	16,1	2,396	136,240	137,273	1,418	1,841
82%	861	152,8	16,2	2,475	139,979	141,041	1,406	1,768
84%	896	158,5	16,2	2,568	145,670	146,775	1,390	1,646
86%	917	161,7	16,3	2,636	149,084	150,215	1,381	1,587
88%	949	167,6	16,3	2,732	154,286	155,457	1,368	1,498
90%	979	172,0	16,4	2,821	159,164	160,371	1,357	1,421
92%	1008	176,4	16,2	2,858	163,878	165,121	1,346	1,329
94%	1036	181,5	15,9	2,886	168,430	169,708	1,336	1,246
96%	1072	187,4	15,4	2,886	174,283	175,605	1,324	1,135
98%	1083	190,2	15,1	2,872	176,072	177,407	1,320	1,098
100%	1091	191,4	15,0	2,871	177,372	178,718	1,318	1,076

6.5.3. Com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Tabela 25 – Resultados da agitação de óleo em tanque de inox com impelidor de 3 pás retas com 8 furos em cada pá, com 4 defletores

Velocio	dade	Tensão	Corrente	Potência	NB	N.D. +	,	N.D.
%	rpm	(V)	(A)	(W)	N Rey	N Rey *	fu	N Po
18%	37	8,0	5,8	0,046	6,015	6,061	6,484	90,584
20%	69	13,6	6,8	0,092	11,218	11,303	4,178	43,206
22%	86		7,2	0,129	13,982	14,088	3,692	35,192
24%	117	17,9 23,1	7,2	0,166	19,022	19,166	3,135	21,243
26%	149	28,8	8,2	0,236	24,224	24,408	2,777	16,483
28%	171	33,0	9,2	0,304	27,801	28,012	2,600	14,975
30%	199	37,0	10,3	0,381	32,353	32,598	2,424	12,794
32%	219	41,8	11,5	0,481	35,605	35,875	2,322	12,640
34%	248	46,1	12,5	0,576	40,319	40,625	2,199	11,016
36%	275	51,1	13,4	0,685	44,709	45,048	2,105	10,030
38%	297	55,0	13,6	0,748	48,286	48,652	2,039	8,979
40%	322	60,1	13,9	0,835	52,350	52,747	1,973	8,131
42%	349	64,9	14,0	0,909	56,740	57,170	1,912	7,170
44%	372	68,9	14,2	0,978	60,479	60,938	1,865	6,535
46%	398	73,4	14,4	1,057	64,706	65,197	1,818	5,914
48%	425	78,0	14,4	1,123	69,095	69,620	1,774	5,289
50%	448	82,5	14,6	1,205	72,835	73,387	1,740	4,937
52%	470	85,9	14,7	1,263	76,411	76,991	1,710	4,560
54%	490	89,3	14,7	1,313	79,663	80,267	1,685	4,246
56%	517	93,9	14,9	1,399	84,053	84,690	1,654	3,926
58%	542	98,7	15,1	1,490	88,117	88,785	1,627	3,689
60%	567	102,2	15,2	1,553	92,182	92,881	1,602	3,410
62%	592	106,7	15,2	1,622	96,246	96,976	1,580	3,173
64%	626	112,5	15,5	1,744	101,774	102,546	1,551	2,939
66%	653	116,9	15,5	1,812	106,163	106,968	1,530	2,727
68%	670	120,7	15,7	1,895	108,927	109,753	1,517	2,662
70%	707	126,0	15,8	1,991	114,942	115,814	1,492	2,421
72%	735	131,2	15,9	2,086	119,495	120,401	1,474	2.285
74%	762	135,5	16,0	2,168	123,884	124,824	1,458	2,155
76%	790	140,1	16,0	2,242	128,436	129,411	1,442	2,021
78%	818	144,6	16,2	2,343	132,989	133,997	1,428	1,922
80%	838	148,9	16,3	2,427	136,240	137,273	1,418	1,866
82%	861	152,5	16,3	2,486	139,979	141,041	1,406	1,776
84%	896	158,1	16,5	2,609	145,670	146,775	1,390	1,672
86%	917	161,2	16,4	2,644	149,084	150,215	1,381	1,591
88%	949	167,0	16,4	2,739	154,286	155,457	1,368	1,502
90%	979	171,9	16,5	2,836	159,164	160,371	1,357	1,429
92%	1008	176,1	16,4	2,888	163,878	165,121	1,346	1,344
94%	1036	181,4	16,1	2,921	168,430	169,708	1,336	1,261
96%	1072	187,5	15,6	2,925	174,283	175,605	1,324	1,150
98%	1083	190,2	15,3	2,910	176,072	177,407	1,320	1,113
100%	1091	191,3	15,2	2,908	177,372	178,718	1,318	1,090

7. BIBLIOGRAFIA

- BATTAGLINI, N. M. P.; Avaliação do Comportamento de Impelidores Especiais na mistura de Fluidos. Botucatu, 1998.
- BIRD, R., STEWARD, W., LIGHTFOOT, E. N. **Transport Phenomena.** New York: Wiley, 1960.
- BOWEN, R. L. Agitation Intensity: key to scaling up flow Sensitive Liquid Systems. Chemical Engineering, March 1985.
- COSTA, F.Q. Viabilidade de Uso de um Misturador para Análise de Propriedades Reológicas de Produtos Alimentícios. Botucatu 2007.
- DICKEY, D. S. Program Choses Agitator. Chemical Engineering January 1984.
- DICKEY, D. S.; HEMRAJANI, R. R. **Recipes for fluid mixing.** Chemical Engineering March 1992.
- FACCIO, I. Investigações sobre o acabamento superficial de usinagens com altíssima velocidade de corte. Escola Politécnica 2003.
- FOUST, A. S.; WENSEL, L. A.; ANDERSEN, L. B. **Princípios das Operações Unitárias**. Ed. Guanabara Dois 2001.
- FOX, R. W.; Mc DONALD, A. T. Introdução à Mecânica dos Fluidos. Ed. Guanabara Dois 1981.
- GATES, L. E.; HENLEY, T. L. **How to select the Optimum Turbine**. Chemical Engineering, December 1975.
- GARRINSON, C. M. **How to cut Agitation cost**. Chemical Engineering, November 1981.
- HICKS, R. W.; MORTON, J. R.; FENIC, J. G. How to Design Agitators for Desired Process Response. Chemical Engineering, April 1976.
- JOAQUIM JR, C. F. Verificação da Eficiência de Mistura e Levantamento dos Números de Potência para os Impelidores Caules e de Alta Eficiência. Bauru – Dezembro 1999.
- JOAQUIM JR, C. F., CEKINSKI, E., NUNHEZ, J. R., URENHA, L. C.; Agitação e Mistura na Indústria. Rio de Janeiro 2007.

- LIMA, L. R. **Elementos Básicos de Engenharia Química.** Ed. McGraw-Hill do Brasil LTDA 1974.
- NAGATA, S. **Mixing: Principles and Applications.** John Wiley & Sons, New York 1975.
- PALMA, E. S. **Metrologia.** PUCMINAS 2006.
- POSSA, M. V.; DE LIMA, J. R. B. Comportamento reológico de polpas de minério. CETEM/MCT, (Série Tecnologia mineral, 77) 2000.
- RAZUK, P. C. Um estudo sobre as Operações unitárias de Agitação, troca de Calor em Tanques e Mistura de Pós. Bauru Abril 1992.
- RONCHI JR, A. O número de potência na agitação de líquidos e a concentração na mistura do xarope de açúcar. São Carlos Março 1997.
- STREETER, V. L. **Mecânica dos fluidos.** Mcgraw Hill 1975.