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Resumo

Esta Tese trabalha com alguns conceitos fundamentais da analise intervalar e suas apli-

cações. Em primeiro lugar, a Tese aborda a álgebra de funções de valor intervalar gH-

diferenciáveis. Especificamente, damos condições para a gH- diferenciabilidade da soma

e gH-diferença de duas funções de valor intervalar gH-diferenciáveis; também para o pro-

duto e composição de uma função real diferenciável e uma função de valor intervalar gH-

diferenciável. Em segundo lugar, a Tese e dedicada a obtenção de condições necessárias

e suficientes para problemas de otimização com funções objetivas de valor intervalar.

Essas funções objetivas são obtidas a partir de funções cont́ınuas usando aritmética in-

tervalar restrita. Damos um conceito de derivada para esta classe de funções de valor

intervalar e, em seguida, introduzimos o conceito de ponto estacionário. Encontramos

as condições necessárias com base na definição dos pontos estacionários e provamos que

essas condições também são suficientes nas noções de convexidade generalizada. Obtemos

também condições necessárias e suficientes para o problema de otimização intervalar com

restrições. E, finalmente, lidamos com o espaço quociente de intervalos I em relação a

famı́lia de intervalos simétricos e dado um conceito de diferenciabilidade para funções de

classes de equivalência, fazemos uma comparação com outros conceitos de diferenciabili-

dade. Alguns exemplos e contraexemplos ilustram os resultados obtidos.

Palavras-chave: Aritmética intervalar standard. gH-derivada. Aritmética intervalar

restrita. Otimização intervalar. Espaço quociente de intervalos.
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Abstract

This Thesis works with some fundamentals concepts of interval analysis and it applica-

tions. First of all, the thesis deals with the algebra of gH-di↵erentiable interval-valued

functions. Specifically, we give conditions for the gH-di↵erentiability of the sum and

gH-di↵erence of two gH-di↵erentiable interval-valued functions; also for the product and

composition of a di↵erentiable real function and a gH-di↵erentiable interval-valued func-

tion. Second, the thesis is devoted to obtaining necessary and su�cient conditions for

optimization problems with interval-valued objective functions. These objective func-

tions are obtained from continuous functions by using constrained interval arithmetic.

We give a concept of derivative for this class of interval-valued functions and then we

introduce the concept of stationary point. We find necessary conditions based on the

stationary points definition and we prove that these conditions are also su�cient under

generalized convexity notions. We obtain the necessary and su�cient conditions for con-

strained interval-valued optimization problem. And finally, we deal with the quotient

space of intervals I with respect to the family of symmetric intervals and given a concept

of di↵erentiability for equivalence classes-valued functions, we make a comparison with

other concepts of di↵erentiability. Some examples and counterexamples illustrates the

obtained results.

Keywords: Standard interval arithmetic. gH-derivative. Constraint interval arith-

metic. Interval optimization. Quotient space of intervals.
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Chapter 1

Introduction

Parameters associated with optimization and control models are not always precise

(see, e.g., [10, 11, 17]). In most situations they take on some kind of uncertainty in the

parameters and/or in the variables, uncertainties that are inherent to the associated real

problem [28]. In particular in this Thesis, we are interested in studying interval-type

uncertainties and the associated optimization or control problems will be called interval

optimization problems, as well as interval control problems. If we intend to obtain opti-

mality conditions for an interval optimization problem, it is important to consider some

type of interval structure to work on. In recent years standard interval arithmetic together

with gH-di↵erence ([30, 35, 14] and [15]), turned out to be of vital importance in new

developments of interval structures, not only to the studies of interval analysis, but also

to fuzzy analysis [7, 17]. In the literature, if we look for works related to interval or fuzzy

optimization, we will find studies related to the mathematical structure derived from stan-

dard interval arithmetic (SIA) and gH-di↵erence [21, 22, 26, 39, 40]. In addition, we can

find a great number of papers where necessary and su�cient conditions of optimality have

been obtained [13, 31] for the unconstrained problems. This is basically due to the fact

that basic and fundamental tools, such as the algebra of gH-di↵erentiable interval-valued

functions, were little studied. In this sense, the following questions arise. 1) Is it possible

that the standard interval arithmetic together with the gH-di↵erence gives a structure

with appropriate properties to study optimization and control models involving interval

uncertainty? 2) Is it possible to obtain some kind of optimality conditions for interval

optimization and interval control problems, involving some mathematical structure that

works with an interval arithmetic which di↵ers from the standard one? 3) Can we create



15

some kind of interval structure with appropriate properties (vector space structure)?

These questions in light of the things that have previously been studied in the litera-

ture, we can see that:

Regarding the first question, we must see carefully the works done by: B. Bede and L.

Stefanini - Generalized Hukuhara di↵erentiability of interval-valued functions and interval

di↵erential equations [35], Allahviranloo - Note on Generalized Hukuhara di↵erentiability

of interval-valued functions and interval di↵erential equations [2], Chalco -Cano et.al. -

Generalized and ⇡ derivative for set valued functions [14], and other important works

such as [29, 4, 5, 30], since they provide important tools for the development of theories

in optimization and control in both the interval context and the fuzzy context (see [21,

39, 40, 13, 9, 31, 1] and [24]). Despite of these studies and given the complexity of the

interval structures it is of utmost importance to provide a new algebra of gH-di↵erentiable

functions. For example, considering the work of Stefanini and Bede [35], Remark 19 was

corrected by Chalco-Cano in [15] and this would imply the need to correct Proposition

24 in [35]. Although Allahviranloo [2] tried to correct it, we still have to work on the

other cases where the functions are (iii)gH and (iv)gH di↵erentiable. In fact, there is

no study done regarding the other operations with gH-di↵erentiable functions and the

aforementioned was only done for the addition of two gH-di↵erentiable functions and

the product of a gH-di↵erentiable function by a scalar. In this sense, we will present a

complete study on the algebra of gH-di↵erentiable functions, starting from the operation

of addition, passing through the gH-di↵erence, the product, the chain rule, among other

operations, and considering the four cases of gH-di↵erentiability.

Regarding the second question, we note that there are very few studies that deal with

interval optimization problems with a di↵erent structure than that determined by stan-

dard interval arithmetic and gH-di↵erence. Among these works we would like to mention,

for example, Campos, et al [10], where the authors use the single level constrained interval

arithmetic, proposed by Chalco-Cano et.al. [12] to address interval control problems, as

well as the Thesis of Ulcilea Alves Severino Leal [23], where she works on interval uncer-

tainty in optimization and control. We point out once again that in order to approach

an interval optimization problem, for example, it is necessary to make use of an interval

aritimetic structure which is well defined and has a rich set of properties. In this The-

sis we will choose the constrained interval arithmetic proposed by Weldon A. Lodwick
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[25] to answer this second question. We define some important concepts, such as order

relation to establish some criterion for minimization or maximization and of derivative

to characterize optimal points. That is, we provide necessary optimality conditions for

the unconstrained interval optimization problem. We also establish su�cient conditions

for this unconstrained problem under interval invexity assumption concept. For the con-

strained interval optimization problem, we will give Fritz-John type conditions and then,

under constraint qualifications, the Karush-Kuhn-Tucker conditions. All these results are

in an interval version involving the constrained interval arithmetic.

An important feature of this work is the practicality of how we can characterize and

find the optimal points. This fact is of vital importance for the consolidation of interval

optimization as an area because that will help future research resulting from it.

Lastly, considering the third question, it is no doubt interesting to pursue an algebraic

interval structure that has a vector space structure [27]. It is, of course, not natural to find

such a structure working directly with interval arithmetic operations, but, as it will be

shown later, this can be achieved by introducing appropriate interval equivalence classes

to approach to this problem. In order to make analysis on the quotient space of intervals

we first define a metric on this space. Once the limit is defined, it is possible to define the

concept of derivatives and integrals for functions defined over this space. After that, it is

interesting to see how this new derivative is related to the gH-derivative, in the sense that

the classes generated by the gH-derivatives have some kind of relation to the derivative

functions defined over the interval quotient space.

We now set forth how this Thesis is developed. Indeed it is divided into three separate

parts whose link is the interval analysis. The first part focuses on the algebraic study

of generalized Hukuhara di↵erentiable interval-valued functions, in order to understand

the behavior of this type of functions. This is developed in Chapter 3. The second part,

Chapter 4, focuses on the study of the necessary and su�cient conditions for interval

optimization problems involving constrained interval arithmetic to find necessary and

su�cient optimality conditions for interval optimization problems, both unconstrained

and constrained. Finally, the third part, appearing in Chapter 5, will discuss without

losing an isomorphic copy of the intervals the quotient space of intervals in which we are

able to find a structure of vector space which makes it possible to define the concepts of

derivative and integral, and to analyze its relationship with what has already been done.
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Chapter 2

Preliminaries of interval analysis

This chapter we studies some preliminaries of the interval analysis, which includes

the spaces in which we work, the arithmetic operations most used and their properties.

Next, we define some types of functions where the domain is or not interval, and where

the range is an interval or an interval n�tuple. In addition some properties and some

geometric notions of these functions is presented. Finally, some topological properties of

the interval space involving the arithmetic and the functions is developed.

2.1 Interval Space

Let A denote a closed and bounded interval. The endpoints of A are denoted by a and

a, where a  a (A = [a, a]) and I denotes the family of all closed and bounded intervals,

i.e.

I = {[a, a] : a  a, 8a, a 2 R} .

In a natural way to represent intervals is by an ordered pairs, i.e., if A = [a, a] 2 I

then (a, a) 2 R2. In this case, this respresentation of the space I will be a particular case

of the interval space presented by Tiago Mendonça in [16], where I it is called proper

interval space. In Tiago’s work an extension of the proper interval space was studied, for

expressions like [a, a], with a  a. The family of these expressions was called improper

interval space and it is denoted by I, i.e.,

I = {[a, a] : [a, a] 2 I}
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It is clear that with this extension there exist an isomorphism between I [ I and R2,

as shown in the following figure.

Figure 2.1: Isomorphism between I [ I and R2

In this Thesis, we only study di↵erent results over the proper interval space, which

will be called interval space.

Considering the interval space, we will define in the next sections two arithmetic

structures. Then we will analyze its properties, which will be used in the main results

of this research. We next will present two interval arithmetic that will be used in this

Thesis.

2.2 Standard Interval Arithmetic

This arithmetic sometimes known as“Minkowski operations” [18], was strongly studied

by Moore since 1959. Moore in [30] proposes the use the Minkowsky arithmetic operations

but not using all the points of the interval, but only their ends to define the arithmetic

operations. Next we define these operations using the Moore notation.

Given the intervals A,B,C 2 I where A = [a, a], B = [b, b], C = [c, c], and � 2 R

we define the standard interval operations as the following, where the operation ⇤ in the

standard interval arithmetic is denoted ⇤s:

Addition:

A+s B = [a, a] +s [b, b] = [a+ b, a+ b]. (2.1)
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Multiplication by a scalar

� ·s A = � ·s [a, a] =

8
<

:
[�a, �a] if � � 0;

[�a, �a] if � < 0.
(2.2)

From this, if � = �1 we obtain, (�1) ·s A = [�a,�a], so that, we can define the

subtraction by,

Subtraction:

A�s B = A+s ((�1) ·s B)

= [a, a] +s [�b,�b]

= [a� b, a� b].

A seriously problem with the definition of subtraction is that we have no additive

inverses when A 2 I is nondegenerate, i.e. A�s A 6= 0 if A = [a, a], a < a.

Multiplication:

A⇥s B = [a, a]⇥s [b, b]

= [minG,maxG],

where G = {a · b, a · b, a · b, a · b}.

Division: If 0 /2 B,

A/sB = [a, a]/s[b, b]

= [minM,maxM ],

where M = {a/b, a/b, a/b, a/b}. If we consider A 2 I nondegenerated, 0 62 A, then

A/sA 6= [1, 1].

With these operations, we obtain the next proposition.

Proposition 2.2.1. Given A,B,C 2 I and considering the last four operations we obtain

the next algebraic properties:

1. Commutativity for interval addition and multiplication:
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• A+s B = B +s A;

• A⇥s B = B ⇥s A.

2. Associativity for interval addition and multiplication:

• (A+s B) +s C = A+s (B +s C);

• (A⇥s B)⇥s C = A⇥s (B ⇥s C).

3. Additive and multiplicative identity elements: these elements are 0 = [0, 0] and

1 = [1, 1] respectively, and both are degenerate elements,

• 0 +s A = A+s 0 = A;

• 1⇥s A = A⇥s 1 = A;

• 0⇥s A = A⇥s 0 = 0.

4. Subdistributivity:

• A⇥s (B +s C) ✓ A⇥s B +s A⇥s C.

5. Cancellation law:

• A+s C = B +s C ) A = B.

Stefanini and Bede proposed an interesting way to obtain a di↵erence that makes sense

in the concept of derivatives. The idea is to have a concept of subtraction which has more

suitable properties. Stefanini and Bede in [35] have introduced the following di↵erence

between two intervals.

Definition 2.2.2 ([35]). The generalized Hukuhara di↵erence (gH-di↵erence, for short)

of two intervals A and B is defined as follows

A gH B = C ,

8
<

:
(a) A = B +s C, or

(b) B = A+s (�1) ·s C.

This di↵erence has many interesting new properties, for example A  gH A = {0} =

[0, 0]. Also, the gH-di↵erence of two intervals A = [a, a] and B =
⇥
b, b
⇤
always exists and

it is equal to (see Proposition 4 in [35])

A gH B =
⇥
min

�
a� b, a� b

 
,max

�
a� b, a� b

 ⇤
.

The following properties were obtained in [35].
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Proposition 2.2.3. Let A,B,C 2 I, the gH-di↵erence has the following properties.

1. A gH A = 0;

2. (A+s B) gH B = A;

3. A gH (A�s B) = B;

4. A gH (A+s B) = �B;

5. �(A gH B) = (�B) gH (�A);

6. (A�s B) +s B = C , A�s B = C  gH B;

7. In general, B�sA = A�sB does not imply A = B; but (A gHB) = (B gHA) = C

if and only if C = {0} and A = B;

8. A+ (B  gH A) = B or B �s (B  gH A) = A and both equalities hold if and only if

B  gH A is a singleton set.

Example 2.2.4. Let A = [12 ,
3
2 ], B = [�3, 11] and C = [1, 5].

• B ⇥s B = [�33, 121];

• C �s C = [�4, 4];

• C  gH C = [0, 0];

• C/sC = [15 , 5];

• A⇥s A�s 2A = [�11
4 ,

5
4 ];

• A⇥s (A�s 2) = [�9
4 ,�

1
4 ].

2.3 Constrained interval arithmetic

This section presents constrained interval arithmetic (CIA). Lodwick [25, 26] was pri-

marily concerned with an interval arithmetic that encodes the united extension of [36] in

an explicit, direct way. To this end, an interval is redefined into an equivalent form as the

real-valued function of one variable and two coe�cients or parameters over the compact

domain [0, 1].
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Definition 2.3.1. An interval A = [a, a] is the real single-valued function A
I(�a),

A
I(�a) = (1� �a)a+ �aā, (2.3)

= wa�a + a, 0  �a  1.

Here wa = ā� a � 0 is the width of the interval.

Strictly speaking, in (2.3), since the numbers a and ā (consequently wa) are known

(inputs or data), they are coe�cients, whereas �a is varying, although constrained between

0 and 1. Hence the name “constrained interval arithmetic”. This means that A
I(�a) is

a single-valued real function with two coe�cients. Moreover, we write �a to denote the

parameter associated to the interval A. To simplify the notation we will write �,�1,�2, ...

to denote the parameters associated to each interval. So the constrained parametric

representation of an interval A will be (see [9])

A = [a, a] = {a(�) = wa�+ a : � 2 [0, 1]} = {a(�) = (a� a)�+ a : � 2 [0, 1]} (2.4)

The algebraic operations for CIA are defined as follows. We consider two intervals

A = {a(�1) : �1 2 [0, 1]} and B = {b(�2) : �2 2 [0, 1]}, then

A ⇤B = C

= [c, c̄]

= {a(�1) ⇤ b(�2) : �1,�2 2 [0, 1]}

= {c : c = a(�1) ⇤ b(�2), �1,�2 2 [0, 1]}

where c = min {c}, c̄ = max {c}, 0  �1  1, 0  �2  1 (2.5)

and ⇤ 2 {+,�,⇥,÷}.

It is clear from (2.5) that constrained interval arithmetic is a constrained global optimiza-

tion problem.

Remark 2.3.2. From CIA [25] we know that, for dependent operations, we consider the

same constrained parametric representation for the same intervals involved in the algebraic

operations, i.e. A ⇤ A = {a(�) ⇤ a(�) : � 2 [0, 1]}, where ⇤ 2 {+,�,⇥,÷}.

CIA is the complete implementation of the united extension, and possesses an algebra

which has addition desired properties compared to standard interval arithmetic. For
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instance A�A = [0, 0] = {0}, A÷A = [1, 1] = {1} when 0 /2 A and possess a distributive

law A ⇥ (B + C) = A ⇥ B + A ⇥ C. The properties of the constrained parametric

representation of an interval and CIA see [25, 26], are

• + is associative, in fact, let A,B,C 2 I, using their constrained parametric repre-

sentation,

(A+B) + C = {(A(�1) + B(�2)) + C(�3) : �1,�2,�3 2 [0, 1]}

= {A(�1) + (B(�2) + C(�3)) : �1,�2,�3 2 [0, 1]}

= A+ (B + C)

• + has an identity element, this element is 0 = [0, 0] = {0}, 0 2 R. Let A 2 I,

A+ 0 = {A(�1) + 0 : �1 2 [0, 1]}

= {A(�1) : �1 2 [0, 1]}

= A

• Not all the elements A 2 I have an inverse B 2 I, such that A + B = B + A = 0,

in e↵ect, suppose that all the elements A 2 I has an inverse B 2 I such that

A+B = B + A = 0, if it will be true,

A+B = {0}

= {A(�1) + B(�2) = 0, 8�1�2 2 [0, 1]}

then B(�2) = �A(�1), this equality is true only when A 2 I is a degenerated

interval, because their parametric representation do not depend of any � parameter,

on the other cases, we will have di↵erent type of monotonicity on their parametric

representation ( if A(�1) is increasing then B(�2) is not increasing), and it is absurd.

That is, CIA like SIA has no additive inverses. However this true of any Minkowsky-

based set arithmetic, where in our case the set are intervals.

• + is commutative. Let A,B 2 I, consequently

A+B = {A(�1) + B(�2) : �1,�2 2 [0, 1]}

= {B(�2) + A(�1) : �1,�2 2 [0, 1]}

= B + A
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Next, we will show some interesting examples involving the constrained interval arith-

metic.

Example 2.3.3. Let A = [12 ,
3
2 ], B = [�3, 11] and C = [1, 5].

• B ⇥ B = [0, 121];

• C � C = [0, 0];

• C/C = [1, 1];

• A⇥ A� 2A = [�1,�3
4 ];

• A⇥ (A� 2) = [�1,�3
4 ]

2.4 Interval di↵erentiability

We next present one of the most useful concept, called gH-di↵erentiability, for this

concept is important to define an appropriate metric. The metric structure is given usually

by the Pompeiu-Hausdor↵ metric H in I which is defined by

H(A,B) = max
�
|a� b| ,

��a� b
�� .

Where A = [a, a] and B = [b, b].

For the Pompeiu-Hausdor↵ metric, the following properties are well-known.

Proposition 2.4.1 ([35]). For A,B 2 I, we have

1. H(kA, kB) = |k|H(A, b), 8k 2 R;

2. H(A+ C,B + C) = H(A,B);

3. H(A+B,C +D)  H(A,C) +H(B,D);

4. H(A,B) = H(A gH B, {0}).

Proposition 2.4.2 ( [4, 5]). (I, H) is a complete metric space.

Based on the gH-di↵erence Stefanini and Bede proposed the concept of gH-derivative.
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Definition 2.4.3 ([35]). Let x0 2]a, b[ and h such that x0 + h 2]a, b[, then the gH-

derivative of a function F :]a, b[! I at x0 is defined as

F
0(x0) = lim

h!0

1

h
[F (x0 + h) gH F (x0)]. (2.6)

If F 0(x0) 2 I satisfying (2.6) exists, we say that F is generalized Hukuhara di↵erentiable

(gH-di↵erentiable for short) at x0.

The next chapter presents some properties and interesting examples about gH-di↵erentiable

functions



26

Chapter 3

Algebra of generalized Hukuhara

di↵erentiable interval-valued

functions

It is well known that one of the most recently concepts of interval analysis is the

concept of derivative given by Stefanini and Bede [35], and that many other authors

used this concept to be worked in di↵erent areas, such as, interval calculus, interval

optimization, interval di↵erential equations, interval dynamical systems, among many

others. But we can also see that there are still results from this definition that have not yet

been consolidated. And one of these results is the algebra of gH-di↵erentiable functions,

a study that undoubtedly is important in solving problems related to the aforementioned

areas and that we will develop next.

Henceforth T will denote an open subset of R. Let F : T ! I be an interval-valued

function with F (x) = [f(x), f(x)], where f(x)  f(x), 8x 2 T . The functions f and f

are called the lower and the upper endpoint functions of F , respectively.

Example 3.0.1. Let F : R! I be an interval valued function defined by

F (x) = [�|x+ 2|, |x� 2|].

Here, the endpoints functions are given by:

• f(x) = �|x+ 2|;

• f(x) = |x� 2|;
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and are graphically represented by Figure 3.1.

Figure 3.1: Endpoint functions of the interval valued function F .

Chalco-Cano et al. [14] showed that the gH-di↵erence and the subtraction introduced

by Markov [29] are equivalent concepts.

Obtaining the gH-derivative of an interval-valued function via (2.6) is a rather complex

problem. However, the next result, given in [15], characterizes the gH-di↵erentiability of

F in terms of the di↵erentiability of its endpoint functions f and f .

Theorem 3.0.2 ([14]). Let F : T ! I be an interval-valued function. Then F is gH-

di↵erentiable at x0 2 T if and only if one of the following cases holds:

(a) f and f are di↵erentiable at x0 and

F
0
(x0) =

h
min

n
(f)

0
(x0), (f)

0
(x0)

o
,max

n
(f)

0
(x0), (f)

0
(x0)

oi
.

(b) The lateral derivatives (f)0�(x0), (f)0+(x0), (f)0�(x0), (f)0+(x0) exist and satisfy (f)0�(x0) =

(f)0+(x0), (f)0+(x0) = (f)0�(x0), and

F
0
(x0) =

h
min

n
(f)

0

�(x0), (f)
0

+(x0)
o
,max

n
(f)

0

�(x0), (f)
0

+(x0)
oi

=
h
min

n
(f)

0

�(x0), (f)
0

+(x0)
o
,max

n
(f)

0

�(x0), (f)
0

+(x0)
oi

.

Theorem 3.0.2 distinguishes two cases: one corresponding to (a), which implies the

di↵erentiability of the endpoint functions, and the other corresponding to (b), which

implies the existence of the lateral derivatives of the endpoint functions. Such distinction

will be useful in future results. Because of this reason, we next rewrite the previous

theorem in the following way.
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Theorem 3.0.3. Let F : T ! I an interval-valued function. Then F is gH-di↵erentiable

at x0 2 T if and only if one of following cases hold:

(i) f and f are di↵erentiable at t0 and F
0(x0) =

h
f
0(x0), f

0
(x0)

i
.

(ii) f and f are di↵erentiable at x0 and F
0(x0) =

h
f
0
(x0), f

0(x0)
i
.

(iii) f
0
�(x0), f

0
+
(x0), f

0
�(x0), f

0
+(x0) exist and satisfy f

0
�(x0) = f

0
+(x0), f

0
+
(x0) = f

0
�(x0),

and F
0(x0) =

h
f
0
�(x0), f

0
+
(x0)

i
.

(iv) f
0
�(x0), f

0
+
(x0), f

0
�(x0), f

0
+(x0) exist and satisfy f

0
�(x0) = f

0
+(x0), f

0
+
(x0) = f

0
�(x0),

and F
0(x0) =

h
f
0
+
(x0), f

0
�(x0)

i
.

Theorem 3.0.3 distinguishes four cases. We say that an interval-valued function F :

T ! I is (k)gH-di↵erentiable if case k in Theorem 3.0.3 holds for k 2 {i, ii, iii, iv}.

Example 3.0.4. In this example we show the four cases of (k)gH-di↵renetiability.

(k=i) Let F : R! I be an interval valued function, defined by

F (x) = [�2, ex].

It is clear that F
0(x) = [0, ex], consequently F is (i)gH-di↵erentiable at x 2 R.

Graphically this is show in Figure 3.2.

Figure 3.2: Interval valued function (i)gH-di↵erentiable at x 2 R

(k=ii) Let F : R! I be an interval valued function, defined by

F (x) = [�2, e�x].
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It is clear that F 0(x) = [�e�x
, 0], consequently F is (ii)gH-di↵erentiable at x 2 R.

Graphically, this is show in Figure 3.3.

Figure 3.3: Interval valued function (ii)gH-di↵erentiable at x 2 R

(k=iii) Let F : (�3, 3)! I be an interval valued function, defined by

F (x) = [�|x|+ 4, |x|� 4].

It is clear that f
0
�(0) = f

0
+(0) = �1, f

0
+
(0) = f

0
�(0) = 1, and F

0(0) = [�1, 1].

Consequently F is (iii)gH-di↵erentiable at x = 0. Graphically, this is show in

Figure 3.4.

Figure 3.4: Interval valued function (iii)gH-di↵erentiable at x = 0
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(k=iv) Let F : R! I be an interval valued function, defined by

F (x) = [�|x|, |x|].

It is clear that f
0
�(0) = f

0
+(0) = 1, f

0
+
(0) = f

0
�(0) = �1, and F

0(0) = [�1, 1].

Consequently F is (iv)gH-di↵erentiable at x = 0. Graphically, this is show in

Figure 3.5.

Figure 3.5: Interval valued function (iv)gH-di↵erentiable at x = 0

Note that if F : T ! I is gH-di↵erentiable at x0 in more than one case then F is

gH-di↵erentiable at x0 in all four cases and F
0(x0) is a trivial interval or singleton, i.e.

F
0(x0) = {a} = [a, a], for some a 2 R. To show this, we will present the following example.

Example 3.0.5. Let us consider two interval valued functions G,F : R! I, defined by

G(x) = [�x2
, x

2 + 1],

and

F (x) = [�(x� 2)2 + 2, x2 + 1].

From gH-di↵erentiable definition, we obtain that both functions are four cases gH-di↵erentiable

for some x0. i.e. :

• G is four cases gH-di↵erentiable at x0 = 0, and G
0(0) = [0, 0]. Graphically, this is

show in Figure 3.6.
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Figure 3.6: Four cases gH-di↵erentiable Interval valued function G at x = 0

• F is four cases gH-di↵erentiable at x0 = 1, and F
0(1) = [2, 2]. Graphically, this is

seen in Figure 3.7.

Figure 3.7: Four cases gH-di↵erentiable Interval valued function F at x = 1

The cases of (i)gH-di↵erentiability and (ii)gH-di↵erentiability have been studied in

various topics of interval-valued mathematical analysis. In contrast, cases of (iii)gH-

di↵erentiability and (iv)gH-di↵erentiability have not been considered in the literature

[2, 8, 35, 37].
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3.1 Algebra of gH-di↵erentiable interval-valued func-

tions

Let F,G : T ! I be two interval-valued functions with F (x) =
⇥
f(x), f(x)

⇤
and

G(x) =
⇥
g(x), g(x)

⇤
. Let ⇠, ⇣ be two real-valued functions so that ⇠ : T ! R and ⇣ :

V ! T , for some V ✓ R. The basic operations involving interval functions, addition (+),

gH-subtraction( gH), multiplication by a scalar (·), and composition by a real function

(�) are defined by:

(F +G)(x) = F (x) +G(x) =
⇥
f(x) + g(x), f(x) + g(x)

⇤
,

(F  gH G)(x) = F (x) gH G(x) =
⇥
min

�
f(x)� g(x), f(x)� g(x)

 
,

max
�
f(x)� g(x), f(x)� g(x)

 ⇤
,

(⇠ · F )(x) = ⇠(x) · F (x) =
⇥
min

�
⇠(x)f(x), ⇠(x)f(x)

 
,

max
�
⇠(x)f(x), ⇠(x)f(x)

 ⇤
,

(F � ⇣)(x) =
⇥
min

�
f(⇣(x), f(⇣(x))

 
,

max
�
f(⇣(x)), f(⇣(x))

 ⇤
.

This section presents some properties of the algebra of gH-di↵erentiable interval-valued

functions. Specifically, we study conditions for the gH-di↵erentiability of the sum and

gH-di↵erence of two gH-di↵erentiable interval-valued functions, as well as the product

and composition of a di↵erentiable real-valued function and a gH-di↵erentiable interval-

valued function.

3.1.1 Sum of gH-di↵erentiable interval-valued functions

The sum of two gH-di↵erentiable interval-valued functions may not be a gH-di↵erentiable

interval-valued function. In fact, if we consider two (k)gH-di↵erentiable interval-valued

functions, both with di↵erent k, we do not necessarily obtain a gH-di↵erentiable interval-

valued function. Example 3.1.1 below illustrates this point.

Example 3.1.1. Let F,G : T ! I be two interval-valued functions defined by F (x) =

[� |x| , |x|] and G(x) = [0, e�x]. It is easy to verify that F is (iv)gH-di↵erentiable at 0

and G is (ii)gH-di↵erentiable at 0. The sum (F +G) (x) = [� |x| , |x|+ e
�x] is not gH-

di↵erentiable at 0. In fact,
�
f + g

�0
� (0) = 1,

�
f + g

�0
+
(0) = �1,

�
f + g

�0
� (0) = �2 and

�
f + g

�0
+
(0) = 0. Therefore, from Theorem 3.0.3, F + G is not gH-di↵erentiable at 0.

Graphically the end points functions f + g and f + g of the sum F +G are given by
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Figure 3.8: Not gH-di↵erentiable Interval valued function F +G at x = 0

We next present results on the gH-di↵erentiability of F +G and give rules for calcu-

lating it as well. First we will show that if F and G are gH-di↵erentiable at x0 with equal

type of gH-di↵erentiability, then F +G is also gH-di↵erentiable at x0 with the same type

of gH-di↵erentiability as F and G. This result was derived in [2] for cases (i) and (ii).

Theorem 3.1.2. Let F,G : T ! I be two interval-valued functions. If F and G are

(k)gH-di↵erentiable at x0 then F +G is (k)gH-di↵erentiable at x0, for k 2 {i, ii, iii, iv}.

Moreover,

(F +G)0(x0) = F
0(x0) +G

0(x0). (3.1)

Proof. Let F,G be interval-valued functions such that F (x) =
⇥
f(x), f(x)

⇤
and G(x) =

⇥
g(x), g(x)

⇤
. To prove the result we will separately consider the four possible cases for k.

(k = i) If F and G are (i)gH-di↵erentiable interval-valued functions at x0 then, from

Theorem 3.0.3, the endpoint functions f + g and f + g of the sum F + G are

di↵erentiable. Now, from Theorem 3.0.2(a) we have that

(F +G)0(x0) =
h
min

n
f
0(x0) + g

0(x0), f
0
(x0) + g

0(x0)
o
,

max
n
f
0(x0) + g

0(x0), f
0
(x0) + g

0(x0)
oi

=
h
f
0(x0) + g

0(x0), f
0
(x0) + g

0(x0)
i

Therefore, F +G is (i)gH-di↵erentiable at x0. In addition,

F
0(x0) +G

0(x0) =
h
f
0(x0) + g

0(x0), f
0
(x0) + g

0(x0)
i
= (F +G)0(x0).
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(k = ii) The proof for k = ii is similar to that given for k = i.

(k = iii) If F and G are (iii)gH-di↵erentiable interval-valued functions at x0 then, from

Theorem 3.0.3 and properties of lateral derivatives, the lateral derivatives (f +

g)0�(x0), (f + g)0+(x0), (f + g)0�(x0) and (f + g)0+(x0) exist and satisfy

(f + g)0�(x0) = (f + g)0+(x0), (f + g)0+(x0) = (f + g)0�(x0).

Now, from Theorem 3.0.2(b) we have that

(F +G)0(x0) =
⇥
min

�
(f + g)0�(x0), (f + g)0+(x0)

 
,

max
�
(f + g)0�(x0), (f + g)0+(x0)

 ⇤
;

=
⇥
(f + g)0�(x0), (f + g)0+(x0)

⇤
.

Therefore, from Theorem 3.0.3(iii), F+G is (iii)gH-di↵erentiable at x0. In addition,

from properties of lateral derivatives,

F
0(x0) +G

0(x0) =
h
f
0
�(x0) + g

0
�(x0), f

0
+
(x0) + g

0
+
(x0)

i

= (F +G)0(x0).

(k = iv) The proof for k = iv is similar to that given for k = iii.

Example 3.1.1 showed that the sum of two (k)gH-di↵erentiable interval-valued func-

tions, having di↵erent values of k, may not be di↵erentiable. Nevertheless, this is not

always the case, as Example 3.1.3 below shows.

Example 3.1.3. Let F,G : T ! I be two interval-valued functions, defined by F (x) =

[�|x|� 1, |x|+1] and G(x) = [|x|� 1,�|x|+1]. F is (iv)gH-di↵erentiable at 0, and G is

(iii)gH-di↵erentiable at 0. Note that (F + G)(x) = [�2, 2], and therefore (F + G)0(0) =

{0}.

Next we study the gH-di↵erentiability of the sum of two interval-valued functions with

di↵erent types of gH-di↵erentiability.

Theorem 3.1.4. Let F,G : T ! I be two interval-valued functions.

(a) If F is (i)gH-di↵erentiable at x0 and G is (ii)gH-di↵erentiable at x0 then F + G is

either (i)gH-di↵erentiable or (ii)gH-di↵erentiable at x0.
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(b) If F is (iii)gH-di↵erentiable at x0 and G is (iv)gH-di↵erentiable at x0 then F +G is

either (iii)gH-di↵erentiable or (iv)gH-di↵erentiable at x0.

Moreover, in all cases we have

(F +G)0(x0) = F
0(x0) gH (�1)G0(x0), (3.2)

and

(F +G)0(x0) ✓ F
0(x0) +G

0(x0), (3.3)

with equality in (3.3) if and only if either F 0(x0) or G0(x0) or both of them are a singleton.

Proof. (a) Since F is (i)gH-di↵erentiable and G is (ii)gH-di↵erentiable at x0 we have

that the endpoint functions f , f , g and g are di↵erentiable functions at x0. Thus f + g

and f + g are di↵erentiable functions at x0 and so, from Theorem 3.0.2(a) and Theorem

3.0.3, F +G is either (i)gH-di↵erentiable or (ii)gH-di↵erentiable at x0 and

(F+G)0(x0) =
h
min{f 0(x0) + g

0(x0), f
0
(x0) + g

0(x0)} , max{f 0(x0) + g
0(x0), f

0
(x0) + g

0(x0)}
i
.

(3.4)

On the other hand,

F
0(x0) gH (�1)G0(x0)

=
h
f
0(x0), f

0
(x0)

i
 gH (�1)

⇥
g
0(x0), g0(x0)

⇤

=
h
f
0(x0), f

0
(x0)

i
 gH

⇥
�g0(x0),�g0(x0)

⇤

=
h
min{f 0(x0) + g

0(x0), f
0
(x0) + g

0(x0)} , max{f 0(x0) + g
0(x0), f

0
(x0) + g

0(x0)}
i
.

(3.5)

Comparing (3.5) with (3.4) we obtain (3.2). In addition,

F
0(x0) +G

0(x0) =
h
f
0(x0) + g

0(x0), g
0(x0) + f

0
(x0)

i
. (3.6)

(a1) If F+G is (i)gH-di↵erentiable then (F+G)0(x0) =
h
f
0(x0) + g

0(x0), f
0
(x0) + g

0(x0)
i
.

Comparing this result with (3.6) we have

(F +G)0(x0) ✓ F
0(x0) +G

0(x0).

(a2) If F+G is (ii)gH-di↵erentiable then (F+G)0(x0) =
h
f
0
(x0) + g

0(x0), f
0(x0) + g

0(x0)
i
.

Comparing this result with (3.6) we also have that

(F +G)0(x0) ✓ F
0(x0) +G

0(x0).
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Finally, from (3.2) it readily follows that the equality in (3.3) holds if and only if either

F
0(x0) or G0(x0) or both of them are a singleton.

(b) If the functions F and G are (iii)gH-di↵erentiable and (iv)gH-di↵erentiable at x0,

respectively, then the lateral derivatives f 0
�(x0), f

0
+
(x0), f

0
�(x0), f

0
+(x0), g0�(x0), g0+(x0), g0�(x0)

and g
0
+(x0) exist and satisfy f

0
�(x0) = f

0
+(x0), f

0
+
(x0) = f

0
�(x0), g

0
�(x0) = g

0
+(x0),

g
0
+
(x0) = g

0
�(x0). Therefore, the derivatives

�
f + g

�0
� (x0),

�
f + g

�0
+
(x0),

�
f + g

�0
� (x0),

�
f + g

�0
+
(x0) exist and satisfy

�
f + g

�0
� (x0) =

�
f + g

�0
+
(x0),

�
f + g

�0
+
(x0) =

�
f + g

�0
� (x0).

From Theorem 3.0.2, F +G is either (iii)gH-di↵erentiable or (iv)gH-di↵erentiable at x0.

From properties of lateral derivatives, similar steps to those given in the proof of (a), let

us obtain (3.2) and (3.3).

Theorem 3.1.4 states that the sum F + G of two gH-di↵erentiable functions, F

and G with di↵erent types of gH-di↵erentiability ((i) and (ii) or (iii) and (iv)) is gH-

di↵erentiable with the same type of gH-di↵erentiability as either F or G. In Example

3.1.3 we saw an instance of the sum of an (iii)gH-di↵erentiable function and an (iv)gH-

di↵erentiable function. The next example illustrates the case of the sum of an (i)gH-

di↵erentiable function and an (ii)gH-di↵erentiable function.

Example 3.1.5. Let us consider the interval-valued functions F,G : [0, 1]! I defined by

F (x) = [0, x], G(x) =
⇥
0, 1� x

2
⇤
.

Thus, F is (i)gH-di↵erentiable and G is (ii)gH-di↵erentiable at any x 2 (0, 1). So

F
0(x) = [0, 1] and G

0(x) = [�2x, 0],

and, from (3.2),

(F +G)0(x0) = F
0(x0) gH (�1)G0(x0)

= [0, 1] gH (�1)[�2x, 0]

= [0, 1] gH [0, 2x]

= [min{0, 1� 2x},max{0, 1� 2x}] .
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On the other hand,

(F +G)(x) =
⇥
0, x+ 1� x

2
⇤
,

and graphically the end point functions are given by

Figure 3.9: End point functions for the Example 3.1.5

Note that this function is (i)gH-di↵erentiable in (0, 1/2] and (ii)gH-di↵erentiable in

[1/2, 1). In any case, we always have

(F +G)0(x) ⇢ F
0(x) +G

0(x),

for all x 2 (0, 1). Since neither F
0(x) nor G

0(x) are trivial intervals, for all x 2 (0, 1),

the equality (F +G)0(x) = F
0(x) +G

0(x) is not possible.

The following result shows that with other combinations of gH-di↵erentiability for F

and G, di↵erent from those studied in Theorems 3.1.2 and 3.1.4, the sum F + G is not

di↵erentiable.

Theorem 3.1.6. Let F,G : T ! I be two interval-valued functions, so that both of them

are gH-di↵erentiable at x0 and neither F
0(x0) nor G

0(x0) are nontrivial intervals.

(a) If F is (i)gH-di↵erentiable at x0 and G is (iii)gH-di↵erentiable (or (iv)gH-di↵erentiable)

at x0, then F +G is not gH-di↵erentiable at x0.

(b) If F is (ii)gH-di↵erentiable at x0 and G is (iii)gH-di↵erentiable (or (iv)gH-di↵erentiable)

at x0, then F +G is not gH-di↵erentiable at x0.
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Proof. (a) If F is (i)gH-di↵erentiable at x0 and F
0(x0) is a nontrivial interval then there

exist f
0(x0) and f

0
(x0), with f

0(x0) < f
0
(x0). Also, if G is (iii)gH-di↵erentiable at x0

and G
0(x0) is a nontrivial interval then g

0
�(x0), g0+(x0), g0�(x0) and g

0
+(x0) exist and satisfy

g
0
�(x0) = g

0
+(x0) and g

0
+
(x0) = g

0
�(x0), with g

0
�(x0) < g

0
+
(x0). Thus, the endpoint

functions f + g and f + g of F +G are not di↵erentiable at x0 and

(f + g)0�(x0) 6= (f + g)0+(x0).

Therefore, from Theorem 3.0.2, F+G is not gH-di↵erentiable. If F is (i)gH-di↵erentiable

and G is (iv)gH-di↵erentiable at x0, the proof is similar.

(b) The proof is analogous to that of part (a).

Example 3.1.1 illustrates the previous result.

The results in this subsection corrects, complements and generalizes those obtained in

[2] and corrects Proposition 24 in [35].

3.1.2 gH-di↵erence of gH-di↵erentiable interval-valued functions

The gH-di↵erence of two gH-di↵erentiable interval-valued functions is not necessar-

ily gH-di↵erentiable, as in the case of the sum of two gH-di↵erentiable interval-valued

functions, the next example shows this.

Example 3.1.7. Let us consider the functions of Example 3.1.1. We have that F is

(iv)gH-di↵erentiable at 0 and G is (ii)gH-di↵erentiable at 0. The gH-di↵erence is defined

by

(F  gH G) (x) =
⇥
min

�
� |x| , |x|� e

�x
 
,max

�
� |x| , |x|� e

�x
 ⇤

=

8
>>>>><

>>>>>:

[�x� e
�x
, x] if x < 0,

[x� e
�x
,�x] if 0  x < W (1/2),

[�x, x� e
�x] if x � W (1/2),

where W (·) is the W Lambert function. Note that F  gH G is not gH-di↵erentiable at 0.

In fact the lateral derivatives at 0 are

⇣
F  gH G

⌘0
�
(0) = 0,

⇣
F  gH G

⌘0
+
(0) = 2,

�
F  gH G

�0
� (0) = 1,

�
F  gH G

�0
+
(0) = �1,

and so F  gH G is not (k)gH-di↵erentiable at 0 for any k 2 {i, ii, iii, iv}. We can see

this fact in Figure 3.10.
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Figure 3.10: End point functions for the Example 3.1.7

Therefore, from Theorem 3.0.3, F  gH G is not gH-di↵erentiable at 0.

Before stating our results, it is necessary to consider the following equivalences and

notation.

Remark 3.1.8. Let F,G : T ! I be two interval-valued functions. For each x 2 T , define

len(F )(x) = f(x) � f(x) and len(G)(x) = g(x) � g(x). Let F (x)  gH G(x) = H(x) =
⇥
h(x), h(x)

⇤
, then

h(x) = min
�
f(x)� g(x), f(x)� g(x)

 

=
f(x)� g(x) + f(x)� g(x)

2
�
��f(x)� g(x)� f(x) + g(x)

��

2

=
f(x) + f(x)

2
�

g(x) + g(x)

2
� |len(G)(x)� len(F )(x)|

2

and

h(x) = max
�
f(x)� g(x), f(x)� g(x)

 

=
f(x)� g(x) + f(x)� g(x)

2
+

��f(x)� g(x)� f(x) + g(x)
��

2

=
f(x) + f(x)

2
�

g(x) + g(x)

2
+

|len(G)(x)� len(F )(x)|
2

.

Thus,

if len(G)(x) > len(F )(x), then H(x) = [f(x)� g(x), f(x)� g(x)], (3.7)

if len(G)(x) < len(F )(x), then H(x) = [f(x)� g(x), f(x)� g(x)], (3.8)

if len(G)(x) = len(F )(x), then H(x) = {f(x)� g(x)} = {f(x)� g(x)}. (3.9)
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Theorem 3.1.9. Let F,G : T ! I be two interval-valued functions. If F and G are both

(k)gH-di↵erentiable at x0, for some k 2 {i, ii, iii, iv}, then F  gH G is gH-di↵erentiable

at x0. Moreover,

(F  gH G)0(x0) = F
0(x0) gH G

0(x0). (3.10)

Proof. Assume that F and G are both (i)gH-di↵erentiable at x0. We will consider two

cases: (a) len(G)(x0)� len(F )(x0) 6= 0 and (b) len(G)(x0)� len(F )(x0) = 0.

(a) If len(G)(x0) � len(F )(x0) 6= 0, then there exists an open neighborhood Vx0 of x0

such that len(G)(x) � len(F )(x) 6= 0, 8x 2 Vx0 . So, from either (3.7) or (3.8),

it follows that h and h are di↵erentiable at x0. From Theorem 3.0.2 F  gH G is

gH-di↵erentiable at x0 and

(F  gH G)0(x0) = H
0(x0) =

h
min

n
h
0(x0), h

0
(x0)

o
,max

n
h
0(x0), h

0
(x0)

oi
.

On the other hand, since F and G are (i)gH-di↵erentiable at x0, it follows that

F
0(x0) gH G

0(x0)

=
h
f
0(x0), f

0
(x0)

i
 gH

⇥
g
0(x0), g

0(x0)
⇤

=
h
min

n
f
0(x0)� g

0(x0), f
0
(x0)� g

0(x0)
o
,max

n
f
0(x0)� g

0(x0), f
0
(x0)� g

0(x0)
oi

=
h
min

n
h
0(x0), h

0
(x0)

o
,max

n
h
0(x0), h

0
(x0)

oi

= (F  gH G)0(x0).

(b) If len(G)(x0)�len(F )(x0) = 0, then there exists an open neighborhood Vx0 of x0 where

either (b1) or (b2) below holds. Next we will consider these two cases separately.

(b1) len(G)(x)� len(F )(x) = 0, 8x 2 Vx0 . From (3.9), h(x) = h(x) is di↵erentiable

at x0 and from Theorem 3.0.2 F  gH G is gH-di↵erentiable at x0. In addition

(F gHG)0(x0) = H
0(x0) = {f 0(x0)�g0(x0)} = {f 0

(x0)�g0(x0)} = F
0(x0) gHG

0(x0).

(b2) x0 is the unique root of len(G)(x) � len(F )(x) in Vx0 . The following four

subcases can be considered:

(b21) There exists " > 0 such that len(G)(x)�len(F )(x) < 0, 8x 2 (x0�", x0)

and len(G)(x)� len(F )(x) > 0, 8x 2 (x0, x0 + ").
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(b22) There exists " > 0 such that len(G)(x)�len(F )(x) > 0, 8x 2 (x0�", x0)

and len(G)(x)� len(F )(x) < 0, 8x 2 (x0, x0 + ").

(b23) len(G)(x)� len(F )(x) > 0, 8x 2 Vx0 \ x0.

(b24) len(G)(x)� len(F )(x) < 0, 8x 2 Vx0 \ x0.

Now, if (b21) holds then from properties of lateral derivatives

h
0
�(x0) = f

0
�(x0)� g

0
�(x0), h

0
+(x0) = f

0
+(x0)� g

0
+(x0),

h
0
�(x0) = f

0
�(x0)� g

0
�(x0), h

0
+(x0) = f

0
+
(x0)� g

0
+
(x0).

From the di↵erentiability of f, f , g and g at x0, we obtain that h
0
�(x0) =

h
0
+(x0), h

0
+(x0) = h

0
�(x0). Consequently, from Theorem 3.0.2, F  gH G is

gH-di↵erentiable at x0. Moreover

(F  gH G)0(x0) = H
0(x0)

=
⇥
min

�
h
0
�(x0), h

0
+(x0)

 
,max

�
h
0
�(x0), h

0
+(x0)

 ⇤

=
h
min

n
f
0(x0)� g

0(x0), f
0
(x0)� g

0(x0)
o
,

max
n
f
0(x0)� g

0(x0), f
0
(x0)� g

0(x0)
oi

= F
0(x0) gH G

0(x0).

The proof of case (b22) is analogous to that of case (b21).

If (b23) holds, from (3.7), h and h are di↵erentiable at x0 and thus, from

Theorem 3.0.3, F  gH G is gH-di↵erentiable at x0. In addition,

(F  gH G)0(x0) = H
0(x0)

=
h
min

n
h
0(x0), h

0
(x0)

o
,max

n
h
0(x0), h

0
(x0)

oi

= F
0(x0) gH G

0(x0).

The proof of case (b24) is analogous to that of case (b23).

The proofs for the other types of gH-di↵erentiability at x0 are analogous to that given

for k = i, so we omit them.

Next, we study the di↵erentiability of the gH-di↵erence of two interval-valued func-

tions with di↵erent types of gH-di↵erentiability.

Theorem 3.1.10. Let F,G : T ! I be two interval-valued functions.
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(a) If F is (i)gH-di↵erentiable at x0 and G is (ii)gH-di↵erentiable at x0, then F  gH G

is gH-di↵erentiable at x0.

(b) If F is (ii)gH-di↵erentiable at x0 and G is (i)gH-di↵erentiable at x0, then F  gH G

is gH-di↵erentiable at x0.

(c) If F is (iii)gH-di↵erentiable at x0 and G is (iv)gH-di↵erentiable at x0, then F  gH G

is gH-di↵erentiable at x0.

(d) If F is (iv)gH-di↵erentiable at x0 and G is (iii)gH-di↵erentiable at x0, then F  gHG

is gH-di↵erentiable at x0.

Moreover, in all cases we have

(F  gH G)0(x0) = F
0(x0)�G

0(x0) (3.11)

and

F
0(x0) gH G

0(x0) ✓ (F  gH G)0(x0), (3.12)

with equality in (3.12) if and only if either F 0(x0) or G0(x0) or both of them are a singleton.

Proof. The proofs of (a)–(d) follow similar steps to those given in the proofs of Theorem

3.1.9, so we omit them. We will just prove (3.11) and (3.12) in case (a) since the proofs

in the other cases are done in the same way.

If F is (i)gH-di↵erentiable at x0 and G is (ii)gH-di↵erentiable at x0, then f
0(x0) 

f
0
(x0), g

0(x0)  g
0(x0), which implies that

f
0(x0)� g

0(x0)  f
0
(x0)� g

0(x0) (3.13)

and therefore

(F  gH G)0(x0) =
h
f
0(x0)� g

0(x0), f
0
(x0)� g

0(x0)
i
. (3.14)

Clearly, (3.11) holds. From (3.13) and (3.14), it readily follows that we obtain (3.12). By

using (3.13), easy calculations show that the equality in (3.12) holds if and only if either

F
0(x0) or G0(x0) or both of them are a singleton.

Theorems 3.1.9 and 3.1.10 give conditions for the gH-di↵erentiability of the gH-

di↵erence of two interval-valued functions, but they do not indicate the type of gH-

di↵erentiability of the resulting interval-valued function. The next examples show that



3.1. Algebra of gH-differentiable interval-valued functions 43

even when the two functions are gH-di↵erentiable with the same type, the gH-di↵erence

of them may have many di↵erent types.

Example 3.1.11. Let F,G : R+ ! I be two interval-valued functions defined by

F (x) =

8
><

>:

[ex � 1, 1� sin(x)] if � 1
2  x  0,

[1� sin(x), x+ 1] if 0  x  1
2 ,

and

G(x) =

8
><

>:

[�x, x+ 1] if � 1
2  x  0,

[x, 1� x] if 0  x  1
2 .

F is (iii)gH-di↵erentiable at 0 and G is (iv)gH-di↵erentiable at 0. We have that

F  gH G(x) =

8
><

>:

[ex, 1� sin(x)] if � 1
2  x  0,

[1� sin(x), x] if 0  x  1
2 ,

which is (iv)gH-di↵erentiable at 0.

Example 3.1.12. Let F,G : R+ ! I be two interval-valued functions defined by F (x) =

[0, ex + e
�x], G(x) = [0, ex]. Note that F  gH G(x) = [0, e�x]. The functions F and G are

both (i)gH-di↵erentiable functions, but F  gH G is (ii)gH-di↵erentiable at any x 2 R+.

Example 3.1.13. Let F,G : R+ ! I be two interval-valued functions defined by F (x) =
�2, x

2

8
� 1

2

�
, G(x) = [�2, ex�2 � 1]. Note that

F  gH G(x) =


min

⇢
0,

x
2

8
� 1

2
� e

x�2 + 1

�
,max

⇢
0,

x
2

8
� 1

2
� e

x�2 + 1

��
.

The functions F and G are both (i)gH-di↵erentiable functions at x = 2, and F  gH G is

(iv)gH-di↵erentiable at x = 2.

3.1.3 Product of a di↵erentiable real-valued function and a gH-

di↵erentiable interval-valued function

This subsection studies the gH-di↵erentiability of the product of a di↵erentiable real-

valued function, g : T ! R, and a gH-di↵erentiable interval-valued function, F : T ! I.

We start by considering the case where g is a constant.
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Theorem 3.1.14. Let F : T ! I be an interval-valued function. If F is (k)gH-

di↵erentiable at x0, then ↵F is (k)gH-di↵erentiable at x0 with

(↵ · F )0(x0) = ↵ · F 0(x0),

8↵ 2 R, 8k 2 {i, ii, iii, iv}.

Proof. Assume that F is (i)gH-di↵erentiable at x0. Then, F
0(x0) =

h
f
0(x0), f

0
(x0)

i
.

Multiplying F by a scalar ↵ 2 R we have,

↵ · F (x) =

8
><

>:

⇥
↵f(x),↵f(x)

⇤
if ↵ � 0,

⇥
↵f(x),↵f(x)

⇤
if ↵ < 0.

We also have that

(↵ · F )0(x0) =

8
><

>:

h
↵f

0(x0),↵f
0
(x0)

i
if ↵ � 0,

h
↵f

0
(x0),↵f

0(x0)
i

if ↵ < 0.
(3.15)

On the other hand, if F 0 is multiplied by ↵ 2 R we get

↵ · F 0(x0) =

8
><

>:

h
↵f

0(x0),↵f
0
(x0)

i
if ↵ � 0,

h
↵f

0
(x0),↵f

0(x0)
i

if ↵ < 0.
(3.16)

From (3.15) and (3.16) we have that ↵F is (i)gH-di↵erentiable and (↵·F )0(x0) = ↵·F 0(x0).

The proofs for k 2 {ii, iii, iv} are very similar, so we omit them.

If g, f : T ! R are two real-valued functions which are di↵erentiable at x0, then it is

well-known that (gf)0 (x0) = g(x0)f 0(x0) + g
0(x0)f(x0). The following result shows that,

in some cases, a similar expression for the derivative of the product of a di↵erentiable

real-valued function and a gH-di↵erentiable interval-valued function holds true.

Theorem 3.1.15. Let F : T ! I be an interval-valued function and let g : T ! R be a

real-valued function which is di↵erentiable at x0.

(a) If F is (i)gH-di↵erentiable at x0, g(x0) � 0 and g
0(x0) � 0, then g · F is (i)gH-

di↵erentiable at x0.

(b) If F is (ii)gH-di↵erentiable at x0, g(x0) � 0 and g
0(x0) < 0, then g · F is (ii)gH-

di↵erentiable at x0.
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(c) If F is (i)gH-di↵erentiable at x0, g(x0) < 0 and g
0(x0) < 0, then g · F is (i)gH-

di↵erentiable at x0.

(d) If F is (ii)gH-di↵erentiable at x0, g(x0) < 0 and g
0(x0) � 0, then g · F is (ii)gH-

di↵erentiable at x0.

Moreover, in all cases we have that

(g · F )0 (x0) = g(x0) · F 0(x0) + g
0(x0) · F (x0). (3.17)

Proof. Let F (x) =
⇥
f(x), f(x)

⇤
, the product of F and g is given by

(g · F )(x) = g(x) · F (x) =

8
><

>:

⇥
g(x)f(x), g(x)f(x)

⇤
if g(x) � 0,

⇥
g(x)f(x), g(x)f(x)

⇤
if g(x) < 0.

If g(x0) � 0, g0(x0) � 0 and F is (i)gH-di↵erentiable, then g · F is (i)gH-di↵erentiable

and

g
0(x0) · F (x0) + g(x0) · F 0(x0) = g

0(x0)
⇥
f(x0), f(x0)

⇤
+ g(x0)

h
f
0(x0), f

0
(x0)

i

=
⇥
g
0(x0)f(x0), g

0(x0)f(x0)
⇤
+
h
g(x0)f

0(x0), g(x0)f
0
(x0)

i

=
h
g
0(x0)f(x0) + g(x0)f

0(x0), g
0(x0)f(x0) + g(x0)f

0
(x0)

i

= (g · F )0 (x0).

The other cases can be dealt with similarly, so we omit their proofs.

If F : T ! I is an interval-valued function (i)gH-di↵erentiable at x0, for k 2 {i, ii},

and g : T ! R is a real-valued function di↵erentiable at x0, then trivially the product

gF is either (i)gH-di↵erentiable or (ii)gH-di↵erentiable at x0. Nevertheless, only in the

cases considered in Theorem 3.1.15 the gH-derivative has the “nice” expression (3.17),

which “imitates” the well-known one for the derivative of the product of two real-valued

functions. Example 3.1.16 below gives an instance where expression (3.17) does not hold.

Example 3.1.16. Let F : (0.5, 1) ! I be an interval-valued function defined by F (x) =

[0, x], and let g : (0.5, 1) ! R be an real-valued function defined by g(x) = 1 � x
2. Note

that F (x) is (i)gH-di↵erentiable at every x 2 (0.5, 1), and that (g · F )(x) = [0, x� x
3] is

also (i)gH-di↵erentiable at every x 2 (0.5, 1), with

(g.F )0 (x) =

8
<

:
[0, 1� 3x2] if x 2 (0.5, 1/

p
3],

[1� 3x2
, 0] if x 2 (1/

p
3, 1).
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On the other hand, we have that

g(x) · F 0(x) + g
0(x) · F (x) = [1� 2x, 1� x

2],

and thus expression (3.17) does not hold.

Let F : T ! I be an interval-valued function and let g : T ! R be a real-valued

function which is di↵erentiable at x0. If F is (k)gH-di↵erentiable for k 2 {iii, iv}, the

product g · F is not necessarily gH-di↵erentiable. Example 3.1.17 below illustrates this

fact.

Example 3.1.17. Let F : T ! I be an interval-valued function defined by F (x) =

[� |x| , |x|+ 1] and g : T ! R a real-valued function defined by g(x) = e
x. F is (iv)gH-

di↵erentiable at 0, and g di↵erentiable at 0, the product of F and g is given by (g · F ) (x) =

[� |x| ex, (|x|+ 1)ex]. We have that

�
g · F

�0
� (0) = 0,

�
g · F

�0
� (0) = 1,

�
g · F

�0
+
(0) = �1,

�
g · F

�0
+
(0) = 2.

Therefore g · F is not gH-di↵erentiable at x = 0.

The following theorem give conditions for g · F to be gH-di↵erentiable, when F is

(k)gH-di↵erentiable for k 2 {iii, iv}.

Theorem 3.1.18. Let F : T ! I be an interval-valued function so that len(F )(x0) = 0

and let g : T ! R be a real-valued function which is di↵erentiable at x0.

(a) If F is (iii)gH-di↵erentiable at x0 and g(x0) � 0, then g · F is (iii)gH-di↵erentiable

at x0.

(b) If F is (iv)gH-di↵erentiable at x0 and g(x0) � 0, then g · F is (iv)gH-di↵erentiable

at x0.

(c) If F is (iii)gH-di↵erentiable at x0 and g(x0) < 0, then g · F is (iv)gH-di↵erentiable

at x0.

(d) If F is (iv)gH-di↵erentiable at x0 and g(x0) < 0, then g · F is (iii)gH-di↵erentiable

at x0.

Moreover, in all cases we have

(g · F )0 (x0) = g(x0) · F 0(x0) + g
0(x0) · F (x0). (3.18)
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Proof. If F is (iii)gH-di↵erentiable or (iv)gH-di↵erentiable and g is di↵erentiable at x0,

it follows that f 0
�(x0), f

0
+
(x0), f

0
�(x0) and f

0
+(x0) exist and satisfy f

0
�(x0) = f

0
+(x0) and

f
0
+
(x0) = f

0
�(x0). Multiplying these equalities by g(x0), we get that g(x0)f

0
�(x0) =

g(x0)f
0
+(x0) and g(x0)f

0
+
(x0) = g(x0)f

0
�(x0). If len(F )(x0) = 0, then f

+
(x0) = f�(x0),

and therefore
�
gf
�0
+
(x0) =

�
gf
�0
� (x0) and

�
gf
�0
� (x0) =

�
gf
�0
+
(x0). This implies that

g · F is gH-di↵erentiable at x0

(a) If F is (iii)gH-di↵erentiable at x0, g(x0) � 0 and len(F )(x0) = 0, then

g
0(x0) · F (x0) + g(x0) · F 0(x0) = g

0(x0)
h
f�(x0), f+

(x0)
i
+ g(x0)

h
f
0
�(x0), f

0
+
(x0)

i

=
h
g
0(x0)f�(x0), g

0(x0)f+
(x0)

i

+
h
g(x0)f

0
�(x0), g(x0)f

0
+
(x0)

i

=
h�
gf
�0
� (x0),

�
gf
�0
+
(x0)

i

= (g · F )0(x0).

Therefore g · F is (iii)gH-di↵erentiable at x0 and (3.18) holds.

The other cases can be dealt with similarly, so we omit their proofs.

3.1.4 Composition of a di↵erentiable real-valued function and a

gH-di↵erentiable interval-valued function

This section deals with the gH-di↵erentiability of the composition of a gH-di↵erentiable

interval-valued function, F , and another function. We begin by considering the case where

F is composed with a real-valued di↵erentiable function and derive a chain rule.

Theorem 3.1.19. Let F : T ! I be an interval-valued function gH-di↵erentiable at y0,

and U ✓ R be an open set, let g : U ! R be a real-valued function di↵erentiable at x0

so that g(U) ✓ T with y0 = g(x0). Then the composite function (F � g) = F (g(x)) is

gH-di↵erentiable at x0 and (F � g)0(x0) = F
0(y0).g0(x0).

Proof. Let us first assume that F is (k)gH-di↵erentiable at y0, for some k 2 {i, ii}. Then

f � g and f � g are di↵erentiable at x0. From Theorem 3.0.2, F � g is gH-di↵erentiable
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and

(F � g)0(x0) =
⇥
min

�
(f � g)0(x0), (f � g)0(x0)

 
,max

�
(f � g)0(x0), (f � g)0(x0)

 ⇤

=
h
min

n
f
0(g(x0)) · g0(x0), f

0
(g(x0)) · g0(x0)

o
,

max
n
f
0(g(x0)) · g0(x0), f

0
(g(x0)) · g0(x0)

oi

= g
0(x0) ·

h
min

n
f
0(y0), f

0
(y0)

o
,max

n
f
0(y0), f

0
(y0)

oi

= F
0(y0) · g(x0).

Now, let us assume that F is (k)gH-di↵erentiable at y0, for some k 2 {iii, iv}. Then the

lateral derivatives (f � g)0�(x0), (f � g)0+(x0), (f � g)0�(x0) and (f � g)0+(x0) exist. We also

have that

(f � g)0�(x0) = f
0
�(g(x0)) · g0(x0) = f

0
+(g(x0)) · g0(x0) = (f � g)0+(x0)

and

(f � g)0+(x0) = f
0
+
(g(x0)) · g0(x0) = f

0
�(g(x0)) · g0(x0) = (f � g)0�(x0)

Therefore F � g is gH-di↵erentiable. In addition,

(F � g)0(x0) =
⇥
min

�
(f � g)0�(x0), (f � g)0�(x0)

 
,max

�
(f � g)0�(x0), (f � g)0�(x0)

 ⇤

=
h
min

n
f
0
�(g(x0)) · g0(x0), f

0
�(g(x0)) · g0(x0)

o
,

max
n
f
0
�(g(x0)) · g0(x0), f

0
�(g(x0)) · g0(x0)

oi

= g
0(x0) ·

h
min

n
f
0
�(y0), f

0
�(y0)

o
,max

n
f
0
�(y0), f

0
(y0)�

oi

= F
0(y0) · g(x0).

Next we consider other types of composite functions and derive their associated chain

rule.

Definition 3.1.20. Let ' : I ! R2 be a vector-valued function of an interval variable

Y =
⇥
y, y
⇤
defined by '

�⇥
y, y
⇤�

= ('1(y, y),'2(y, y)), were '1,'2 : R2 ! R are real-

valued functions. We say that ' is di↵erentiable at Y0 2 I, if '1 and '2 are di↵erentiable

at (y0, y0) and

'
0 (Y0) =

0

BB@

@'1

@y
(y0, y0)

@'1

@y
(y0, y0)

@'2

@y
(y0, y0)

@'2

@y
(y0, y0)

1

CCA .
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We denote by Mm⇥n(R) the set of m⇥ n matrices with elements taking values in R.

Definition 3.1.21. Let C 2M2⇥2(R) have elements

C =

0

@c11 c12

c21 c22

1

A

and A = [a, a] 2 I. The ⇤-product of C and A, denoted by C ⇤ A, is the element of

M2⇥1(R) defined by

C ⇤ A =

0

@c11.a+ c12.a

c21.a+ c22.a

1

A . (3.19)

Theorem 3.1.22. Let V ✓ I be an open set. Suppose that F : T ! I is (k)gHdi↵erentiable

at x0 for some k 2 {i, ii}, ' = ('1,'2) : V ! R2 is di↵erentiable at Y0 = [y0, y0] := F (x0)

and F (T ) ⇢ V . Then ' � F : T ! R2 is di↵erentiable at x0, with

(' � F )0(x0) =
⇥
(�1)m+1

'
0(Y0)

⇤
⇤
⇥
(�1)m+1 · F 0(x0)

⇤
,

where m = 1 if k = i and m = 2 if k = ii.

Proof. By hypotheses, if F :=
⇥
f, f

⇤
is (k)gH-di↵erentiable for k 2 {i, ii} at x0, then f, f

are di↵erentiable at x0. Since '1,'2 are also di↵erentiable at (y0, y0), from the classic

chain rule we get that

('1(f, f),'2(f, f)) (3.20)

is di↵erentiable at x0 and

('1(f, f),'2(f, f))
0(x0) = ('1,'2)

0(y0, y0).(f, f)
0(x0)

=

0

BB@

@'1

@y
(y0, y0)

@'1

@y
(y0, y0)

@'2

@y
(y0, y0)

@'2

@y
(y0, y0)

1

CCA .

0

B@

@y

@x
(x0)

@y

@x
(x0)

1

CA

=

0

BB@

@'1

@y
(y0, y0).

@y

@x
(x0) +

@'1

@y
(y0, y0).

@y

@x
(x0)

@'2

@y
(y0, y0).

@y

@x
(x0) +

@'2

@y
(y0, y0).

@y

@x
(x0)

1

CCA

=

0

BB@

@'1

@y
(y0, y0).f

0(x0) +
@'1

@y
(y0, y0).f

0
(x0)

@'2

@y
(y0, y0).f

0(x0) +
@'2

@y
(y0, y0).f

0
(x0)

1

CCA (3.21)
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From (3.20), ' � F is di↵erentiable, because

(' � F )(x0) = ('1(f(x0), f(x0)),'2(f(x0), f(x0))).

Next we consider separately the cases k = i and k = ii.

(k = i) The (i)gH-di↵erentiability of F implies that F
0(x0) =

h
f
0(x0), f

0
(x0)

i
. By the ⇤-

product definition we have that

'
0(Y0) ⇤ F 0(x0) =

0

BB@

@'1

@y
(y0, y0)

@'1

@y
(y0, y0)

@'2

@y
(y0, y0)

@'2

@y
(y0, y0)

1

CCA ⇤
h
f
0(x0), f

0
(x0)

i

=

0

BB@

@'1

@y
(y0, y0).f

0(x0) +
@'1

@y
(y0, y0).f

0
(x0)

@'2

@y
(y0, y0).f

0(x0) +
@'2

@y
(y0, y0).f

0
(x0)

1

CCA (3.22)

From (3.21) and (3.22) we obtain (' � F )0(x0) = ['0(Y0)] ⇤ [F 0(x0)].

(k = ii) The (ii)gH-di↵erentiability of F implies that F
0(x0) =

h
f
0
(x0), f

0(x0)
i
. By the

⇤-product definition we have that

'
0(Y0) ⇤ F 0(x0) =

0

BB@

�@'1

@y
(y0, y0) �@'1

@y
(y0, y0)

�@'2

@y
(y0, y0) �@'2

@y
(y0, y0)

1

CCA ⇤
h
�f 0(x0),�f

0
(x0)

i

=

0

BB@

@'1

@y
(y0, y0).f

0(x0) +
@'1

@y
(y0, y0).f

0
(x0)

@'2

@y
(y0, y0).f

0(x0) +
@'2

@y
(y0, y0).f

0
(x0)

1

CCA . (3.23)

From, (3.21) and (3.23) we obtain (' � F )0(x0) = [(�1)'0(Y0)] ⇤ (�1) · [F 0(x0)].

Therefore (' � F )0(x0) = [(�1)m+1
'
0(Y0)] ⇤ [(�1)m+1 · F 0(x0)] .

3.2 Conclusion

This chapter dealt with di↵erentiability properties over the algebra of gH-di↵erentiable

interval-valued functions. Specifically, we gave conditions for the gH-di↵erentiability of

the sum and gH-di↵erence of two gH-di↵erentiable interval-valued functions; also for

the product and composition of a di↵erentiable real function and a gH-di↵erentiable

interval-valued function. Surprisingly, some expected facts, such us that the sum of two
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gH-di↵erentiable interval-valued functions is a gH-di↵erentiable interval-valued function,

among others, do not necessarily hold. Some examples and counterexamples illustrated

the obtained results.
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Chapter 4

Necessary and su�cient conditions

for interval optimization problems

involving constrained interval

arithmetic

This chapter studies optimization conditions for interval optimization problems, for

this, we use the constrained interval arithmetic and we began defining some interval

partial order in the sense of minimization or maximization problem. Several partial order

relations on I have been introduced in the literature. For instance, the usual order relation

is �LU defined by (see [21, 22, 30, 39, 40]).

A �LU B i↵ a  b and a  b.

Now considering the constrained parametric representation of an interval we consider the

following order relations on I.

Definition 4.0.1. For A, B 2 I recall that a(�), b(�) denote the constrained interval

representation of the interval A and B respectively. We write

(i) A
�
= B i↵ a(�)  b(�), 8� 2 [0, 1];

(ii) A � B i↵ A
�
= B and A 6= B; equivalently

A � B i↵ a(�)  b(�) 8� 2 [0, 1], and there exists �0 2 [0, 1] such that a(�0) <

b(�0);
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(iii) A � B i↵ a(�) < b(�), 8� 2 [0, 1].

The idea of the previous definition of order is to compare parameter value by parameter

value (level by level). That is, if we consider two intervals A and B, we take the same

level � 2 [0, 1] in each interval, i.e. we take a(�) and b(�) and compare on the level a(�)

and b(�) in R.

4.1 Interval valued function and di↵erentiability

This section considers interval-valued functions F : R ! I, which are generated from

a real-valued function considering the parameters as intervals. For this, we denote by Ik

the product space, i.e.

Ik = I⇥ I⇥ ...⇥ I| {z }
k times

.

We also denote by Ck a k-tuple of k intervals. That is Ck 2 Ik, where

Ck = (C1, ..., Ck), Cj = [cj, cj], j = 1, ..., k.

Since each interval Cj has a constrained parametric representation cj(�j) we can write

the constrained parametric representation of Ck by

Ck =
n
c(�) : c(�) = (c1(�1), ..., ck(�k)) , cj(�j) = (cj � cj)�j + cj,

� = (�1, ...,�k), 0  �j  1, j = 1, ..., k} .

Let us consider the function f : R ⇥ Rk ! R. For each c = (c1, ..., ck) 2 Rk, which

are parameters involved with function f , we can write fc : R ! R. For instance, fc

can represent the objective function of an optimization problem which has k-parameters

(k-coe�cient) c1, ..., ck, with cj 2 R. How can we translate (extend) the function fc to

interval context if the parameters c are intervals Ck? We use (SIA) to obtain an interval-

valued function FCk : R! I from fc according Moore [30]. Here we are going to consider

constrained interval arithmetic to obtain FCk from fc.

Definition 4.1.1. ([9]) Let f : R ⇥ Rk ! R be a function and let c = (c1, ..., ck) 2 Rk

be parameters involved with f . For each vector of intervals Ck, we define a constrained

parametric representation of FCk(x) by

FCk(x) =
�
fc(�)(x) : fc(�) : R! R, c(�) 2 Ck

 
. (4.1)
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Proposition 4.1.2. Let f : R⇥Rk ! R be a continuous function in the second argument

c 2 Rk. Then the interval-valued functions FCk : R ! I given by expression (4.1) is well

defined and

FCk(x) =


min

�2[0,1]k
fc(�)(x), max

�2[0,1]k
fc(�)(x)

�
, (4.2)

for all x 2 R.

Proof. Since f is a continuous function in the second argument and c(�) = (c1(�1), ..., ck(�k)),

with � = (�1, ...,�k) 2 [0, 1]k, then for each x fixed fc(�)(x) is continuous in �. So we have

that minc(�)2Ck fc(�)(x) and maxc(�)2Ck fc(�)(x) exist and

min
�2[0,1]k

fc(�)(x) = min
c(�)2Ck

fc(�)(x) and max
�2[0,1]k

fc(�)(x) = max
c(�)2Ck

fc(�)(x).

Thus we obtain (4.2).

Note that if f is continuous in the second argument then the interval-valued function

FCk is well defined and the interval FCk(x) is well defined (characterized) via its constrained

parametric representation (4.1).

Example 4.1.3. Consider the interval-valued function FC1 : R! I defined by

FC1(x) = [1, 3]x2 � 2x.

Clearly FC1 is obtained from fc(x) = cx
2 � 2x by applying (4.1). In fact, in this case

C1 = [1, 3], c(�) = 2� + 1 and the constrained parametric representation of FC1(x) is

given by

FC1(x) =
�
fc(�)(x) : � 2 [0, 1]

 
=
�
(2�+ 1)x2 � 2x : � 2 [0, 1]

 
.

Since fc(�)(x) is linear in �, from (4.2), we have

FC1(x) = [x2 � 2x, 3x2 � 2x] = [1, 3]x2 � 2x.

Example 4.1.4. Consider the interval-valued function FC2 : R! I defined by

FC2(x) = [1, 2]x2 � [3, 5]x.

In this case, the constrained parametric representation of FC2(x) is given by

FC2(x) =
�
fc(�)(x) : � = (�1,�2) 2 [0, 1]2

 

=
�
(�1 + 1)x2 � (2�2 + 3)x : �1,�2 2 [0, 1]

 
.
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Next we will give a concept of derivative for an interval-valued function. This concept is

based on the di↵erentiability of each element of the constrained parametric representation.

Definition 4.1.5. Let X ⇢ R be an open set and let FCk : X ! I be an interval-valued

function. Suppose that fc(�) is di↵erentiable at x0 for each � 2 [0, 1]k. Then we define the

derivative of FCk at x0, denoted by F
0

Ck(x0), by the constrained parametric representation

F
0

Ck(x0) =
n
f

0

c(�)(x0) : c(�) 2 Ck
, � 2 [0, 1]k

o
.

We say that FCk is di↵erentiable at x0 2 X i↵ F
0

Ck(x0) 2 I.

Proposition 4.1.6. Let X ⇢ R be an open set and let FCk : X ! I be an interval-valued

function. Suppose that fc(�) is di↵erentiable at x0 for each � 2 [0, 1]k and f
0
c(�)(x0) is

continuous at �. Then FCk is di↵erentiable and

F
0

Ck(x0) =


min

�2[0,1]k
f
0
c(�)(x0) , max

�2[0,1]k
f
0
c(�)(x0)

�
. (4.3)

Proof. Since f 0
c(�)(x0) is continuous as a function of � then we have that min�2[0,1]k f

0
c(�)(x0)

and max�2[0,1]k f
0
c(�)(x0) exist and (4.3) holds.

4.2 Interval optimization problems

This section considers the following (scalar) interval optimization problem

(IO) min FCk(x)

subject to x 2 X ✓ R,

where FCk : X ! I is an interval-valued function with its constrained parametric repre-

sentation given by (4.2) and X is an open subset of R.

A way to interpret a solution for problem (IO) is to use the partial order relations

given in Definition 4.0.1 and the constrained parametric representation of an interval-

valued function (4.1) following a similar solution concept to the Pareto optimal solution.

For this we denote by N�(x⇤) the �-neighborhood of x⇤.

Definition 4.2.1. Let x⇤ 2 X.

(i) x
⇤ is said to be a (local) strict minimum for FCk i↵ there does not exist another x 2 X,

x 6= x
⇤, (x 2 X \N�(x⇤)) such that FCk(x)

�
= FCk(x⇤).
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(ii) x
⇤ is said to be a (local) minimum for FCk i↵ there does not exist another x 2 X,

x 6= x
⇤, (x 2 X \N�(x⇤)) such that FCk(x) � FCk(x⇤).

(iii) x
⇤ is said to be a (local) weak minimum for FCk i↵ there does not exist another

x 2 X, x 6= x
⇤, (x 2 X \N�(x⇤)) such that FCk(x) � FCk(x⇤).

Lemma 4.2.2. If x⇤ 2 X is a strict minimum, then x
⇤ is a minimum, and consequently

x
⇤ is a weak minimum.

Proof. The proof follows immediately from Definition 4.2.1 .

Note that the previous minimum definition for interval-valued function are a gener-

alization of minimum concepts for a real function. In fact, if FC0(x) = {f(x)}, where

f : X ! R is a function, we have that:

• x
⇤ is a (local) strict minimum for FC0 i↵ x

⇤ is a (local) strict minimum for f ; and

• x
⇤ is a (local) (weak) minimum for FC0 i↵ x

⇤ is a (local)(weak) minimum for f .

Example 4.2.3. Let FC1 : R! I be defined, as in the Example 4.1.3, by

FC1(x) = [1, 3]x2 � 2x.

In this case, the constrained parametric representation of FC1 is

FC1(x) = {fc(�)(x) = (2�+ 1)x2 � 2x : � 2 [0, 1]}.

Then x
⇤ = 1 is a strict minimum for FC1. In fact, if there exists another x 2 R, x 6= 1,

such that FC1(x)
�
= FC1(1) then

fc(�)(x)  fc(�)(1), 8� 2 [0, 1];

equivalently, for all � 2 [0, 1],

(2�+ 1)x2 � 2x  (2�+ 1)� 2, (2�+ 1)(x� 1)(x+ 1)  2(x� 1).

If x > 1 we have, for all � 2 [0, 1],

(2�+ 1)(x+ 1)  2, x  2

2�+ 1
� 1  1,
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which is absurd. In the same way, if x < 1 we have, for all � 2 [0, 1],

(2�+ 1)(x+ 1) � 2, x � 2

2�+ 1
� 1,

so x � 1 which is absurd.

Example 4.2.4. Let FC1 : R! I be defined by

FC1(x) = [1, 2] · g(x),

where g : R! R is a function defined by

g(x) =

8
>>><

>>>:

x
2 if x  0;

0 if 0  x  1;

(x� 1)2 if x � 1.

Here we have that x⇤ = 0 is a weak minimum for FC1 but it is not a strict minimum for

FC1. In fact, if x⇤ = 0 is not a weak minimum there exists another x 2 R, x 6= x
⇤, such

that

fc(�)(x) < 0, 8� 2 [0, 1],

i.e. (� + 1)g(x) < 0, 8� 2 [0, 1] which is absurd since g(x) � 0 for all x 2 R. Thus

x
⇤ = 0 is a weak minimum for FC1. On the other hand, there exists x = 1 such that

FC1(1) = FC1(0) and so x
⇤ = 0 is not a strict minimum for FC1.

4.3 Necessary conditions for interval optimization prob-

lems

The stationary point notion plays an important role in classical optimization from

both, theoretical and practical point of view. In particular, stationary point is a concept

which is used to obtain a necessary condition in optimization. So, in this section we

propose a concept of stationary points to di↵erentiable interval-valued functions and then

give a necessary condition to (IO) based on this concept.

Definition 4.3.1. Let FCk : X ! I be a di↵erentiable interval-valued function. Then

x
⇤ 2 X is a stationary point for FCk i↵ 0 2 F

0
Ck(x⇤).
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We denote by SP (FCk) the set of all stationary points of FCk . Note that if FCk is

di↵erentiable then the constrained parametric representation

F
0

Ck(x) =
n
f

0

c(�)(x) : � 2 [0, 1]k, c(�) 2 Ck

o
. (4.4)

is well defined (see Proposition 4.1.6). So we have the following characterization of sta-

tionary points.

Proposition 4.3.2. Let FCk : X ! I be an di↵erentiable interval-valued function. Then

x
⇤ 2 X is a stationary point for FCk i↵ there exists �0 2 [0, 1] such that

f
0

c(�0)(x
⇤) = 0.

Proof. It is a consequence of the constrained parametric representation of F
0

Ck(x) (4.4)

and Definition 4.3.1.

Proposition 4.3.2 is a characterization of stationary point and it is a very useful tool

to obtain these points. The following examples show this fact.

Example 4.3.3. Let FCk be an interval-valued function defined as in the Example 4.1.3.

Then the constrained parametric representation is given by

FC1(x) = {fc(�)(x) = (2�+ 1)x2 � 2x : � 2 [0, 1]}.

Since fc(�)(x) = (2�+1)x2� 2x is di↵erentiable at x 2 R and f
0
c(�)(x) = 2(2�+1)x� 2 is

continuous at � then FC1 is di↵erentiable. Taking into account Proposition 4.3.2 we find

the stationary points of FC1. In fact, the stationary points are such that

f
0

c(�)(x) = 0, 2(2�+ 1)x� 2 = 0, x =
1

2�+ 1
,

with � 2 [0, 1]. Therefore,

SP (FC1) =


1

3
, 1

�
.

Next we present a necessary condition for the interval optimization problem (IO).

Theorem 4.3.4. Let FCk : X ! I be a di↵erentiable interval-valued function. If x⇤ 2 X

is a local weak minimum for FCk then x
⇤ is a stationary point for FCk .
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Proof. Suppose that x
⇤ is not a stationary point for FCk , i.e 0 62 F

0
Ck(x⇤). Then either

F
0
Ck(x⇤) ⇢ R+ or F 0

Ck(x⇤) 2 R�, where R+ = {x 2 R : x > 0} and R� = {x 2 R : x <

0}. If F 0
Ck(x⇤) ⇢ R+ we have

f
0
c(�)(x

⇤) > 0, 8� 2 [0, 1]k.

So, for each � 2 [0, 1]k, we have that fc(�) is an increasing function in a neighborhood

N��
(x⇤). Considering ✏ small enough such that ✏ < � = min{�� : � 2 [0, 1]k}, we

get fc(�)(x⇤ � ✏) < fc(�)(x⇤) for all � 2 [0, 1]k. Thus FCk(x⇤ � ✏) � FCk(x⇤), which is a

contradiction to the hypotheses.

Similarly, if F 0
Ck(x⇤) ⇢ R� we have FCk(x⇤+✏) � FCk(x⇤), which is also a contradiction

with the hypotheses.

Note that the converse of Theorem 4.3.4 is not true, that is, a stationary point for FCk

is not necessarily a local weak minimum for FCk . In fact, if we consider FC1(x) = [1, 2]x3

we have that x⇤ = 0 is a stationary point for FC1 but it is not a local weak minimum for

FC1 .

4.4 Su�cient conditions to interval optimization prob-

lem

This Section presents su�cient conditions to problem (IO) using conditions of convex-

ity. For that, we give the following definition.

Definition 4.4.1. Let FCk : X ! I be a di↵erentiable interval-valued function. We say

that FCk is invex i↵ there exists a function ⌘ : X ⇥X ! X such that

FCk(x)� FCk(y)
�
= F

0
Ck(y) · ⌘(x, y),

for all x, y 2 X.

Note that, from previous definition and from constrained parametric representation

of FCk(x) we have the following equivalence: FCk is invex i↵ there exists a function ⌘ :

X ⇥X ! X such that

fc(�)(x)� fc(�)(y) � f
0
c(�)(y) · ⌘(x, y),

for all x, y 2 X and for all � 2 [0, 1]k. So we have the following result.
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Proposition 4.4.2. Let FCk : X ! I be a di↵erentiable interval-valued function. Then

FCk is invex with respect to ⌘ i↵ fc(�) is invex with respect to same ⌘ for all � 2 [0, 1]k.

Proof. The proof is immediate.

Theorem 4.4.3. Let FCk : X ! I be a di↵erentiable interval-valued function. If FCk is

invex then each stationary point is a local weak minimum for FCk .

Proof. We suppose that x⇤ is a stationary point for FCk and it is not a local weak minimum

for FCk . Then from Proposition 4.3.2 there exists �0 2 [0, 1]k such that

f
0
c(�0)(x

⇤) = 0

and there is another x 2 X \N�(x⇤) such that FCk(x) � FCk(x⇤), i.e.

fc(�)(x) < fc(�)(x
⇤), for all � 2 [0, 1]k.

Since FCk is invex, from Proposition 4.4.2, there exists a function ⌘ : X ⇥ X ! X such

that

fc(�0)(x)� fc(�0)(x
⇤) � f

0
c(�0)(x

⇤) · ⌘(x, y) = 0

for all x 2 X. Therefore

fc(�0)(x) � fc(�0)(x
⇤),

which is a contradiction.

A concept of convexity for interval-valued functions was introduced in [9].

Definition 4.4.4. ([9]) Let FCk : X ! I be an di↵erentiable interval-valued function. We

say that FCk is convex i↵

FCk(�x+ (1� �)y)
�
= �FCk(x) + (1� �)FCk(y),

for all x, y 2 X and � 2 [0, 1].

Remark 4.4.5. From previous definition of convexity and from constrained parametric

representation of FCk we have that FCk is convex i↵ fc(�) is convex for all � 2 [0, 1].

Thus, from Proposition 4.4.2, all convex interval-valued functions are invex interval-valued

functions.

Therefore convexity for interval-valued functions is also a su�cient condition to assure

that each stationary point is a local weak minimum.
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Example 4.4.6. Let FC1 be an interval-valued function defined as in the Example 4.1.3.

Then the constrained parametric representation is given by

FC1(x) = {fc(�)(x) = (2�+ 1)x2 � 2x : � 2 [0, 1]}.

From Example 4.3.3 we have that FC1 is di↵erentiable and

SP (FC1) =


1

3
, 1

�
.

Since fc(�)(x) = (2�+1)x2�2x is a convex function for each � 2 [0, 1] then FC1 is convex.

So from Theorem 4.4.3 we have that
⇥
1
3 , 1
⇤
is the set of all weak minimum for FC1.

Example 4.4.7. We consider the interval-valued function FC2 : R ! I defined as in the

Example 4.1.4, that is

FC2(x) = [1, 2]x2 � [3, 5]x.

In this case, the constrained parametric representation of FC2(x) is given by

FC2(x) =
�
(�1 + 1)x2 � (2�2 + 3)x : �1,�2 2 [0, 1]

 
,

which is di↵erentiable. So, taking into account Proposition 4.3.2, we obtain the stationary

points for FC2 by solving

x =
2�2 + 3

2(�1 + 1)
,

with �1,�2 2 [0, 1]. Thus

SP (FC2) =


3

4
,
5

2

�
.

Since FC2 is convex, from Theorem 4.4.3, we have that
⇥
3
4 ,

5
2

⇤
is the set of all weak mini-

mum for FC2.

Next we show that invextity is both a necessary and a su�cient condition for every

stationary point being an optimal solution.

Theorem 4.4.8. Let FCk : X ! I be an di↵erentiable interval-valued function. Then FCk

is invex i↵ each stationary point is a local weak minimum for FCk .

Proof. Because of Theorem 4.4.3, it su�ces to prove the converse. Let x, y 2 X. If

0 2 F
0
Ck(y) we take ⌘(x, y) = 0. Now if 0 62 F

0
Ck(y) then F

0
Ck(y) ⇢ R+ or F 0

Ck(y) ⇢ R�. If

F
0
Ck(y) ⇢ R+ then we take

⌘(x, y) = min
�2[0,1]k

fc(�)(x)� fc(�)(y)

f
0
c(�)(y)

,
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and so we have
fc(�)(x)� fc(�)(y)

f
0
c(�)(y)

� ⌘(x, y).

Therefore

fc(�)(x)� fc(�)(y) � ⌘(x, y)f 0
c(�)(y),

for all � 2 [0, 1]k. Now, if F 0
Ck(y) ⇢ R� then we take

⌘(x, y) = max
�2[0,1]k

fc(�)(x)� fc(�)(y)

f
0
c(�)(y)

,

and so we have
fc(�)(x)� fc(�)(y)

f
0
c(�)(y)

 ⌘(x, y).

Therefore

fc(�)(x)� fc(�)(y) � ⌘(x, y)f 0
c(�)(y),

for all � 2 [0, 1]k. This completes the proof.

4.5 Interval optimization problems with inequality

constraints

This section considers the following (scalar) interval optimization problem with interval

inequality constraints

(CIO) min FCk(x)

subject to G
i,Cli (x)

�
= 0, i = 1, 2, ...,m

x 2 X

where FCk , G
i,Cli : X ! I are interval-valued functions, every G

i,Cli is a constraint of the

problem (CIO) and X is a non null open subset of R.

We will consider below, the conditions that must be satisfied so that a certain feasible

point of the problem (CIO) be optimal. Such conditions, commonly known as first order

conditions, involve the first order interval derivative. We also present constraint interval

versions of well known optimization results.

We denote by

M = {x 2 X : G
i,Cli (x)

�
= 0, i = 1, 2, ...,m}

the feasible solution set of problem (CIO).
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We define I = {1, 2, ..,m} for simplicity, and for every feasible point x 2 M , the set

of index of the active constraints:

I(x) =
�
i 2 I : 0 2 G

i,Cli (x)
 
.

As in the last sections, we use the constrained parametric representation given by (4.2)

for all interval expressions.

Remark 4.5.1. We associate to the (CIO) problem its equivalent constrained parametric

representation given by

(CCIO) min fc(�k)(x)

subject to g
i,c(�li )(x)  0, i = 1, 2, ...,m

x 2 X,

where �
k 2 [0, 1]k is a vector with k components where each component is related to its

respective component of the interval vector Ck, �
li 2 [0, 1]l, li. This means that there

are l new parameters in the constraint i, where fc(�k), gi,c(�li ) : R ! R are di↵erentiable

functions.

It is clear from the Remark 2.3.2 that the coordinates of the parameters c(�k) and

c(�li), i = 1, 2, ...,m will be interdependent, as in the next example.

Example 4.5.2. Consider the problem

(CIO1) min [0, 3]x2 + [�1, 2]x+ [1, 4]

subject to [0, 3]x+ [�2, 0] �
= 0

[�1, 2]x �
= 0.

Here

• FC3(x) = [0, 3]x2 + [�1, 2]x+ [1, 4];

• G1,C11 (x) = [0, 3]x+ [�2, 0];

• G2,C02 (x) = [�1, 2]x.

The interval [0, 3] of the cost function and first constraint are interdependent, as well

interval [�1, 2] in the cost function and constraint 2. It follows from (4.1) and Remark

(2.3.2), that:
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• fc(�3)(x) = (0 + 3�1)x2 + (�1 + 3�2)x+ (1 + 3�3);

• g1,c(�11 )(x) = (0 + 3�1)x+ (�2 + 2�4);

• g2,c(�02 )(x) = (�1 + 3�2)x.

with (�1,�2,�3,�4) 2 [0, 1]4, consequently the constrained equivalent associated problem is

(CCIO1) min (0 + 3�1)x2 + (�1 + 3�2)x+ (1 + 3�3)

subject to (0 + 3�1)x+ (�2 + 2�4)  0,

(�1 + 3�2)x  0,

with (�1,�2,�3,�4) 2 [0, 1]4.

4.6 Necessary conditions of interval optimality

This section, presents first order interval conditions so that a feasible point of (CIO)

problem is optimal. For this, we will use the (CCIO) equivalent problem. Next, we

present a geometrical characterization of local optimality for our problem (CIO).

Proposition 4.6.1. Let FCk , G
i,Cli : X ! I, i 2 I be a di↵erentiable interval-valued

functions of the (CIO) problem where FCk is the objective function and G
i,Cli are the

constraints. If x⇤ 2M is a local weak minimum of FCk over M , then the system

F
0
Ck(x⇤) · d � 0

G
0
i,Cli (x

⇤) · d � 0, i 2 I(x⇤) (4.5)

has no solution d 2 R.

Proof. Let x⇤ 2M a local weak minimum of (CIO). Suppose by contradiction that over

M , exist a direction d 2 R that resolves the system (4.5). This implies that it also solves

the equivalent constrained parametric representation system below

f
0
c(�k)(x

⇤) · d < 0, �
k 2 [0, 1]k

g
0
i,c(�li )(x

⇤) · d < 0, i 2 I(x⇤) �li 2 [0, 1]li . (4.6)

Consequently, exist x 2M , such that,

fc(�k)(x) < fc(�k)(x
⇤), 8�k 2 [0, 1]k.
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Minimizing and maximizing fc(�k)(x) and fc(�k)(x
⇤) in �

k,

FCk(x) < FCk(x⇤)

therefore x 2M contradicts the minimality of x⇤.

Another important result in optimization is the Fritz John theorem that has an interval

version that we present next.

Theorem 4.6.2. Let x⇤ 2M be a local weak minimum of (CIO) and FCk , G
i,Cli : X ! I

di↵erentiable interval-valued functions with their constraint parametric representations

continuous in �
k and �

li , i 2 I, respectively. Then, there exist scalars �0, �i 2 R, i 2 I,

not all simultaneously zero, such that:

0 2 �0 · F 0
Ck(x⇤) +

X

i2I

�i ·G0
i,Cli (x

⇤); (4.7)

�0, �i � 0, i 2 I; (4.8)

0 2 �i ·Gi,Cli (x
⇤), i 2 I. (4.9)

Proof. Let x⇤ 2M , a weak local minimum of (CIO) problem. Considering Remark 4.5.1,

x
⇤ is also solution of (CCIO) for every (�k

,�
l1 ,�

l2 , ...,�
lm) 2 [0, 1]k+l1+l2+...+lm . From the

di↵erentiability of fc(�k) and g
c(�li ), i 2 I, we have that there exist �0, �i, i 2 I not all

zeros, such that

�0 · f 0
c(�k)(x

⇤) +
X

i2I

�i · g0i,c(�li )(x
⇤) = 0

�0, �i � 0, i 2 I

�i · gi,c(�li )(x
⇤) = 0, i 2 I.

From continuity of f 0
c(�k)(x

⇤) at �
k, and the continuity of g0

i,c(�li )
(x⇤) at �

li , 8i 2 I we

obtain,

0 2 �0 · [ min
�k2[0,1]k

f
0
c(�k)(x

⇤), max
�k2[0,1]k

f
0
c(�k)(x

⇤)]

+
X

i2I

�i · [ min
�k2[0,1]k

g
0
i,c(�li )(x

⇤), max
�k2[0,1]k

g
0
i,c(�li )(x

⇤)];
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�0, �i � 0, i 2 I;

0 2 �i · [ min
�k2[0,1]k

g
i,c(�li )(x

⇤), max
�k2[0,1]k

g
i,c(�li )(x

⇤)], i 2 I.

The result of the Theorem follows immediately.

The Karush-Kuhn-Tucker conditions, which provides nonzero multiplier associated

with the cost function, are obtained by imposing some constraints qualification. Next we

present these types of results in an interval version involving constraint interval arithmetic.

We say that the set {Vi}i2I of interval elements is independent if for every � 2 [0, 1]

the set of vectors {vi(�)}i2I is linearly independent.

Definition 4.6.3. We say that the (CIO) problem satisfies the constraint qualification if

the set
n
G

0
i,Cli

(x⇤)
o

i2I(x⇤)
is independent.

Theorem 4.6.4. Let x
⇤ 2 M be a weak minimum for (CIO), FCk , G

i,Cli : X ! I be

di↵erentiable interval-valued functions with their constraint parametric representations

continuous in �
k and �

li , i 2 I, respectively, and suppose that (CIO) problem satisfies

the constraint qualification in x
⇤. Then there exist µi 2 R, i 2 I, such that

0 2 F
0
Ck(x⇤) +

X

i2I

µi ·G0
i,Cli (x

⇤); (4.10)

µi � 0, i 2 I; (4.11)

0 2 µi ·Gi,Cli (x
⇤), i 2 I. (4.12)

Proof. From the last theorem, there exist multipliers �0, �i, (i 2 I) satisfying the equations

(4.7), (4.8) and (4.9). If �0 = 0, by equation (4.7) we obtain
P

i2I �i · g0i,c(�li )
(x⇤) = 0 with

�i � 0 and not all zero, which contradicts the constraint qualification. Now just define

µi =
�i

�0
, i 2 I,

and analogously to the last proof we obtain the desired result.

A feasible point x⇤ 2 M for (CIO) problem is called a Karush-Kuhn-Tucker point if

there exists µi 2 R, i 2 I verifying the equations (4.10), (4.11) and (4.12).
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4.7 Interval KKT - invexity and su�cient condition.

This section presents results for the class of interval KKT-invex problems. As for the

standard class of optimization problems, we show that the class of interval KKT-invex

problems is the largest class of interval valued problems, for which, Karush-Kuhn-Tucker

conditions are necessary and su�cient for weak global optimality. The next proposition

guarantees the su�ciency of Karush-Kuhn-Tucker conditions for a global weak optimality.

Proposition 4.7.1. If x⇤ 2M is a Karush-Kuhn-Tucker point of (CIO) problem, and the

interval valued functions FCk , G
i,Cli : X ! I, i 2 I are invex for the same ⌘ : X⇥X ! X.

Then x
⇤ is a global weak minimum of (CIO) problem.

Proof. Let the (CCIO) equivalent problem. Let x⇤ 2M be a Karush-Kuhn-Tucker point

of (CIO) problem. Then exist µi 2 R, i 2 I, such that,

f
0
c(�k)(x

⇤) +
X

i2I

µig
0
i,c(�li )(x

⇤) = 0;

µi � 0, i 2 I;

µigi,c(�li )(x
0) = 0, i 2 I.

Suppose that the (CCIO) problem is invex, then exist ⌘ : X ⇥X ! X such that,

fc(�k)(x)� fc(�k)(x
⇤) � f

0
c(�k)(x

⇤)⌘(x, x⇤)

g
i,c(�li )(x)� g

i,c(�li )(x
⇤) � g

0
i,c(�li )(x

⇤)⌘(x, x⇤).

Therefore,

fc(�k)(x)� fc(�k)(x
⇤) �

"
f
0
c(�k)(x

⇤) +
X

i2I

µig
0
i,c(�li )(x

⇤)

#
⌘(x, x⇤)

+
X

i2I

µigi,c(�li )(x
⇤)�

X

i2I

µigi,c(�li )(x)

=�
X

i2I

µigi,c(�li )(x) � 0.

Thus

fc(�k)(x) � fc(�k)(x
⇤), �k 2 [0, 1]k,

FCk(x⇤) � FCk(x) for all x 2 X, and consequently x
⇤ is a global weak minimum of (CIO)

problem.



4.7. Interval KKT - invexity and sufficient condition. 68

The following definition leads us to a weaker concept than invexity, which still preserves

the su�ciency of Karush-Kuhn-Tucker’s conditions for optimality. The problem (CIO)

is called Interval Karush-Kuhn-Tucker Invex (or IKKT-invex, for short) if there exists a

function ⌘ : X ⇥X ! X such that,

FCk(x)� FCk(y)
�
= F

0
Ck(y) · ⌘(x, y)

�G0
i,Cli (y) · ⌘(x, y)

�
= 0, i 2 I(y)

for all x, y 2 X.

We next show that, for interval KKT-invex problem the Karush-Kuhn-Tucker condi-

tions are necessary and su�cient for optimality.

Theorem 4.7.2. The problem (CIO) is IKKT-invex, i↵ every Karush-Kuhn-Tucker

point is a global weak minimum of (CIO)

Proof. The su�ciency follows immediately from Proposition 4.7.1 and the IKKT-invex

definition. As regards the converse, suppose that every Karush-Kuhn-Tucker point is a

weak global minimum of (CIO) problem. Let x, y 2M . If FCk(x) � FCk(y), then y is not

a weak minimum of FCk , and from hypotheses y is not a Karush-Kuhn-Tucker point. It

mean that there are no �0 > 0 and �i � 0, i 2 I(y), such that, 0 2 �0 · F 0
Ck(y) +

P
i2I �i ·

G
0
i,Cli

(y). Consequently, �0 · f 0
c(�k)(x

⇤) +
P

i2I �i · g0i,c(�li )
(x⇤) 6= 0, 8(�k

,�
l1 ,�

l2 , ...,�
lm) 2

[0, 1]k+l1+l2+...+lm . By classical Motzkin alternative theorem, there is v 2 R that depends

on y, such that

f
0
c(�k)(y) · v > 0,

g
0
i,c(�li )(y) · v > 0, i 2 I(y).

Defining,

⌘(x, y) = max
�k2[0,1]k

fc(�k)(x)� fc(�k)(y)

f
0
c(�k)(y)

when f
0
c(�k)(y) < 0, we have

fc(�k)(x)� fc(�k)(y) � ⌘(x, y) · f 0
c(�k)(y).

Hence FCk(x)�FCk(y)
�
= F

0
Ck(y)·⌘(x, y), and clearly, if i 2 I(y), then�G0

i,Cli
(y)·⌘(x, y) �

= 0.

For f 0
c(�k)(y) > 0, consider

⌘(x, y) = min
�k2[0,1]k

fc(�k)(x)� fc(�k)(y)

f
0
c(�k)(y)

.
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Analogously,

fc(�k)(x)� fc(�k)(y) � ⌘(x, y) · f 0
c(�k)(y),

hence FCk(x)�FCk(y)
�
= F

0
Ck(y)·⌘(x, y), and clearly, if i 2 I(y), then�G0

i,Cli
(y)·⌘(x, y) �

= 0.

If FCk(x)
�
= FCk(y) define ⌘(x, y) = 0 and obtain immediately FCk(x) � FCk(y)

�
=

F
0
Ck(y) · ⌘(x, y), and �G0

i,Cli
(y) · ⌘(x, y) �

= 0 if i 2 I(y).

Example 4.7.3. Consider the following (scalar) interval optimization problem

(CIO2) min [1, 3]x2 � 2x

subject to x� [12 ,
3
2 ]

�
= 0,

�x �
= 0

Let x
⇤ be an optimal point of our (CIO2) problem. From KKT conditions (Theorem

4.6.4), we can see that x⇤ 2 [13 ,
1
2 ]. Consequently, for example, if x⇤ = 1

2 it saturates the

constraint G1,C11 (I(x⇤) = {1}). Since {G0
i,Cli

(12)} is independent the (CIO2) problem

satisfies the constraint qualification (Definition 4.6.3), and the interval KKT conditions

guarantee the existence of µ1, µ2 2 R such that

0 2 F
0
Ck(x⇤) +

X

i2I

µi ·G0
i,Cli (x

⇤);

µi � 0, i 2 I;

0 2 µi ·Gi,Cli (x
⇤), i 2 I.

As x
⇤ does not saturate i = 2, we have µ2 = 0.

F
0
Ck(

1
2) = [�1, 1], G

0
1,C11

(12) = 1 and G
0
2,C02

(12) = �1, so that µ1 = 1
2 . It is also clear

that our (CIO2) problem is IKKT-invex. Therefore from Theorem 4.7.2, x⇤ is a weak

global minimum.

4.8 Conclusion

This chapter was considered optimization problems without and with constraints where

the parameters (coe�cient) of the objective function and the constraints are intervals and

used the constrained interval arithmetic recently introduced by W. Lodwick [25]. For

the unconstrained problem we have introduced a new concept of stationary points for

this class of interval-valued functions and given an useful tool to find these points. We
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have introduced the concept of minimum for this class of interval optimization problems

and showed that all minimizers are necessarily stationary points. Moreover, we have

introduced the concept of invexity for interval-valued functions and showed that this is a

su�cient condition for a stationary point be a minimizer.

We provided both interval Fritz John and interval Karush-Kuhn-Tucker necessary

conditions of optimality for the constrained problem. Then we introduced KKT-points

and KKT-invex problems and derived the result which shows that the class of interval

KKT-invex problems is the largest class in which interval KKT-invex points are global

weak minimum.
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Chapter 5

Quotient space of intervals

It is well known that the space of all closed and bounded intervals with the standard

interval arithmetic is not a linear space; it is a quasilinear space [3, 34]. In particular,

an interval does not have inverse element and therefore subtraction does not have many

useful properties (see [14, 35]). Then, this section shows an approach trying to study with

a vector space structure using quotient spaces, this study was done in [38] and the authors

analyze some algebraic and topological properties of this quotient space. they introduce

a concept of di↵erentiability for equivalence classes-valued functions and then, they make

a comparison with other concepts of di↵erentiability.

The study found in [38] uses the following considerations and bibliographical references

that we consider important to quote. The concepts of Hukuhara di↵erence and generalized

Hukuhara di↵erence between two intervals [20] and Stefanini& Bede in [35], Radström’s

embedding theorem [33], the concept of ⇡ di↵erentiability for interval-valued functions [6]

and some properties of this derivative can be found in [6, 14], quotient spaces of fuzzy

numbers [19], which are tools to developing of fuzzy mathematical analysis [32].

5.1 The quotient space of intervals

It is well known that the addition is associative, commutative and its neutral element

is {0}. If � = �1, scalar multiplication gives the opposite �A = (�1)A = {�a : a 2 A}

but, in general, A+s (�) ·sA 6= {0}, that is, the space I is not a linear space. This fact is a

crucial point due the necessity of working on a linear space in order to define in a suitable

sense the derivative of interval valued functions. Taking into account this problem, we
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will introduce a natural equivalence relation between elements of I which can be used to

divide I into equivalence classes having group properties for the addition operation.

First of all, given A = [a, a] 2 I, then A is said symmetric if a = �a; the class of

symmetric intervals of I will be denoted by S. Then we have the following definition.

Definition 5.1.1 ([38]). Let A,B 2 I, A = [a, a], B = [b, b]. We say that A is equivalent

to B, and write A ⇠ B, if and only if A � B 2 S. Here A � B denotes the standard

di↵erence defined by A� B = [a� b, a� b].

Let A be an interval given by A = [a, a]. We define the mark of A denoted by MA,

such as

MA = a+ a

Theorem 5.1.2. Let A,B 2 I, A = [a, a], B = [b, b]. A ⇠ B if and only if, they have the

same mark. i.e.

MA = MB.

Proof. A ⇠ B if and only if [a, a] � [b, b] = [�c, c] 2 S it mean that a � b = �c and

a� b = c therefore, a+ a = b+ b.

Example 5.1.3. In this example we show some equivalent intervals.

• [�2, 3] ⇠ [�10, 11] ⇠ [0, 1] ⇠ [0.5, 0.5],

• [1, 3] ⇠ [�1, 5] ⇠ [�2, 6] ⇠ [0, 4] ⇠ [2, 2].

The relation ⇠ is an equivalence relation, that is, ⇠ is reflexive, symmetric and transi-

tive. We will denote by hAi the equivalence class containing the interval A 2 I. The set of

equivalence classes will be denoted by I/S. Note that if hAi 2 I/S, then from Definition

5.1.1 it holds that

hAi = h[a, a]i (5.1)

=

8
<

:
h[0, a+ a]i if a+ a � 0

h[a+ a, 0]i if a+ a < 0

= h[min {0, a+ a} , max {0, a+ a}]i .

In particular, S = h[0, 0]i := h0i.
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Graphically, if we consider Figure 5.1, we can see that the class representatives are

on the axes that correspond to the interval space, and every class is represented by a

orthogonal line to identity line contained in the interval space (proper interval space).

Figure 5.1: Quotient Space of Intervals

For any hAi, hBi 2 I/S we define the addition hAi+ hBi by

hAi+ hBi = hA+Bi.

Proposition 5.1.4. If hAi, hBi 2 I/S then MA+B = MA +MB

Proof. The proof is immediately from Theorem 5.1.2.

Multiplication of an element of I/S by a real number � is the following:

� · hAi = h� · Ai.

Lemma 5.1.5 ([38]). (I/S,+, ·) is a linear space.

Proposition 5.1.6 ([38]). Let hAi, hBi 2 I/S. Then

hA gH Bi = hAi � hBi.
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Proof. Given A,B 2 I, taking into account (2.2.2) and (5.1), we have that

hA gH Bi

= h
⇥
min

�
a� b, a� b

 
,max

�
a� b, a� b

 ⇤
i

= h
⇥
min

�
0 , (a� b) + (a� b)

 
,

max
�
0 , (a� b) + (a� b)

 ⇤
i

= h
⇥
min

�
0 , (a� b) + (a� b)

 
,

max
�
0 , (a� b) + (a� b)

 ⇤
i

= h
⇥
a� b , a� b

⇤
i

= hA� Bi

= hAi � hBi.

We now provide a norm k · k on the space I/S.

Definition 5.1.7 ([38]). Let hAi = h[a, a]i 2 I/S. We define the norm of hAi by

khAik = |a+ a|.

Remark 5.1.8 ([38]). (I/S, k ·k) is a normed linear space. Moreover, we have the metric

dsup on I/S defined by

dsup(hAi, hBi) = khAi � hBik,

for all hAi, hBi 2 I/S. Notice that for A = [a, a] and B = [b, b], dsup(hAi, hBi) =

|(a+ a)� (b+ b)|.

The following properties is a immediate consequence.

Proposition 5.1.9 ([38]). Let hAi, hBi, hCi 2 I/S. Then dsup is translation invariant,

that is,

dsup(hAi+ hCi, hBi+ hCi) = dsup(hAi, hBi);

Lemma 5.1.10 ([38]). (I/S, dsup) is a complete metric space.
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5.2 Di↵erentiability

This section analyzes the di↵erentiability of interval class mappings F : T �! I/S.

From now on, we will denote by T = [a, b] a closed interval. For this section, let f : T ! I

be an interval-valued function. We will denote f(t) = [f(t), f(t)], where f(t)  f(t), for

all t 2 T . The functions f and f are called the lower and the upper (endpoint) functions

of F , respectively.

The usual definition of continuity of mappings between metric spaces will be used. We

shall say that a function F : T �! I/S is continuous at t0 2 T if for every ✏ > 0 there

exists a � = �(t0, ✏) > 0 such that

dsup(F (t), F (t0)) < ✏,

for all t 2 T with kt� t0k < �.

Definition 5.2.1 ([38]). A mapping F : T = [a, b] �! I/S is di↵erentiable at t0 2 T if

there exists an F
0(t0) 2 I/S such that

lim
h!0

dsup

✓
F (t0 + h)� F (t0)

h
, F

0(t0)

◆
= 0.

If t0 = a (or to = b), then we consider only h! 0+ (or h! 0�).

Theorem 5.2.2 ([38]). Let F : T ! I/S such that F (t) = h[f(t), f(t)]i for all t 2 T.

F is di↵erentiable if and only if the mapping g : T ! R given by g(t) = f(t) + f(t) is

di↵erentiable.

Theorem 5.2.3. If F,G : T �! I/S are di↵erentiable and � 2 R, then F + G and �F

are di↵erentiable and (F +G)0(t) = F
0(t) +G

0(t) and (�F )0(t) = �F
0(t) for t 2 T.

Proof. Let t, t+ h 2 T with h 6= 0. Then it is enough to observe that

dsup ((F +G)0(t), F 0(t) +G
0(t))  dsup

✓
(F +G)(t+ h)� (F +G)(t)

h
, (F +G)0(t)

◆

+dsup

✓
F (t+ h)� F (t)

h
, F

0(t)

◆
+ dsup

✓
G(t+ h)�G(t)

h
,G

0(t)

◆
�! 0, as h �! 0,

and

dsup ((�F )0(t),�F 0(t))  dsup

✓
(�F )(t+ h)� (�F )(t)

h
, (�F )0(t)

◆

+ |�|dsup
✓
F (t+ h)� F (t)

h
, F

0(t)

◆
�! 0, as h �! 0,
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The next theorem says that the concept of di↵erentiability given in Definition 5.2.1

generalizes in some sense to gH-di↵erentiability.

Theorem 5.2.4. Let f : T �! I/S with f(t) 2 F (t). If f is (k)gH-di↵erentiable for

k = i, ii, iii, iv, then F is di↵erentiable on T in the sense of Definition 5.2.1.

Proof. Since f(t) 2 F (t) for all t 2 T, we have F (t) = hf(t)i. Now, we divide this proof

in two parts.

(a) If f is gH-di↵erentiable in the form (a) of the theorem 3.0.2. Then f and f are

di↵erentiable at t0 2 T and we get

dsup

✓
F (t+ h)� F (t)

h
, hf 0(t)i

◆
= dsup

 
h[f(t+ h), f(t+ h)]i � h[f(t), f(t)]i

h
, hf 0(t)i

!

=

�����
f(t+ h) + f(t+ h)� (f(t) + f(t))

h
� (f 0(t) + f

0
(t))

�����


����
f(t+ h)� f(t)

h
� f

0(t)

����+
����
f(t+ h)� f(t)

h
� f

0
(t)

����
! 0 as h! 0.

(b) If f is gH-di↵erentiable in the form (b) of the theorem 3.0.2. Then f
0
�(t0), f

0
+
(t0), f

0
�(t0)

and f
0
+(t0) exists and satisfy f

0
�(t0) = f

0
+(t0) and f

0
+
(t0) = f

0
�(t0). Then we get

dsup

✓
F (t+ h)� F (t)

h
, hf 0(t)i

◆
= dsup

 
h[f(t+ h), f(t+ h)]i � h[f(t), f(t)]i

h
, hf 0(t)i

!

=

�����
f(t+ h) + f(t+ h)� (f(t) + f(t))

h
� (f 0

+
(t) + f

0
+(t))

�����


����
f(t+ h)� f(t)

h
� f

0
+
(t)

����+
����
f(t+ h)� f(t)

h
� f

0
+(t)

����
! 0 as h! 0+.

and

dsup

✓
F (t+ h)� F (t)

h
, hf 0(t)i

◆
= dsup

 
h[f(t+ h), f(t+ h)]i � h[f(t), f(t)]i

h
, hf 0(t)i

!

=

�����
f(t+ h) + f(t+ h)� (f(t) + f(t))

h
� (f

0
�(t) + f

0
�(t))

�����


����
f(t+ h)� f(t)

h
� f

0
�(t)

����+
����
f(t+ h)� f(t)

h
� f

0
�(t)

����
! 0 as h! 0�.
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By virtue of Definition 5.2.1 and Lemma 5.2.2, clearly we can obtain the following

proposition.

Proposition 5.2.5. The di↵erentiability given in 5.2.1 is a homogeneous and additive

operator, i.e., for di↵erentiable functions F,G : T ! I/S and for ↵ 2 R

1. (↵F )0 = ↵F
0

2. (F +G)0 = F
0 +G

0

Proof. The proof is immediately of Theorem 5.2.2.

With this proposition we can analyze some examples studied in the Chapter 3.

Example 5.2.6. Considering the interval-valued functions of the Example 3.1.1, we have

F (x) = h[� |x| , |x|]i = h[0, 0]i and G(x) = h[0, e�x]i and (F +G) (x) = h[� |x| , |x|+ e
�x]i =

h[0, e�x]i. Consequently, by Lemma 5.2.2, all this functions are di↵erentiable in the sense

of Definition, contrary to gH-derivative.

5.3 Conclusion

This chapter showed a quotient space of intervals with respect to the family of sym-

metric intervals and this quotient space is a normed linear space. Since the space of

intervals can be embed on this quotient space, the concept of di↵erentiability for interval-

valued functions have linearity properties and we made a comparison with other concepts

of di↵erentiability and showed interesting examples.
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Chapter 6

Final considerations and future

perspectives

The study made in this Thesis is divided into three parts, so we will make the final

considerations and future perspectives for each case. About the algebra of generalized

Hukuhara di↵erentiable interval-valued functions which was presented here is a vital tool

for the development of interval analysis. We can immediately mention some of the future

work to be done: interval di↵erential equations, min-max interval optimization problem,

numerical methods to find zeros of interval polynomials, and all these presented results,

as well as those proposed for future work can be extended to the fuzzy context.

The second part of this Thesis, which are necessary and su�cient conditions for interval

optimization problems involving constrained interval arithmetic, the contributions paves

the way to new research extending the theory of interval optimization in a number of

ways. These include interval optimization problems with n-variables, possibly with fuzzy

coe�cients, calculus of variations and control optimization problems which contain in

their model formulations either interval or fuzzy coe�cients.

The quotient space of intervals, which is the third and last part of the Thesis, estab-

lished a theory that provides an algebraic interval structure of vector space for interval

spaces. This makes it possible to study mathematics theory, such as di↵erential equations,

dynamical systems, numerical analysis, optimization, control, etc., over interval spaces.
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