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a  b  s  t  r  a  c  t

The  interference  of humidity  is  a key factor  to be  considered  in metal  oxide  semiconductors  gas  sensing
performance.  However,  an  efficient  gas  detection  under  humid  conditions  is a challenge.  Herein,  we  report
the  effect  of reduced  graphene  oxide  (RGO)  on volatile  organic  compounds  (VOCs)  sensing  performance
of  hollow  SnO2 nanoparticles  (NPs)  under  wet  atmosphere.  For  this  purpose,  RGO-SnO2 nanocompos-
ite  was  obtained  by a one-pot  microwave-assisted  solvothermal  synthesis.  The  sensing  tests  for  VOCs
were  conducted  under  dry  air and  at a relative  humidity  (RH)  between  24  and  98%.  The  samples  exhib-
ited  better  response  toward  ethanol  than  to  other  VOCs  such  as  acetone,  benzene,  methanol,  m-xylene,
and  toluene,  at  the  optimum  operating  temperature  of  300 ◦C. Furthermore,  RGO-SnO2 nanocomposite
educed graphene oxide
in oxide
anocomposites
xolation
umidity

showed  an enhanced  ethanol  response  in  comparison  with  pure  hollow  SnO2 NPs.  Even  under  98%  of  RH,
the  RGO-SnO2 nanocomposite  showed  a  response  of  43.0  toward  100  ppm  of  ethanol  with  a  response
time  of  8 s.  The  excellent  sensor  performance  is  related  to  the hollow  structure  of  SnO2 NPs,  and  the  het-
erojunction  between  RGO  and  SnO2. Therefore,  the RGO  content  can  be a  promising  approach  to  minimize
the  humidity  effect  on  SnO2 ethanol  sensing  performance.

© 2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

The detection of volatile organic compounds (VOCs) has
ttracted considerable attention due to its application in environ-
ental and indoor air quality monitoring, as well as in non-invasive

isease diagnosis [1,2]. For these purposes, gas sensors based on
etal oxide semiconductors (MOS) are widely used because of

heir sensibility, low cost, and possibility of scaled-up production
3,4]. Among the MOS, SnO2, an n-type semiconductor, is one of the

ost studied material for VOCs monitoring with a great sensitivity
oward several gases, including acetone [5,6], formaldehyde [7,8],
oluene [9], ethanol [10,11], methanol [12], and so on.

Composites of SnO2 have shown to be a way to improve the sens-
ng performance toward VOCs, for instance, composites with other

OS  [13,14], noble metals [15,16], and graphene-based materi-
ls [2,17], are reported. The use of reduced graphene oxide (RGO),
hich is a p-type material, can enhance parameters such as sensor
esponse, recovery rate, stability, sensitivity [17–19], and selectiv-
ty [20–22], because RGO enhances the electron transport [2] and
rovides more sites for gas molecules adsorption due to its large

∗ Corresponding author.
E-mail address: volanti@ibilce.unesp.br (D.P. Volanti).

ttp://dx.doi.org/10.1016/j.snb.2017.01.015
925-4005/© 2017 Elsevier B.V. All rights reserved.
specific surface area, defects, sp2-bonded carbon, and residual oxy-
genated functional groups [22–24].

For the real application of SnO2 as a gas sensor, it is neces-
sary to consider the influence of humidity since atmospheric air
and exhaled breath contain a considerable quantity of water vapor
[25,26]. However, the sensors based on MOS  are much sensitive to
humidity and, consequently, the response toward an analyte gas
significantly decreases under wet conditions [27–30]. Thus, it is of
great importance to developing sensors with less negative effect
of humidity for actual applications. Some studies have demon-
strated that Ti [31], or Sb-doping [32], and Pd-loading [28,33], can
be effective ways to preserve the stability of the SnO2 gas sens-
ing performance. Nevertheless, to the best of our knowledge, few
studies have been conducted to verify the effect of a little amount
of RGO on the VOCs detection of SnO2 NPs under controlled humid
atmosphere.

In this study, we report a facile one-pot microwave-assisted
solvothermal (MAS) synthesis of hollow SnO2 NPs and RGO-
SnO2 nanocomposite. The phase composition, morphology, and
physical-chemical properties were evaluated, and the first nucle-

ation mechanism of SnO2 was discussed involving olation and
oxolation reactions. The obtained samples were tested as VOCs
sensors in dry and humid atmosphere with a relative humidity
(RH) between 24 and 98%. The findings demonstrated an enhanced

dx.doi.org/10.1016/j.snb.2017.01.015
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2017.01.015&domain=pdf
mailto:volanti@ibilce.unesp.br
dx.doi.org/10.1016/j.snb.2017.01.015
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thanol response for the RGO-SnO2 nanocomposite compared with
ure hollow SnO2 NPs, which even at a RH of 98% exhibited a high
esponse to 100 ppm of ethanol equal to 43.0.

. Material and methods

.1. Synthesis of RGO-SnO2 nanocomposite

Graphite oxide (GO) was used as a precursor of reduced
raphene oxide (RGO), and it was prepared by a modified Hum-
ers’ method as described in a previous report [34,35]. RGO-SnO2

anocomposite was synthesized by a one-step microwave-assisted
olvothermal (MAS) method based on previously reported syn-
hesis [36]. In a typical procedure, a 9.8 mg  of GO was dispersed
n 30 mL  of deionized water (Millipore, 18.2 M� cm)  using an
ltrasonic bath for one hour to promote GO exfoliation. After-
ard, 1.1973 g (4 mmol) of K2SnO3·3H2O (Sigma-Aldrich, 99.9%)
as added to 30 mL  of ethylene glycol (Sigma-Aldrich, 99%),

ubsequently to the addition of 1.1976 g (19.9 mmol) of urea
Sigma-Aldrich, 99%). The solution containing the tin precursor was

ixed with GO dispersion, and it was maintained under magnetic
tirring for 10 min. After the stirring, the final mixture was  trans-
erred to a polytetrafluoroethylene (PTFE) autoclave, sealed and
eated at 140 ◦C for 1 h in a microwave system (2.45 GHz/800W)
37]. After the heating, the autoclave was naturally cooled to room
emperature. The products were collected by centrifugation, and
ashed several times with deionized water and ethanol, then dried

t 80 ◦C. The RGO-SnO2 nanocomposite with a RGO load of 2%
mGO/mSn(IV)) was synthesized because this ratio showed to be the

ost promising for VOCs sensing performance. The synthesis of
ure SnO2 was  carried out by the same method without GO addi-
ion.

.2. Material characterizations

X-ray diffraction (XRD) characterization was performed using a
igaku MiniFlex 300 powder diffractometer, with the Cu K� radi-

tion (� = 1.54059 ´̊A), operated at 30 kV and 10 mA  in steps of 0.1◦.
he samples were scanned in the 2� range of 5 and 80◦ at a scan
ate of 1◦ min−1. Raman spectra were measured using a HORIBA
64000 triple grating spectrometer with a laser excitation of
33 nm.  Fourier transformed infrared (FTIR) spectra were recorded
n a Perkin Elmer spectrophotometer Spectrum Two  fitted with
TR device, in the range of 450–4,000 cm−1. The morphology was
nalyzed with a field-emission transmission microscope (TEM,
EI Tecnai G2 F20) and transmission electron microscope (TEM,
hilips model CM200), both operated at an accelerating voltage of
00 kV. The thermogravimetric analysis (TG) was  performed in a
erkin–Elmer TGA-4000 thermogravimetric balance in air atmo-
phere, at a scanning rate of 15 ◦C min−1. Specific surface area was
etermined by Brunauer−Emmett−Teller (BET) method by nitro-
en physisorption using a Gemini VII – Surface Area and Porosity
nalyzer. X-ray photoelectron spectroscopy (XPS) was  performed
n a K-Alpha Thermo Scientific spectrometer, using Al K� radiation
1486 keV). The XPS spectra were calibrated with reference to the

 1 s peak (284.8 eV).

.3. Gas sensor fabrication and measurement

The VOCs sensors were prepared by dispersing 7 mg  of the
owders in 2 mL  of isopropanol using ultrasonication for 10 min.

lumina substrates with gold arrays as interdigitated electrodes
n their surface were coated with the dispersion of samples pow-
ers. Then, the substrates were heated at 200 ◦C for 1 h 20 min
nder air atmosphere in order to stabilize the sensor and elimi-
Fig. 1. Schematic illustration of the formation of RGO-SnO2 nanocomposite by a
one-pot microwave-assisted solvothermal synthesis.

nate the isopropanol. The gas sensing performance was evaluated
by exposing the sensors toward the VOCs and analyzing the change
in electrical resistance. To measure the resistance change, a high-
voltage source-measure unit (Keithley Source meter 2400) was
used, applying a voltage of 5 V. The gas sensing properties were
studied by exposing the sensor to the VOCs in the concentra-
tion range of 5–500 ppm, where six different gases were studied
including acetone, benzene, ethanol, methanol, m-xylene, and
toluene. The sensors were allocated inside the test chamber and
heated at the studied temperature (100–400 ◦C) under air flow of
250 mL  min−1. At the desired temperature, the air flow was stopped
and the chamber was  closed until stabilizing the resistances. After
obtaining the baseline, the required amount of VOCs was inserted
in the test chamber using a syringe, and the exposure time was
established as 100 s. After this time, an air flow of 250 mL  min−1

was used to clean the system from the VOCs and to return to the
baseline. The same procedure was carried out to study the humidity
influence on the gas sensing performance. The VOCs sensing studies
were conducted at the optimum operating temperature under four
different relative humidity (RH) (24, 43, 73, and 98%), which was
measured by using a thermohygrometer (HANNA, HI9564 model).
In order to control the RH, the air flow passed through a closed ves-
sel containing saturated solutions of some salts before entering the
test chamber. Thus, the RH inside the test chamber was controlled
at 24, 43, 73, and 98% by using saturated solutions of CH3CO2K,
K2CO3, NaCl, and K2SO4 [38], respectively. The VOCs response was
defined as the ratio of the resistances Rair/Rgas, where Ra is the resis-
tance in air (dry or humid) and Rg is the resistance after exposing
to the VOCs.

3. Results and discussion

3.1. Synthesis and crystal growth

RGO-SnO2 nanocomposite was synthesized by a facile one-pot
MAS  method, as illustrated in Fig. 1. K2SnO3·3H2O, urea, and GO
dispersion were used as precursors in a reaction medium of water
and ethylene glycol (EG). The microwave heating at 140 ◦C for 1 h
promoted the formation of hollow SnO2 nanoparticles in a spherical
shape (Supplementary information – Fig. S1) concomitantly to GO
reduction to RGO. The hollow SnO2 NPs grow in the same way  with
or without GO in the reaction medium, however in the case of the
nanocomposite, GO sheets act as support for SnO2 growth.

The formation of SnO2, using potassium stannate and urea as
precursors, can be explained by olation and oxolation reactions
(Fig. 2). In an alkaline medium, Sn(IV) is found as its monomeric
hydroxide form of [Sn(OH)6]2− ions. The thermohydrolysis of urea
releases CO3

2− in the reaction medium, liberating H+ ions. Such
acidification results in the appearance of aquo ligands in the

coordination sphere of Sn(IV), forming the zero-charge complex
[Sn(OH)4(H2O)2]0, as shown in Fig. 2a. The initial step of conden-
sation of [Sn(OH)4(H2O)2]0 proceeds by olation reaction, where
both octahedra share an edge to form the dimer [Sn2(OH)6(�-
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Fig. 2. Process of SnO2 formation by olation and oxolation. (a) acidification pro-
moted by urea leading to the formation of the zero-charge complex; (b) olation
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Fig. 3. TEM images of (a) pure SnO2 NPs, (b) RGO-SnO2 nanocomposite. High-
resolution TEM (HRTEM) of (c) pure SnO2 NPs, (d) RGO-SnO2. Selected area electron
eaction between two  zero-charge complex, obtaining the dimer; (c) condensa-
ion by olation reaction between dimer and monomer; (d) condensation process
y  oxolation; (e) final rutile-type structure of SnO2.

H)2(H2O)2] (Fig. 2b). Then, the condensation continues by olation
eaction between this dimer and monomer, in which the edge shar-
ng occurs in the same plane that the previous reaction, forming a
traight chain in the trimer [Sn3(OH)8(�-OH)4(H2O)2] as shown in
ig. 2c [39,40]. Due to the presence of few aquo ligands, the oxola-
ion (formation of oxo bridge by water elimination) takes place in
he condensation process from now on [40] (Fig. 2d). The condensa-
ion by oxolation leads to the rutile-type crystal structure of SnO2,
n which SnO6 octahedra share edges and corners as illustrated in
ig. 2e.

.2. Morphological and structural characterization
The morphology of the samples was characterized by TEM
Fig. 3). The TEM image of pure SnO2, shown in Fig. 3a, revealed
he formation of uniform nanospheres composed of NPs in size
ange of 6–10 nm,  as well as the hollow nature of the material,
diffraction (SAED) patterns of (e) SnO2, (f) RGO-SnO2.

which was elucidated by the contrast between the light center and
dark boundary. This form of arrangement of the NPs results in a
porous structure. Fig. 3b contains the TEM image of the RGO-SnO2
nanocomposite. The spherical morphology of hollow SnO2 NPs was
preserved; however, it can be seen that SnO2 NPs grew on the sur-
face of RGO sheets, which ensure a great interconnectivity between
SnO2 and RGO.

By high-resolution TEM (HRTEM) image of pure SnO2 (Fig. 3c),
the (110) crystal plane of tetragonal SnO2 could be indexed, cor-
responding to an interplanar distance of 0.33 nm.  HRTEM image
of the RGO-SnO2 nanocomposite revealed the RGO content in the
nanocomposites structures, as shown in Fig. 3d. Moreover, HRTEM
image of RGO-SnO2 reveals the inter-planar distance of 0.33 nm,
related to the (110) plane, as well as the inter-planar distance of
0.26 nm corresponding to the (101) plane. The selected area elec-
tron diffraction (SAED) patterns of pure SnO2 NPs and RGO-SnO2
are shown in Fig. 3e and f, respectively. The diffraction rings could
be indexed to tetragonal rutile SnO2, exhibiting the (110), (101),
(200), (211) and (112) planes.

XRD was  carried out for crystal structure investigation, and the
XRD patterns of pure SnO2 NPs and RGO-SnO2 nanocomposite are
shown in Fig. 4a. For both samples, the diffraction peaks could be
indexed to the tetragonal rutile structure of SnO2 with P42/mnm

(136) space group (JCPDS no. 41–1445). No secondary peaks were
observed. The crystallite size calculated along the (110) plane by
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which are typical of adventitious carbon contamination, given that
ig. 4. (a) XRD patterns and (b) Raman spectra of SnO2 NPs and RGO-SnO2 nanocom-
osite.

herrer’s equation was estimated to be 5.8 nm for all samples,
hich is in good agreement with TEM results.

Raman spectroscopy was performed to confirm the presence
f the reduced form of GO in the nanocomposite (Fig. 4b). The
GO-SnO2 nanocomposite showed two characteristic peaks at
323 cm−1 and 1602 cm−1 corresponding to the D and G bands,
espectively. The D band is related to the structural defects and
artially disordered structures of sp2 domains [41,42], and the G
and is attributed to the first order scattering of the E2g phonon
rom sp2 carbon atoms [43]. In comparison with the Raman spec-
rum of GO (Fig. S2), it can be seen that the intensity ratio ID/IG
ncreased from 1.24 for GO to 1.33 for RGO-SnO2 nanocomposite.
uch increase in ID/IG suggests that GO has been greatly reduced
o RGO in the nanocomposites during the MAS  synthesis [44]. Fur-
hermore, peaks related to rutile structure of SnO2 were noticed.
he peaks at 626 cm−1 and 770 cm−1 are attributed to the A1g and
2g vibrational modes, which are associated with the expansion
nd contraction vibration mode of Sn-O bonds [45]. Moreover, the
eaks at 352 cm−1 and 572 cm−1 are not usual in Raman spectra
f bulk structures [45], because they are related to the nano size
f the granule, which results in local lattice disorder and oxygen
acancies, producing such new Raman peaks [11,46].
The specific surface area determined by BET method of hollow
nO2 NPs was  estimated to be 88 m2 g−1. Such relative high specific
urface area probably arises from the hollow structure of SnO2 NPs.
tors B 244 (2017) 466–474 469

The BET specific surface area of the RGO-SnO2 nanocomposite was
131 m2 g−1. This increase in the surface area indicated the interac-
tion between SnO2 NPs and RGO sheets, which may  improve the
VOCs sensing properties.

FTIR spectroscopy was employed to examine the chemical com-
position of the samples. The FTIR spectra of the samples are shown
in Fig. S3, in which the same absorptions peaks are noticed. In
the SnO2 spectrum, the strong peak at 500 cm−1 was  assigned to
the antisymmetric vibration of O−Sn−O, whereas in the nanocom-
posite spectrum such peak is at around 511 cm−1. The absorption
peak at 606 cm−1 was due to the stretching vibration of Sn O [47].
Another characteristic peak was  observed at 1,650 cm−1 related to
the bending vibrations of O−H from absorbed water molecules. The
presence of water could be further confirmed by the absorption
band at 3,293 cm−1 which corresponds to the stretching vibrations
of O H from adsorbed water, free or bonded [11]. However, in the
nanocomposite spectrum, a decrease in the intensity of such peak
was observed, which suggests that fewer water molecules adsorb
on the material due to RGO presence.

Fig. S4 shows the TG curves of pure SnO2 NPs and RGO-SnO2
nanocomposite under air atmosphere. As shown in TG curve of
SnO2 (black curve), two weight loss steps were observed. The
first step from 70 to 220 ◦C corresponded to a loss of 6.5%, being
attributed to the removal of physically adsorbed water on the SnO2
particles [48,49]. The second step lost 5.5% occurring up to 530 ◦C
is assigned to the elimination of chemically bonded water [48,49],
and ammonia as well [50], prevenient from urea. In the TG curve
of the RGO-SnO2 nanocomposite (purple line), the same two mass
loss steps were observed. The first one between 70 and 220 ◦C cor-
responded to a weight loss of 2.2%. Since this step was associated
with the elimination of physically adsorbed water, the reduction in
the weight loss compared to pure SnO2 NPs can indicate that RGO
prevents water adsorption, which is consistent with FTIR results. In
the second mass loss step, the RGO-SnO2 nanocomposite lost more
weight than pure SnO2 NPs, corresponding to 6.3%. In addition, the
nanocomposite curve was more abrupt from 330 ◦C to 530 ◦C. These
results suggest that the RGO fraction can be eliminated in this range
of temperature.

XPS was  carried out to determine the surface chemical compo-
sition and the valence state of the corresponding elements (Fig. 5).
The survey scan XPS spectra of SnO2 NPs and RGO-SnO2 nanocom-
posite are shown in Fig. 5a. As it can be seen, only peaks related to
Sn, O, and C elements were observed. In the case of the nanocom-
posite, the peak of Sn 3d was much more intense than C 1s, which
means that RGO did not wrap the SnO2 NPs. The relative quan-
tification of the elements provided the values for carbon, tin, and
oxygen of 14.6, 45.2, and 40.2%, respectively, for pure SnO2 NPs.
While for the RGO-SnO2 nanocomposite, the quantification was
about 23.7, 38.4, and 37.9% for carbon, tin, and oxygen, respec-
tively. The increase in carbon quantification was due to the RGO
content in the nanocomposite. The high-resolution spectra of Sn,
O, and C are shown in Fig. 5b–d, respectively. The Sn 3d spectra
revealed two peaks with good symmetry at 495.1 eV and 486.7 eV,
corresponding to Sn 3d3/2 and Sn 3d5/2, respectively. The splitting
between the two peaks was  8.4 eV, indicating the single oxida-
tion valence state of Sn4+ [51]. The high-resolution spectra of O
1 s (Fig. 5c) were asymmetric and consisted of two peaks with
binding energies of ∼531.9 eV and ∼530.6 eV. The peak at 531.9 eV
could be assigned to adsorbed oxygen (Ox

−) species on SnO2 sur-
face and the peak at 530.6 eV was  attributed to lattice oxygen of
SnO2 (Olatt) [52]. The C 1 s spectra (Fig. 5d) showed three com-
ponents: C C (284.8 eV), C OH (286.3 eV), and O C O (288.7 eV),
they were also present in the spectrum of pure SnO2. However,
similar components of C 1 s are also reported as graphene contri-
bution [17,22,53], indicating that in the RGO-SnO2 nanocomposite
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Fig. 6. (a) Response of the sensors toward 100 ppm of ethanol in function of the

F
a

ig. 5. (a) Survey-scan XPS spectra of SnO2 and RGO-SnO2. High-resolution XPS
pectra of (b) Sn 3d; (c) O 1s; (d) C 1s, of SnO2, and RGO-SnO2.

pectrum, RGO contributed at such peaks. The RGO contribution
ould be confirmed by the increase in carbon value in the relative
uantification.

.3. VOCs sensing performance

To verify the optimal operating temperature of the sensors, the
esponse toward 100 ppm of ethanol was evaluated as a function
f the operating temperature (100–400 ◦C), as shown in Fig. 6a. As
t can be seen, the response of the sensors based on SnO2 NPs and
GO-SnO2 increased with the temperature increasing until 300 ◦C
nd decreased when the temperature was above 300 ◦C. The max-
mum responses at 300 ◦C of the sensors based on pure SnO2 and
GO-SnO2 nanocomposite were 63.4 and 70.4, respectively. The
GO content showed to improve the ethanol sensing response of

nO2. Hereafter, the subsequent gas sensing studies were carried
ut at the optimum operating temperature of 300 ◦C.

Afterward, the sensibility of the sensors toward different gases
t the optimum temperature was evaluated, as shown in Fig. 6b.

ig. 7. Dynamic responses to ethanol in the range of concentration of 5–500 ppm of the s
mplification of the responses to 5 and 10 ppm. (c) Responses of pure SnO2 and RGO-SnO
operating temperature; (b) responses of pure SnO2 and RGO-SnO2 nanocomposite
to  100 ppm of different VOCs at 300 ◦C.

Both sensors showed better selectivity to ethanol than to the other
gases, such as acetone, methanol, benzene, m-xylene, and toluene.
For pure SnO2, the response toward ethanol was about 2.2–48.8
times higher in comparison with other gases, whereas the ratio
was 1.6–50.3 for RGO-SnO2 nanocomposite.

The dynamic responses of the sensors to different concentra-
tions of ethanol (5–500 ppm) at 300 ◦C are shown in Fig. 7a–b. The
responses of the sensors increased with increasing ethanol con-
centration from 5 to 500 ppm, and the sensors exhibited a great

capability of reversibility. As exhibited in the insets of Fig. 7a–b,
the responses toward 5 and 10 ppm of ethanol are very similar
for both sensors. Fig. 7c displays the responses of SnO2 and RGO-

ensors based on (a) pure SnO2; (b) RGO-SnO2 nanocomposite. The insets show the
2 nanocomposite as a function of ethanol concentration in dry air at 300 ◦C.
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F f ethanol concentration at 300 ◦C under wet atmosphere with RH of (a) 24%, (b) 43%, (c)
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ig. 8. Responses of pure SnO2 NPs, and RGO-SnO2 nanocomposite as a function o
3%,  and (d) 98%.

nO2 nanocomposite as a function of ethanol concentration. The
esponse of the sensor RGO-SnO2 was higher than that of pure
nO2. The responses to 5–500 ppm changed from 2.2 to 184.7, and
rom 2.7 to 297.8 for the sensors based on SnO2 and RGO-SnO2,
espectively.

In order to evaluate the humidity effect, the ethanol sensing
ests were conducted under a RH of 24, 43, 73, and 98%. Fig. 8a–c,
nd d display the responses of pure SnO2 NPs and RGO-SnO2
anocomposite as a function of ethanol concentration under a RH
f 24%, 43%, 73%, and 98%, respectively. Under all different RH,
he sensor based on RGO-SnO2 nanocomposite showed a superior
esponse to ethanol than SnO2 NPs. However, the ethanol perfor-
ance decreased under all wet conditions in comparison with dry

ir. When the RH was 24%, the responses to 5–500ppm of ethanol
hanged from 3.8 to 123.2, and 3.5–221.2 for the sensors based on
nO2, and RGO-SnO2, respectively. Under a RH of 43%, the response
o 5–500 ppm altered from 3.7 to 72.7, and 2.8–127.8 for pure SnO2,
nd RGO-SnO2, respectively. Increasing the RH to 73%, the sen-
or signal to the range of 5–500 ppm of ethanol raised from 3.1
o 51.8, and 3.7–79.0 for pure SnO2, and RGO-SnO2, respectively.
chieving the highest RH of 98%, the response range observed was
.8–91.6, and 3.7–139.4 for the sensors based on pure SnO2 NPs,
nd RGO-SnO2.

Fig. 9 sums up the response toward 100 ppm of ethanol under
ifferent RH. It is clear that the responses decreased as increasing
he RH in comparison with dry conditions. Under 98% of RH, the
esponse was about 29.2 and 43.0 for the sensors SnO2, and RGO-
nO2, which were higher than the values found when RH was  43
nd 73% of RH. Moreover, the RGO-SnO2 nanocomposite demon-
trated to be less affected by the humidity presence, showing a
ower decrease in ethanol response.
Some ethanol sensing results of SnO2 based materials from
he literature are summarized in Table 1. Our hollow SnO2 NPs
nd, especially, RGO-SnO2 nanocomposite exhibited an excellent
thanol sensing performance even when RH was 98%. The response
Fig. 9. Response of the sensors based on SnO2 and RGO-SnO2 nanocomposite to
100 ppm of ethanol as a function of the relative humidity at 300 ◦C.

time under dry air and a RH of 98% changed from 9 s to 2 s, and
from 11 s to 8 s for SnO2 NPs and RGO-SnO2, respectively. Such val-
ues of response-time are comparable with literature results and
demonstrated that wet  conditions did not interfere negatively in
this sensor parameter.

3.4. Ethanol sensing mechanism

The gas-sensing mechanism is based on the reactions between
oxygen adsorbed on SnO2 surface and the target gas, according to

the ionosorption model. After exposure to air, oxygen species are
ionosorbed on SnO2 surface (O2

−, O− or O2−) [57] by the trans-
ference of electrons from the conduction band (CB), creating a
depletion layer close to the particle surface. Once the sensor is
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Table  1
Comparison of the gas sensing performance of SnO2 based sensors toward ethanol.

Structures Working temperature (◦C) Concentration (ppm) Gas response (Rair/Rgas) Response time (s) Relative humidity Ref.

SnO2 nanowires 360 100 31 1–10 Dry air [54]
SnO2 nanotubes 300 200 16.7 7 30% [55]
SnO2 nanoflowers 300 100 47.29 10 Dry air [56]
SnO2@ZnO nanospheres 270 50 7.5 1.2 33% [30]
Hierarchical SnO2 nanostructures Not mentioned 100 44.7 1 Dry air [11]
SnO2 nanoflower 240 200 62.2 10 Dry air [10]
Hollow SnO2 NPs 300 100 63.4 9 Dry air This work
Hollow SnO2 NPs 300 100 

RGO-SnO2 nanocomposite 300 100 

RGO-SnO2 nanocomposite 300 100 

Fig. 10. Schematic illustration of ethanol sensing mechanism of RGO-SnO2

nanocomposite in dry air and humid atmosphere. (a) In dry air, SnO2 nanoparti-
cles, that compose the hollow spherical structure, contain ionosorbed O− species
that react with ethanol; (b) in humid conditions occurs the formation of terminal
hydroxyl on SnO2 surface by water poisoning, which also reduces the depletion
layer; (c) the RGO/SnO2 heterojunction in dry air promotes electron transfer from
R
a

e
o
a
t
i
t
d
e

C

bicity can achieve a lower humidity interfering effect than pure
GO to SnO2 causing a band bending. As a result, the depletion region is increased
s  well as the response toward ethanol.

xposed to a reducing gas, such as ethanol, a reaction between the
xygen species and the gas occurs, removing these oxygen species
nd releasing the electrons back to SnO2 CB, leading to a decrease in
he depletion layer along with a resistance decrease. The dominant
onosorbed oxygen species can be determined by the gas absorp-
ion model of semiconductors, see Fig. S5. For all the sensors, the
ominant species were found to be O−. Thus, the reaction between

−
thanol and O species can be represented as Eq. (1):

H3CH2OH + 6O−→ 2CO2 + 3H2O + 6 e− (1)
29.2 2 98% This work
70.4 11 Dry air This work
43.0 8 98% This work

The sensing mechanism is shown in Fig. 10. Since SnO2 NPs and
RGO-SnO2 nanocomposite present a high specific surface area, they
contain an enhanced quantity of ionosorbed oxygen species on the
surface, which also increases the depletion layer of SnO2. More-
over, the hollow structure and nano size of SnO2 particles allow an
efficient diffusion of oxygen and test gas (ethanol) to active sites.
All these parameters helped in the high sensitivity of the materials
toward ethanol, even for the pure hollow SnO2 NPs.

In the nanocomposite, the conduction path is mainly through
SnO2 NPs due to the small amount of RGO [58], however RGO affects
the electrical transport properties of SnO2 (Fig. 10a). Once RGO and
SnO2 are in contact, electrons are transferred from SnO2 NPs to RGO
due to the difference between their work function, which are 4.5 eV
for SnO2 and 4.7 eV for RGO [51,59], resulting in a band-bending of
0.2 eV at the RGO/SnO2 heterojunction (Fig. 10c). Thus, RGO reduces
the quantity of electrons on SnO2 surface (increases the electron
depletion layer), leading to an enhanced resistance changes after
the exposure to ethanol [2,59].

Under humid atmosphere, the decrease in ethanol responses
can be attributed to the water vapor poisoning. Studies have shown
that under conditions, water reacts with ionosorbed oxygen species
on SnO2 surface, resulting in the formation of terminal hydroxyl
groups, according to the following reaction (Eq. (2)) [60,61]:

H2O(g)+O−+2Sn + � 2(Sn-OH) + e− (2)

In the equation, H2O represents a water molecule from the
humid atmosphere, O− is the predominant ionosorbed oxygen
species in our studies, Sn is the Sn ion on SnO2 surface, which
from our XPS results demonstrated to be in the single form of
Sn4+, Sn-OH is the resulting terminal hydroxyl groups, and e− is
the released electron from the adsorbed oxygen to CB. Therefore,
the formation of terminal hydroxyl groups leads to a reduction in
the depletion layer of SnO2 NPs and, consequently, to a decrease in
the sensors resistance (Fig. 10b). Moreover, the ethanol molecules
compete with water vapor for ionosorbed oxygen species on SnO2
surface [62]. Both consequences of humidity presence contribute
to the lower responses to ethanol under wet conditions.

However, our results demonstrated that the RGO content helped
to suppress the adverse effect of humidity. This effect could be
explained by the heterojunction RGO/SnO2, which promotes an
increased depletion layer in comparison with pure SnO2. Thus,
the RGO-SnO2 nanocomposite continued showing an enhanced
ethanol response under humid conditions. Moreover, RGO shows a
low humidity sensitivity [38] which associated with its hydropho-
SnO2 NPs [63]. Therefore, the electrons transfer from SnO2 to RGO
continues effectively under wet atmosphere, and the ethanol sens-
ing performance of RGO-SnO2 nanocomposite is preserved.
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. Conclusions

In summary, RGO-SnO2 nanocomposite was successfully pre-
ared by a one-step microwave-assisted solvothermal synthesis.

n the gas sensing studies, the RGO-SnO2 nanocomposite exhib-
ted an enhanced ethanol sensing performance compared to pure
ollow SnO2 NPs in dry and humid atmosphere. When RH was
8%, the RGO-SnO2 nanocomposite showed a sensing response of
3.0–100 ppm of ethanol with a response time of 8 s.

Morphological and structural characterizations confirmed that
he applied synthetic method led to the formation of RGO-
nO2 nanocomposite with suitably well-dispersed crystalline SnO2
tructures on RGO sheets (the graphene oxide reduction occurred
imultaneously to the SnO2 NPs formation). The size and hollow
tructure of SnO2 NPs, which provided an efficient diffusion of
thanol molecules, and the RGO content were responsible for the
uperior ethanol sensing performance. The RGO/SnO2 heterojunc-
ion increased the depletion region and as well as the response
oward ethanol. Moreover, RGO played a major role to mitigate the
egative impact of humidity on ethanol sensing performance.

Hence, the use of well-designed RGO-SnO2 nanocomposite is a
romising approach for real-world applications of chemiresistive-
ype sensors where humidity is a major interfering.
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