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ABSTRACT. Due to the ability of time-frequency location, the wavelet transform has been applied in
several areas of research involving signal analysis and processing, often replacing the conventional Fourier
transform. The discrete wavelet transform has great application potential, being an important tool in signal
compression, signal and image processing, smoothing and de-noising data. It also presents advantages over
the continuous version because of its easy implementation, good computational performance and perfect
reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of
the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for
signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-
invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying
both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has
been underused in the literature. This paper intends to show the advantages of using the non-decimated
wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis
of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm
of the decimated wavelet transform was presented. Finally, applications with a simulated and real time
series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the
superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more
perfect reconstruction of a signal.

Keywords: Non-decimated wavelets, shift invariance, time series, signal analysis.

1 INTRODUCTION

The wavelet transform allows extracting information of stationary and non-stationary signal vari-
ations in time and frequency, i.e., identifying their frequency of occurrence, localization in time,
and making a reliable approximation of magnitude of this variation. For this reason, this method-
ology has been adopted for a vast number of applications, often replacing the conventional
Fourier transform.
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There are two kinds of wavelet transforms, the continuous wavelet transform (CWT) [11] and the
discrete wavelet transforms, with its decimated (DWT) [6] and non-decimated (NDWT)[7] ver-
sions. Both wavelet transforms differ in the representation of the scale and location parameters of
the wavelet function, which can take continuous or discrete (powers of two) values, respectively.

These differences result in advantages and disadvantages for the two classes of wavelet trans-
forms and also determine in which applications each wavelet transform can provide superior
results.

The DWT, for example, provides a sparse representation for many natural signals, it is therefore
an important tool in signal compression. The DWT is an orthonormal transform (when using an
orthogonal wavelet) able to separate the signal from the noise. This is possible because the signal
of interest is typically captured by a few large-magnitude DWT coefficients, while the noise
results in many small DWT coefficients, which can be throw away without harming the quality
of the signal approximation [7]. As a result, the important features of the signal are captured
by a subset of DWT coefficients that is typically much smaller than the original signal, namely,
the compressed signal. The same considerations are taken in noise filtering or de-noising. The
CWT, instead, is a highly redundant transform and it not appropriate to these applications. The
computational resources required to compute the CWT and store the coefficients is much larger
than the DWT.

On the other hand, because the DWT downsamples, a shift in the input signal does not manifest it-
self as an equivalent shift in the DWT coefficients at all levels, i.e, the DWT is not shift-invariant.
Thus, a simple shift in a signal can cause a significant change of signal energy in the DWT co-
efficients by scale, what is not ideal for some applications. The CWT and NDWT, instead, are
shift-invariant so they are perfect to time series analysis.

The other advantage of the discrete wavelet transforms in relation to CWT is the easy implemen-
tation and good computational performance. The discrete approach of the wavelet transform can
be performed with Mallat’s and the ’à trous’ algorithms [9]. The first is an orthogonal, dyadic,
non-symmetric, decimated and non-redundant algorithm. The ’à trous’, in opposite, is a non-
orthogonal, dyadic, symmetric, shift-invariant and redundant algorithm [4]. Both algorithms are
equivalent to discrete filter banks, where the signal is iteratively filtered by a low-pass and a
high-pass filter. The Mallat’s algorithm, also called the pyramidal algorithm, is the most used
to computation of the discrete wavelet transform. In the DWT, the filter outputs are downsam-
pled at each successive stage of the pyramidal algorithm, namely, for each two outputs of the
filter, one output is discarded. In the NDWT, however, the outputs are not downsampled, wherein
each scale will have the same number of wavelet coefficients. The filters that define the discrete
wavelet transforms typically only have a small number of coefficients so the transform can be
implemented very efficiently. Furthermore, for the most common implementation of the CWT
it is necessary that the wavelet is defined in a closed-form expression, while for both DWT and
NDWT, only the filters are sufficient.

Another key point of the discrete wavelet transform is the perfect reconstruction of the signal
upon inversion. An inverse CWT can be implemented, but often the reconstructions are not
perfect. Reconstructing a signal from the CWT coefficients is a much less stable numerical
operation.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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It should be emphasized, however, that the finer sampling of scales in the CWT typically results
in a higher-fidelity signal analysis. Continuous analysis is often easier to interpret because its re-
dundancy tends to reinforce the traits and makes all information more visible. Thus, it is possible
to localize transients in a signal or characterize periodic behavior better with the CWT than with
the discrete wavelet transforms. Nevertheless, it is possible to have a discrete wavelet transform,
which does not lose important information and has the advantages of implementation and com-
putational effort. This is the case of the NDWT, which can be seen as a compromise between
the DWT and CWT because of its redundancy, but not as redundant as CWT. Although, neither
the CWT nor the NDWT are orthonormal transforms, the NDWT can be computed similarly to
the ordinary DWT but without downsampling, ensuring the shift invariance, which is ideal for
analyzing time series.

While it is well known that the DWT is efficient to data compression, signal and image pro-
cessing, smoothing and de-noising data, among others applications; for signals or time series
analysis, however, the NDWT shows to be more appropriate. As the NDWT is shift-invariant
and represents a time series with the same number of coefficients at each scale, it is possible
to detect the occurrence of hidden information such as stationary or non-stationary patterns and
its time/frequency location. Recently, the NDWT has been applied in some areas of research: in
GNSS signal analysis to investigate the ionospheric scintillation effect [2]; in daily temperature
data to explore the time scale patterns in the relationship between the average ambient temper-
ature and the number of deaths due to cardiovascular diseases [1]; in analysis of BSE and NSE
indexes financial time series [5]; in waves pressure, height geopotential and thickness time se-
ries analysis in order to forecast rain events [10], among other applications. However, the use
of NDWT should be much larger in signal analysis. Thus, in this paper we aim to point out the
advantages of NDWT for signal or time series analysis in an intuitive point of view of Mal-
lat´s pyramidal algorithm. As this algorithm is well known and largely used in the literature, the
implementation of NDWT from it can be facilitated. The focus in this paper is in the sense of
evaluation of methodologies that allow the signal analysis with possibility of investigating be-
havior in it as well as the perfect reconstruction. Thus, only discrete transforms will be taken into
account, i.e. both decimated (DWT) and non-decimated (NDWT) transforms. Simulated and real
signals are used to illustrate the results.

2 NDWT SIGNAL ANALYSIS

2.1 NDWT wavelet and scaling filters

The NDWT of a time series X = [X0,X1, ...,Xn−1] in a level J yields column vectors W̃1,W̃2, ...,W̃J
and ṼJ of length n. The vector W̃j contains the NDWT wavelet coefficients associated with
changes in X on a scale of τ j = 2 j−1, j = 1, ...,J, while ṼJ contains the NDWT scaling coef-
ficients associated with variations at scale τJ = 2J [8]. Such wavelet and scaling coefficients are
the filtering result on the time series X with the NDWT wavelet and scaling filters.

A wavelet filter {hk} must satisfy the following properties:

1) ∑
K−1
k=0 hk = 0;

2) ∑
K−1
k=0 h2

k = 1;

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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3) ∑
K−1
k=0 hkhk+2n = ∑

+∞
−∞ hkhk+2n = 0, for most of nonzero integer K values and all nonzero

integers n.

On other words, a wavelet filter must sum zero, have unit energy, and must be orthogonal to its
even shifts.

The second required filter {gk} is obtained by quadrature mirror filter gk = (−1)k+1hK−1−k. The
filter {gk} is known as the scaling filter and must also satisfy three basic properties:

1) ∑
K−1
k=0 gk =

√
2;

2) ∑
K−1
k=0 g2

k = 1;

3) ∑
K−1
k=0 gkgk+2n = ∑

+∞
−∞ hkhk+2n = 0, for all nonzero integers n.

The NDWT wavelet filter
{

h̃k
}

and NDWT scaling filter {g̃k} are the rescaled version of the
wavelet filter {hk} and scaling {gk} shown above, defined via h̃k = hk/

√
2 and g̃k = gk/

√
2.

So, the result of the filtering of a time series {Xt : t = 0, ...,N−1} with the NDWT wavelet and
scaling filters is given, respectively, by

W̃1,t = ∑
K−1
k=0 h̃kXt−kmodn

Ṽ1,t = ∑
K−1
k=0 g̃kXt−kmodn, t = 0,1, ...,n−1.

(2.1)

These two sequences are the NDWT in the level J = 1. The term mod in (2.1) allows a circularly
filtering, consequently, X is represented with the same number of coefficients at each scale.

A relationship between the DWT and NDWT wavelet and scaling coefficients, can be expressed

W1,t ≡ 21/2W̃1,2t+1 = ∑
K−1
k=0 h̃kX2t+1−kmod n

V1,t ≡ 21/2Ṽ1,2t+1 = ∑
K−1
k=0 g̃kX2t+1−kmod n, t = 0, ..., n

2 −1.
(2.2)

2.2 NDWT Formulation

The great motivation for formulating the NDWT is to define a transform that acts similarly to
the DWT, but does not suffer sensitivity to the choice of a starting point for a time series, in
other words, it is shift-invariant.This DWT’sensitivity is entirely due to downsampling the out-
puts from the wavelet and scaling filters at each stage of the pyramidal algorithm. To make the
understanding easier, we are going to use a matrix notation [8]. The filter outputs that usually
discarded at first stage of the DWT pyramidal algorithm can be obtained by applying the DWT
pyramidal algorithm to the circularly shifted vector T X rather than X . It is worth mentioning that

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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if the vector X = [X0,X1, ...,Xn−1]
t , so T X = [Xn−1,X0, ...,Xn−2]

t is the vector X shifted by one
unit, where Tn is called translation matrix, given by

T =



0 0 0 0 ... 0 0 1
1 0 0 0 ... 0 0 0
0 1 0 0 ... 0 0 0
...

...
...

... ...
...

...
...

0 0 0 0 ... 1 0 0
0 0 0 0 ... 0 1 0


. (2.3)

This procedure suggests how to eliminate the downsampling and defines the first stage of NDWT
pyramidal algorithm when n is an even sample size. The idea is to apply the usual DWT pyra-
midal algorithm twice, once to X and once to T X , and then merging the two sets of DWT
coefficients together [8]. The first application yields in[

W1

V1

]
=

[
B1

A1

]
X = P1X , (2.4)

where,

B1 =


h1 h0 0 0 0 ... 0 0 0 0 0 h3 h2

h3 h2 h1 h0 0 ... 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 ... 0 h3 h2 h1 h0 0 0
0 0 0 0 0 ... 0 0 0 h3 h2 h1 h0

 ,

A1 =


g1 g0 0 0 0 ... 0 0 0 0 0 g3 g2

g3 g2 g1 g0 0 ... 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 ... 0 g3 g2 g1 g0 0 0
0 0 0 0 0 ... 0 0 0 g3 g2 g1 g0


and

P1 =

[
B1

A1

]
.

In displaying the elements of the matrices, we specialize to the case K = 4 and N > K for clarity,
but the mathematical treatment holds in general.

In view of equation (2.2), we can denote the elements of W1 and V1 by

W1 =
[
21/2W̃1,1,21/2W̃1,3, ...,21/2W̃1,n−1

]t
V1 =

[
21/2Ṽ1,1,21/2Ṽ1,3, ...,21/2Ṽ1,n−1

]t
.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Note that W1 and V1 contain all the odd indexed elements of the length n sequences
{

21/2W̃1,t
}

and
{

21/2Ṽ1,t
}

, which are formed by circularly convolving the time series X with, respectively,
the wavelet filter {hk} and scaling filter {gk}.

The second application consists of replacing X for T X and apply the DWT to the circularly
shifted vector. Therefore, it is obtained[

WT,1

VT,1

]
= P1T X .

Defining

PT,1 = P1T =

[
B1

A1

]
T =

[
B1T
A1T

]
=

[
BT,1

AT,1

]
,

we can write [
WT,1

VT,1

]
= PT,1X =

[
BT,1

AT,1

]
X , (2.5)

where

BT,1 =


h0 0 0 0 0 ... 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 ... 0 0 0 0 0 0 h3
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 ... h3 h2 h1 h0 0 0 0
0 0 0 0 0 ... 0 0 h3 h2 h1 h0 0


and AT,1 has the same structure as the above with hk replaced by gk. As B1X is formed by odd
indexed values of the sequence

{
21/2W̃1,t

}
, then, BT,1X , which is B1X one unit shifted, will be

formed of the even indexed values of the filter output
{

21/2W̃1,t
}

, that is

WT,1 =
[
21/2W̃1,0,21/2W̃1,2, ...,21/2W̃1,n−2

]t
,

and by a similar argument the elements of VT,1 are given by

VT,1 =
[
21/2Ṽ1,0,21/2Ṽ1,2, ...,21/2Ṽ1,n−2

]t
.

So, it is possible to form the NDWT wavelet coefficients W̃1 by rescaling the interleaved elements
of W1 and W1,T , and similarly obtain NDWT scaling coefficients Ṽ1 from V1 and VT,1, i.e.

W̃1 =
[
W̃1,0,W̃1,1,W̃1,2, ...,W̃1,n−1

]t
Ṽ1 =

[
Ṽ1,0,Ṽ1,1,Ṽ1,2, ...,Ṽ1,n−1

]t
.

(2.6)

Note in (2.6), that the elements of W̃1 and Ṽ1 are exactly the filters outputs W̃1,t and Ṽ1,t obtained
by using the NDWT filters h̃k and g̃k, as can be seen in (2.1).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Defining B̃1 as the N×N matrix formed by interleaving the rows of BT,1 and B1 and replacing
each hk by h̃k, i.e.,

B̃1 ≡



h̃0 0 0 ... 0 0 0 0 h̃3 h̃2 h̃1

h̃1 h̃0 0 ... 0 0 0 0 0 h̃3 h̃2

h̃2 h̃1 h̃0 ... 0 0 0 0 0 0 h̃3
...

...
...

...
...

...
...

...
...

...
0 0 0 ... 0 h̃3 h̃2 h̃1 h̃0 0 0
0 0 0 ... 0 0 h̃3 h̃2 h̃1 h̃0 0
0 0 0 ... 0 0 0 h̃3 h̃2 h̃1 h̃0


,

we obtain W̃1 = B̃1X . With an analogous definition for Ã1, we have Ṽ1 = Ã1X . Lastly, it is possible
to represent the first stage of the NDWT pyramid algorithm as[

W̃1

Ṽ1

]
=

[
B̃1

Ã1

]
X = P̃1X ,

where

P̃1 =

[
B̃1

Ã1

]
.

Because Pt
1P1 = In and T tT = In, where T is a translation matrix given in (2.3), it follows that

Pt
T,1PT,1 = T tPt

1P1T = In

and therefore PT,1 is an orthonormal matrix. Hence, we obtain the following decompositions to
X

‖X‖2 = ‖W1‖2 +‖V1‖2

‖X‖2 = ‖WT,1‖2 +‖VT,1‖2 .

Furthermore, since
‖W1‖2 +‖WT,1‖2 = 2

∥∥W̃1
∥∥2

‖V1‖2 +‖VT,1‖2 = 2
∥∥Ṽ1
∥∥2

.

it follows that
‖X‖2 =

∥∥W̃1
∥∥2

+
∥∥Ṽ1
∥∥2

.

From equations (2.4) and (2.5) has

X =
[
Bt

1,A
t
1
][ W1

V1

]

and

X =
[
Bt

T,1,A
t
T,1
][ WT,1

VT,1

]
.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Thus, X can be written as

X =
1
2
[
Bt

1,A
t
1
][ W1

V1

]
+

1
2
[
Bt

T,1,A
t
T,1
][ WT,1

VT,1

]

=
1
2
(
Bt

1W1 +At
1V1 +Bt

T,1WT,1 +At
t,1VT,1

)
=

1
2
(
Bt

1W1 +Bt
T,1WT,1

)
+

1
2
(
At

1V1 +At
T,1VT,1

)
= B̃t

1W̃1 + Ãt
1Ṽ1

= D̃1 + S̃1

where D̃1 ≡ B̃t
1W̃1 is the first level NDWT detail and S̃1 ≡ Ãt

1Ṽ1 is the smooth corresponding.

We obtained until now the first level of NDWT coefficients. In the next sections, such concepts
will be generalized in order to define the level j of the NDWT. It will also be presented the
NDWT pyramidal algorithm, in order to calculate the wavelet and scaling coefficients in j levels
of details.

2.3 Definition of jth level NDWT coefficients

For arbitrary sample size n, the NDWT wavelet and scaling coefficients are defined by

W̃j,t = ∑
K j−1
k=0 h̃ j,kXt−kmod n

Ṽj,t = ∑
K j−1
k=0 g̃ j,kXt−kmod n, t = 0,1, ...,n−1,

(2.7)

where
{

h̃ j,k : k = 0, ...,K j−1
}

and
{

g̃ j,k : k = 0, ...,K j−1
}

are, respectively, the NDWT
wavelet and scaling filters defined via h̃ j,k ≡ h j,k/2 j/2 and g̃ j,k ≡ g j,k/2 j/2 from the wavelet{

h j,k
}

and scaling
{

g j,k
}

filters of width K j ≡ (2 j−1)(K−1)+1.

The NDWT filters are modified at each scale by inserting zeros. That is, at each scale 2 j−1 zeros
are entered between each K values of the NDWT filters

{
h̃ j
}

and
{

g̃ j
}

, namely

h̃0,0, ...,0︸ ︷︷ ︸
2 j−1

, h̃1,0, ...,0︸ ︷︷ ︸
2 j−1

, ..., h̃K−2,0, ...,0︸ ︷︷ ︸
2 j−1

, h̃K−1

g̃0,0, ...,0︸ ︷︷ ︸
2 j−1

, g̃1,0, ...,0︸ ︷︷ ︸
2 j−1

, ..., g̃K−2,0, ...,0︸ ︷︷ ︸
2 j−1

, g̃K−1,
(2.8)

that consist in apply an upsample of width 2 j−1(K − 1) + 1. This process eliminate the
downsample 5.5 [8].

2.3.1 The NDWT pyramidal algorithm

The NDWT wavelet coefficient W̃j and NDWT scaling coefficient Ṽj of j level, presented in
the equation (2.7), can still be calculated using an efficient algorithm, based on NDWT scaling
coefficient Ṽj−1 of the j− 1 level.The NDWT pyramidal algorithm is similar to the DWT one
with the advantage that it does not produce a downsampling of wavelet and scaling coefficients

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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and does not require the length of the signal to be a power of two. At each stage of the NDWT
pyramidal algorithm the wavelet and scaling filters are upsampled, as in (2.8), so that when
performing the convolving the signal with the filter, to obtain n coefficients at each scale of the
algorithm.

The NDWT coefficients W̃j, Ṽj and Ṽj−1 are obtained by circularly filtering Xt with the respective
periodized filters

{
h̃ j,k
}

,
{

g̃ j,k
}

e
{

g̃ j−1,k
}

, as in equation (2.7).

Moreover, it can be shown (see section 5.5 [8]) that it is possible to obtain W̃j and Ṽj by filtering
of Ṽj−1 by the following equation

W̃j,t = ∑
K−1
k=0 h̃kṼj−1,t−2 j−1kmod N

Ṽj,t = ∑
K−1
k=0 g̃kṼj−1,t−2 j−1kmod N, t = 0,1, ...,N−1

(2.9)

These two equations in (2.9) constitute the NDWT pyramidal algorithm and also can be written
using the N×N matrices B̃ j and Ã j, as

W̃j = B̃ jṼj−1,t

Ṽj = Ã jṼj−1,t ,

where the rows of B̃ j consist of the wavelet filter
{

h̃ j
}

upsampled width 2 j−1(K− 1)+ 1 and
periodized to length n, with each row differing from its neighbors by circular shifts of one unit
either forward ou backward. Likewise, the rows of B̃ j are built based in the scaling filter

{
h̃ j
}

.

Note that defining Ṽ0,t = X , the equations in (2.9) produce wavelet coefficients W̃1 and scaling
coefficients Ṽ1 of the first level of the NDWT.

The NDWT also allows to reconstruct Ṽj−1 from W̃j and Ṽj. The inverse NDWT can be calculated
via inverse pyramidal algorithm described by the following equation

Ṽj−1,t =
K−1

∑
k=0

h̃kW̃j,t+2 j−1kmodN +
K−1

∑
k=0

g̃kṼj,t+2 j−1kmodN , t = 0,1, ...,N−1.

Or, in the matrix form
Ṽj−1 = Ãt

jW̃j + B̃t
jṼj. (2.10)

Identifying Ṽ0 ≡ X and applying (2.10) recursively until the stage J, can be expressed as

X = Ãt
1W̃1 + B̃t

1Ãt
2W̃2 + B̃t

1B̃t
2Ãt

3W̃3 + ...+ B̃t
1...B̃

t
J−1Ãt

JW̃J + B̃t
1...B̃

t
J−1B̃t

JṼJ ,

considering the jth NDWT detail coefficient D̃ j and J-th NDWT smooth coefficient S̃J , namely

D̃ j = B̃t
1...B̃

t
j−1Ãt

jW̃j and S̃J = B̃t
1...B̃

t
J−1B̃t

JṼJ (2.11)

and given a sample size n, can be expressed in NDWT additive decomposition by

X =
J

∑
j=1

D̃ j + S̃J
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where the energy of the NDWT decomposition can be obtained from

‖X‖2 =
J

∑
j=1

∥∥W̃j
∥∥2

+
∥∥ṼJ
∥∥2

for any integer J ≥ 1.

The NDWT pyramidal algorithm is similar to the DWT one with the advantage that it does not
produce a downsampling of wavelet and scaling coeffic?ients and does not require the length of
the signal to be a power of two.

2.4 Signal analysis by wavelet periodogram

The wavelet periodogram is calculated from wavelet coefficients, namely

I j,t =
∣∣Wj,t

∣∣ ,
decomposing the energy of the signal in multi-scales and with time-frequency location.

The Table (1) provides a scale-frequency interpretation of the wavelet periodogram.

Table 1: Frequency and Period Intervals in each scale τ j = 2 j−1

Resolution Level Scale Frequency Interval Period Interval
j τ j

(
1

4τ j
, 1

2τ j

]
[2τ j,4τ j)

1 τ1 = 1
( 1

4 ,
1
2

]
2 to 4

2 τ2 = 2
( 1

8 ,
1
4

]
4 to 8

3 τ3 = 4
( 1

16 ,
1
8

]
8 to 16

4 τ4 = 8
( 1

32 ,
1
16

]
16 to 32

5 τ5 = 16
( 1

64 ,
1
32

]
32 to 64

6 τ6 = 32
( 1

128 ,
1
64

]
64 to 128

7 τ7 = 64
( 1

256 ,
1

128

]
128 to 256

...
...

...
...

Each scale τ j related to resolution level j corresponds to a period interval from 2τ j to 4τ j. The
higher the resolution level j, the smoother the scale τ j, representing the effects related to this
scale have low frequency.

The periodogram provides a good description of the predominant frequencies contained in the
signal and where the significant changes are located.

3 EXPERIMENTS

As already mentioned, the DWT can be seen as a filtering process followed by a downsampling,
wherein only the odd or even elements of the sample are availed. Therefore, the result of the
DWT depends on the choice of origin, i.e., the DWT is not shift-variant. To illustrate this fact,
the DWT and NDWT were applied to both simulated and real data. In the case of simulated data,

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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we generated signal s, illustrated in (b) of Figure (1), consisting of the sum of three periodic
functions f , g and h of frequencies k = 12,21 and 5 (showed in (a) of Figure (1)), respectively,
and a localized noise m added to the signal. In (c) of Figure (1), the same signal s is translated
from 20 units forward.

0 20 40 60 80 100 120

−
6

−
4

−
2

0
2

4
6

Time

f
g
h

(a) Three periodic functions that generate the
signal

0 20 40 60 80 100 120

−
15

−
5

0
5

10

Time

s 
=

 f 
+

 g
 +

 h
 +

 m
(b) Simulated signal s with a non-stationary
behavior

0 20 40 60 80 100 120

−
15

−
5

0
5

10

Time

(c) Shifted signals

Figure 1: Simulated and shifted signals composed by periodic functions and a non-stationary
behavior.

As all the components ( f , g, h and m) of the simulated signal are known, we can evaluate the
identification of these components after decomposition in periodogram analysis from both DWT
and NDWT. Furthermore, after identifying specific behaviors depending on the frequencies or
scales of interest in the periodogram, the reconstruction can be compared to the original signal,
in order to assess the performance of these transforms in signal analysis. Furthermore, after iden-
tifying specific behaviors depending on the frequencies or scales of interest in the periodogram,
the reconstruction can be compared to the original signal, allowing investigate which of the trans-
forms (DWT or NDWT) generates a more perfect reconstruction of the signal. Thus, e.g. if we
intend to identify and remove effects of frequency 12 from the signal s, after the decomposition,

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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the scale that includes this frequency can be removed. Then, the coefficients of other scales can
be reconstructed and compared to the original simulated signal (g+h+m) in the time domain.

To illustrate the shift-invariance of the NDWT also in the real data analysis, we analyzed the
effects of ionospheric scintillation on GPS signals [2]. The ionospheric scintillation, caused by
irregularities in the density of electrons present in the ionosphere, can weaken the signal received
by the GPS receiver, causing degradation of positioning or even signal loss [3]. The main indica-
tive to investigate the ionospheric scintillation impact in GPS satellite signals quality is the S4
index. In (a) of Figure (2) we show the ionospheric scintillation S4 signal in a day of weak effect
of scintillation. The time series of scintillation index presents daily gaps that occur when the
satellite is invisible below the horizon, and daily periodic behavior, which has a shape of ”U”,
when there are data. This scintillation S4 signal was shifted some units forward (in (b) of Figure
(2)) and it also was analyzed in multi-scale by DWT and NDWT.

(a) Scintillation S4 signal (b) Shifted scintillation S4 signal

Figure 2: Analyzed S4 index time series.

4 RESULTS AND DISCUSSIONS

4.1 Simulated data

The DWT and NDWT were applied to the simulated signal s and shifted one, in order to obtain
a performance comparison of both transforms in signal analysis. The Figures (3) and (4) present
the DWT and NDWT periodogram of the signals, respectively.

The comparison of the obtained results in Figures (3) and (4) shows a better performance of the
NDWT in the signal s analysis. Through DWT periodogram it is not easy to extract information
of the signal. The NDWT periodogram, however, spells out the periodic functions on the scales
of resolution levels from 2 to 4 in addition to identifying noise in the most refined scale, which is
located in the signal between the instants 40 and 50. According to Table (1), the periodic func-
tions f ,g and h, respectively located on the scales of resolution levels 3,4 and 2, have frequencies
in the bands from 8 to 16, 16 to 32 and 4 to 8, respectively, as expected.

In applications like signal analysis, which it is intended to investigate characteristics and patterns
in the signal, it is necessary that the method be not sensitive to the origin, i.e., it be shift-invariant.
We can observe in (b) of Figure (3) that the translation in data input results in a set of wavelet
coefficients different of the data set obtained with the original data input (in (a) of Figure (3)),

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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(a) DWT periodogram of signal
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(b) DWT periodogram of shifted signal

Figure 3: DWT periodogram.
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(a) NDWT periodogram of signal
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(b) NDWT periodogram of shifted signal

Figure 4: NDWT periodogram.

showing that the DWT is shift-variant. However, note in the Figure (4) that a translation of the
input signal does not generate changes in the wavelet coefficients (in (b)) relative to the original
signal (in (a)), unless than a translation. Functionality of the NDWT described herein motivates
their use in the both stationary and non-stationary signal analysis.

Simulations were made in order to compare the performance of the DWT and NDWT in the
reconstruction analysis. Each effect concerning to the frequencies of the functions f , g, h and m,
which comprise the simulated signal s (in (b) of Figure (1)), were singly eliminated in the multi-
scale decomposition. Then the signal was reconstructed and compared to the simulated signal
without such frequency. The Figures (5) and (6) present the obtained results with the DWT and
NDWT, respectively. It is important to be clear, that in (a) of these Figures, for example, the
estimated signal f + h+m is the reconstruction from the complete signal s = f + g+ h+m
after decomposition, identification and removal of the scale of resolution level 4 (frequency band
from 16 to 32) that contents the frequency of the signal g. Such estimated signal is compared
with the original simulated signal f +h+m. This same procedure is performed in all other cases
(subfigures (b), (c) and (d)).
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(a) Remotion of the scale that contains the
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(b) Remotion of the scale that contains the
frequency of the signal f
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(c) Remotion of the scale that contains the
frequency of the signal h
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(d) Remotion of the scale that contains the
frequency of the signal m

Figure 5: Reconstruction analysis by DWT. Simulated function and estimated function recon-
structed from the complete signal s= f+g+h+m after decomposition, identification and removal
of the scale that contains the frequency of interest.

The Figures (5) and (6) show the reconstruction analysis by DWT and NDWT, respectively. Note
by comparing these Figures that, in both instances, the estimation from the reconstructed signal
was not perfect, as expected. This fact is justified by removing an entire bandwidth of the wavelet
periodogram. Even so the estimated signal closely approximates the original signal, mainly from
NDWT that presents better results than DWT.

In order to compare the quality of the reconstructions obtained from the DWT and NDWT (Fig-
ures (5) and (6)) we calculate the Mean Absolute Error (MAE) and Mean Squared Error (MSE)
between the simulated signal and signal estimated from each wavelet decomposition. The results
are presented in the Table 2.

Observe in the Table 2 that for all signal estimated from NDWT the MAE and MSE were lower
than those estimated by DWT. It shows the NDWT superiority in relation to DWT in this analysis.
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(c) Remotion of the scale that contains the
frequency of the signal h
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Figure 6: Reconstruction analysis by NDWT. Simulated function and estimated function recon-
structed from the complete signal s= f+g+h+m after decomposition, identification and removal
of the scale that contents the frequency of interest.

Table 2: Mean Absolute Error (MAE) and Mean Squared Error (MSE) of signal estimated from
NDWT and DWT.

Estimated signal MAE MSE MAE MSE
f+h+m 0.59 0.67 0.99 1.50
g+h+m 0.83 1.38 1.31 2.75
f+g+m 0.43 0.49 0.99 1.43
f+h+g 0.52 1.43 0.73 1.76

4.2 Real data

The DWT and NDWT were also applied in the S4 index time series [2]. The Figures (7) and
(8) illustrate the DWT and NDWT wavelet periodogram of the S4 signal (in (a)) and shifted S4
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signal (in (b)), respectively. Through them we compared the performance of both transforms in
signal analysis.

(a) DWT periodogram of S4 signal (b) DWT periodogram of shifted S4 signal

Figure 7: Multiscale analysis of S4 index time series by DWT.

(a) NDWT periodogram of S4 signal (b) NDWT periodogram of shifted S4 signal

Figure 8: Multi-scale analysis of S4 index time series by NDWT.

In the S4 index time series multiscale analysis, the NDWT also present better results than DWT.
The comparison of the periodograms produced by DWT (Figure (7)) and NDWT (Figure (8)),
shows that differently of the set of wavelet coefficients generated by DWT, the NDWT coeffi-
cients of shifted signal (in (b) of figure) differ of the NDWT coefficients original S4 signal (in
(a)) only by translation of coefficients, showing that NDWT is shift-invariant also in real data
analysis.

5 CONCLUSIONS

Although NDWT has been underused in the literature, it can provide superior results in the signal
analysis when compared to the DWT. The NDWT can also be calculated through Pyramidal
Algorithm, similarly to DWT. The theory involved in the its calculation was discussed in this
paper. The advantages of applying NDWT in signal analysis, such as, no sensitivity to origin
choice (shift-invariant), detection of patterns and hidden information present in the time series
and its time-frequency location, as well as perfect reconstruction were clearly showed from the
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simulated and real data. Hence, we encourage the use of NDWT instead of DWT when the aims
is to analyze the coefficients or investigate effects in signals or time series.
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RESUMO. Devido sua habilidade de localização tempo-frequência, a Transformada
wavelet tem sido aplicada em várias áreas de pesquisa envolvendo análise e processamento
de dados, frequentemente substituindo a convencional Transformada de Fourier. A Transfor-
mada Wavelet Discreta tem um grande potencial de aplicação, destacando-se como uma im-
portante ferramenta na compressão de sinal, processamento de imagem e sinal, suavização
e filtragem de ruı́dos em dados. Ela também apresenta vantagens sobre a versão contı́nua
por causa de sua fácil implementação, bom desempenho computacional e reconstrução per-
feita do sinal após inversão. No entanto, a decimação requerida no cálculo da Transformada
Wavelet Discreta a torna variante à translação e não apropriada para algumas aplicações,
tais como análise de sinais ou séries temporais. Por outro lado, a Transformada Wavelet
Discreta Não Decimada é invariante à translação, porque elimina o processo de decimação,
e consequentemente, é mais apropriada para identificar comportamentos estacionários e
não estacionários presentes no sinal. No entanto, a Transformada Wavelet Não Decimada
tem sido pouco usada na literatura. Esse artigo pretende mostrar as vantagens do uso na
Transformada Wavelet Não Decimada na análise de sinais. Os principais aspectos teóricos
e práticos da análise multiescala de séries temporais a partir das wavelets não decimadas, em
termos de sua formulação usando o mesmo algoritmo piramidal da Transformada Wavelet
Decimada, são apresentados. Por fim, aplicações com séries temporais simuladas e reais
comparam o desempenho das transformadas wavelet decimada e não decimada, demon-
strando a superioridade da wavelet não decimada, principalmente devido à análise invariante
a translação, detecção de padrões e uma reconstrução mais perfeita do sinal.

Palavras-chave: Wavelets não decimadas, invariância à translação, séries temporais,
análise de sinais.
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