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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS 

In the sequel t, x, and y will denote real numbers, and z = x + iy. Given a 
function f, by f we shall denote its Fourier transform. Thus, if f is in 
L,( - co, co), f(x) = (2~))“~ {:a f(t) exp(ixt) dt. Given p and a, q, and /l 
will denote their conjugates (i.e., p-’ + qP ’ = 1, c1 PI + 1-l = 1 ), and 
W, x) = P-‘(a~)-~‘“. BY llfll p we shall denote the LP( - co, co) norm of 
f(x), and llfb + ~Y)IL,~ will stand for the LP( - co, co) norm of f(x + iy) 
with respect to the variable x (i.e., Ilf(x + iy)llX,P is a function of y). We 
shall always assume that a > 1 and p 2 1. 

In [ 1, Theorem l] we proved a proposition which in the equivalent form 
can be stated as follows: 

THEOREM. Let a, b > 0. Then the following assertions are equivalent: 

(a) f(z) is an entire function and for every E > 0 but for no E < 0, 
II~~~C-~-~+~~l~Ialf~~~ll,~~~ and ll~~~C-~~+~~I~l~lf~~+~~~Il,,~ 
is uniformly bounded in y. 

(b) f(z) is an entire function and for every E >0 but for no E > 0, 
IlevC-(-W, a)+E)14Bl~~)ll, < ~0, 
and llexp[ - (K(B, b) + E)) ylB] f(x + iy)ll x,oo is uniformZy bounded in y. 
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This theorem is a refinement of previous work by Gel’fand and 
Silov [2]. 

The purpose of this paper is to obtain results of the same type involving 
norms other than that of L,( - XI, co) and to give some applications of 
these results to the study of the properties of sequences of translates and 
sequences of weighted exponentials. We start with 

THEOREM 1. Let 1 < p < 2, a > 0, and assume that f(t) exp(altl’) is in 
LP( - co, 00). Then p is an entire function and 

I.YI(~‘~)~~ ev-pW, ~~l~181~ll~~~+~~~II.~,y~P isin L,(-co, co). 

Conversely we have 

THEOREM 2. Let f(z) be an entire function, 2 6 p < co, a > 0, and assume 
that 

I~l~~~2~~‘~~pC-~~~B,~~l~lPl~llf~~+~~II.,,~P is in L,(-a, co), 

Then exp(aItl”)3(?) is in LP( --GO, a). 

For p = 2, Theorems 1 and 2 yield a necessary and sufficient condition: 

THEOREM 3. Let a > 0. Then the following propositions are equivalent: 

(a) f(t)exp(aItl’) is in L,(-co, 00) 

(b) p is an entire function and 

I~l’8’2’~‘expC-2K(P,a)IylPl(ll~(x+iv)ll..2)2 is in L,(-co, a). 

We now turn to the applications of Theorem 3. A sequence of elements 
of a given topological vector space is called “minimal” if each element of 
the sequence lies outside the closure of the linear span of the others, and it 
is called “fundamental” (or “complete”) if its linear span is dense in the 
given space (cf. [ 31). We have 

THEOREM 4. Let a > 0 be given, let { ck ; k = 0, 1,2,... } be a sequence 
of complex numbers, and assume that both f(t) exp(a ItI “) and 
l/(f(t) exp(a ItI”)) are essentially bounded on (-co, 00). Let S denote either 
of the sequences {f(t) exp(ic, t )} or (if { ck} is a real sequence) {3(t + ck)}. 
Then S is minimal in L,( - co, co) if and only if there is an entire function 
h(z), not identically, zero such that h(ck) = 0 for all k and 

Iyl’8’2’~1expC-2K(B,a)Iy181(II(1 + lzl)~‘h(x+iy)IJ,,,)‘isin L1(--00, co). 
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Theorem 4 is similar to a result of Paley and Wiener for sequences of 
exponentials on bounded intervals (cf. [4, p. 4191) and has an analogous 
proof. It is well known that the sequence {exp(int)} is both fundamental 
and minimal in, say, L,[ -z, z] (cf., [3, p. 113, Proposition 11). The 
question thus naturally arises as to whether there is a sequence of weighted 
exponentials having a similar property on ,C,( - co, co). Before answering 
this question, we need to introduce some additional notation. 

Let c= (1 + i)(27c)lj2, c,= c(n- l)“‘, n=2, 3, 4 ,..., c,= -c-,, n = -2, 
- 3, -4 ,..., S,, = {c,, n = +2, + 3, +4 ,... }, and assume that a is a nonzero 
complex number such that neither a nor - ia are in SO. Let c1 = a, 
C -1= ---a, and let S denote the set of all points of the form c,, n = +l, +2, 
+ 3,..., or ic,, n= f2, f3, f4 ).... Finally, w(t) = exp( - t2/2), and for a 
given function g, S(g) = { g(t) w(t) exp(idt), de S}. We shall use Theorem 4 
to prove part (b) of 

THEOREM 5. If g is an essentially bounded even function, a.e. different 
from zero, then (a) S(g) is fundamental in L2( - 00, co), (b) S(g) is minimal 
in L2( -00, co). 

Although the proof of Theorem 6 below does not use Theorem 4, the 
method employed is similar to the one used in the proof of Theorem 5(a), 
and this justifies its inclusion here. 

If c, = (2x)“’ sign(n) InI I”, S’ = (c,}, and S’(g) = { g(t) w(t) exp(dti), 
deS’}, we have 

THEOREM 6. If g is an essentially bounded function, a.e. different from 
zero, then S’(g) is fundamental in L,( - co, co). 

For other results concerning the fundamentality of sequences of weighted 
exponentials and of sequences of translates see, e.g., [5-71, and references 
therein. 

2. AUXILIARY PROPOSITIONS 

If lim l+,f(t)/g(t)=l, we shall write f(t)-g(t), t+cO. With this 
notation we have 

LEMMA 1. Let y> -1 and 

Z(t) =I yy exp[p( yt-at”-IQ, a) yB)] dy. 
0 
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Then 

Z(f) - WBY”WP) (1/2)(8,)~(1!8)(1+“*lt(,/B)(y+ I)- (a/2) 
> c+ +m, 

where c = K(& a). 

Proof: If c = K(/?, a), then a = K(cc, c) and 

Z(t)=Im YYexp[p(yt-K(a, c) t”-cyP)] dy. 
0 

Let y = (PC)- (“iP)t”‘B.s. Since c1= (a//I) + 1, we see that 

yt = (fit)-(“‘WS 

= p-‘(/?c)-‘“‘“‘t”(jh) 

and 

- cy” = -c(/lc) -x’tuS~ 

= -~-‘(~c)-‘“l”‘ps”, 

Moreover, since 

W)=P-12 

-K(a, c) t”= -aC’(~c)-(xiB)tx 

= -p-Q?- l)(pc)-‘x’“‘p 

=/3-y/k- (‘l’V( 1 -/q, 

(1) 

(2) 

(3) 

(4) 

combining (1 ), (2), and (4) we therefore see that 

p( -cyfl- zqa, c) P + yt) = -PP~‘(Bc)-‘“‘“‘t*u(s), 

where u(s) = sp - Bs + fi - 1. Since clearly dy/ds = (PC) ~ (a’P)ta’P, we readily 
deduce that 

I(t)= m- 
(dP)(Y + 1 p/m + 1) 

i 
m sy exp[ -PB~l(pc)-‘“‘B’t”u(s)] ds 

0 

= @) -(a/S)(v + l)plB)(Y + Uq(p), 

where 
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s(t) = lorn sy exp[ -~P-‘(Bc)-(*‘~)tu(s)] ds 

= s m sy exp[ -pB-‘(Bc)-‘*‘“‘tu(s)] ds 
1 

+s 
sy exp[ -pB-‘(8c)~‘“‘8’tu(s)] ds. 

0 

Applying the method of Laplace to each of the integrals on the right-hand 
member of the preceding identity (cf., e.g., Widder [8, p. 278, Theorem 2b. 
and p. 279, Corollary 2b.21) and applying (3), we readily infer that 

q(t) w (~/B)“‘(2~/p)“‘(Bc)*/‘28’1~“‘2’, 

whence the conclusion follows. 

t+ +co, 

Q.E.D. 

LEMMA 2. Assume that 1~ q < 2 and that f(z) is an entire function, and 
let 11 f (x + iy)ll x,y < co for almost every real y. Then IIexp( yt)f(t)ll f,p d 
(277)“* Ilf(x+ iy)ll,x,y. 

Proof Assume first that q = 2. It is then clear that exp(yt)j(t) is the 
Fourier transform of f(x+ iy). (To see this, note that f(x+ iy) is the 
Fourier transform of exp( yt)f(t) evaluated at -x, and apply the inversion 
theorem.) Since the Fourier transform is an isometry in L2( - co, co), we 
see that llexp( yt)f(t)ll 1,2 = 11 f(x + iy)llX,2, and the conclusion follows. 

To prove the assertion in the general case, let c > 0, g,(t) = c exp( - c2t2) 
and fC = g, * f (where “*” denotes the convolution product). Since for any s 
in [l, co], g, is in L,( - co, co), setting in particular s= (2q)/(3q- 2) 
(whence l/q + l/s - 1 = 4) and applying a theorem of W. H. Young (cf., e.g., 
[9, p. 178, (1.1) or 10, p. 414, (21.56)]) we infer that f,(x+ iy) is 
in L,( - co, co) for any real y, and therefore that exp( yt)fc(t) is the 
Fourier transform of f,(x+ iy). Since g, is also in L,( -00, co), we 
conclude in addition that f,(x+ iy) is in Ly( - co, co), for any real y. 
Applying the Hausdorff-Young inequality [9] we see that 
IlexpCv).L,(t)llt,pQ Ilfc(x+i~)II,,,. Since g,(t) = 2-l” exp( - t2/4c) (cf. [9, 
p. 6]), a second application of Young’s theorem shows that: 
2-“2 Ilevb4 exp(-t2/4cVtt)llt,, d IlfAx + iy)llx,q G Ilfb + iy)IIx,q 

Making c--t co, the conclusion readily 
Q.E.D. 
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3. PROOFS OF THE MAIN RESULTS 

Proof of Theorem 1. That-?(z) is an entire function follows from a stan- 
dard application of the theorems of Morera and Fubini, as has been done, 
e.g., in [ll, pp. 403-4043. Clearly 3(x + iy) is the Fourier transform of 
f(t) exp( -yt) evaluated at X. Applying the inequality of Hausdorff and 
Young, as in Lemma 2, we have: 

(ll3b + bNT,,)p 
6 (IIf exp(-yt)ll,,JP 

=Z s mexpC~(IyI~-~~“)lexp(put”)(If(t)(P+~f(-~)~~)d~ 
0 

CC s “expCP(IYIf-at”)lg(t)dt, 
0 

where g(t)=exp(pat”)(If(t)JP+ If(-t) Hence, we have that 

a0 
G s s m IYI ‘P’2)-1exp[p((yIt-at”-K(~,u)Iy~8)]g(t)dtdy 

-cc 0 

= 2 jam Jom y’P12’b 1 evlA.vt -UP - W, a) ~~11 g(t) dt 4. 

Now, by the Fubini and Tonelli theorems (cf., e.g., [ 12 or 13]), the last 
expression is identical to 

i.e., 

JP’~)- ’ exp[ p( yt - UP - K(jI, a) ya)] dy g(t) dt, 

s 
o2 (ypIw expC-PW, ~~l~lPl~llj\~~+~~~ll~,,~P dr -x 

<2 s co J(t) g(t) & 
0 
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where 

J(t) = joa p/2) - 1 expCp(yf - at” - W, a) ys)l&. 

Applying Lemma 1 with y = (j/2) - 1 we have that 

,‘;I J(t) = (cc/~)“‘(27c/p)“*(pc)~“*. 

Hence J(t) is bounded on [0, co), and the conclusion follows. Q.E.D. 

Proof of Theorem 2. From Lemma 2 we know that Ilexp( yt)y(t)lj t,P < 
w1’2 Ilfb+ b)lLq. Raising both sides of the preceding inequality to the 
power p and applying the hypotheses, we readily deduce that 

00 co 
s s I.JJI’~‘*‘~~ evC-NW, a) I ApI exp(p 1.14 1 Ill p dt 4 -cc -cc 

and therefore, setting g(t) = exp(a Itl”)( If(t)/ p + If( - t)l p), 

cc 00 
s s #P/2)- ’ exp[ p( yt - at” - K@, a) f)] g(t) dt d-y < co. 
0 0 

By the theorems of Fubini and Tonelli we have that 

i.e., ~~J(f)g(t)dr<co, where J(t)=jr ~(~‘~)~lexp[p(yt-ut”- 
K(b, a) y8)] dy. The proof will be complete if we can show that J(t) is boun- 
ded away from zero on (0, + co). But, by Lemma 1 with y = (/I/2) - 1 we 
have that lim, _ + o. J(t) = (~/P)“‘(2~/p)“‘(p~)-~“~) ~0, and the conclusion 
readily follows. Q.E.D. 

Proof of Theorem 4. Since f(~+ ck) is the Fourier transform of 
exp(ic, t) f (t), and every function in L2( - co, co) is the Fourier transform 
of a function in L2( - co, co), we readily infer from the isometric character 
of the Fourier transform that only the sequence {f(t) exp(ic,t)} need be 
considered. 

If the system is minimal there is a bounded linear functional on 
L2( - cc, co) that equals 1 for f (t) exp(ic,t) and vanishes for all the remain- 
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ing functions f(t) exp(ic, t). Thus there is a square-integrable function g(t) 
such that 

s ev(ic,t)f(t) s(t) dt = bk, k = 0, 1) 2 )..., 
R 

where 6, is Kronecker’s delta. Let q(z) denote the Fourier transform 
of f(f)dt). Since exp(4d”)f(t)g(t) is in L2( - co, co), from Theorem 3 
we deduce that lyl(8’2)-1 evC-2WT ~~l~181~lls~~+~~~ll.~~~2 is in 
L,( - co, co), and setting h(z) = (z - cO) q(z) the conclusion readily follows. 

Conversely, assume there is a function h(z) that satisfies the hypotheses 
of the theorem. Since h(z) does not vanish identically, all its zeros are of 
finite order. Let k be given, let m 2 1 be the order of the zero ck of h(z), and 
define Gk(z) = m!h(z)/[(z - ck)mh(m)(ck)] if z#c,, and G,(c,) = 1. It is 
readily verified that G,(z) is an entire function. 

Since m > 1, for I yl sufficiently large we have that 

for some constant c > 0, and as Gk(z) is continuous is every neighborhood 
of the point ck, from the hypothesis we readily infer that 

l~l’~‘*)~~ew-‘WB~ ~~l~l~l~II~~~~+~y~lI.,,~~~ is in L,(R). 

Thus, if g, denotes the inverse Fourier transform of Gk, we infer from 
Theorem 3(b) that gk( t) exp(a I tl “) is in LZ( -cc, co). Setting Irk(f)= 
g,Jt)lf(t)= [g,Jf)exp(aItl”)][exp(-altl”)/f(t)] we readily see from the 
hypotheses on f that hk( t) is in L,( - cc, co). Since gk(t) =f( t) Irk(r) we 
have 

i exp(ic#)f(t) h(t) dt = j exp(ic,t) gk(t) dt = Gk(c,) = 6,,. 
R R 

We have therefore shown that for any k there is a bounded linear 
functional on L2( - co, co) that equals 1 for f(t) exp(ic, t) and vanishes for 
all the remaining functions f(r) exp( icit), and the conclusion follows. 

Q.E.D. 

Proof of Theorem 5. (a) Assume that S(g) is not fundamental in 
L2( - cc, co). Then there is a non-zero bounded linear functional on 
I,,( - co, 00) that vanishes for all the functions exp( idt) g(t) w(t), d E S; thus 
there is a function r(t) in L,( - co, cc), not equivalent to zero, such that 

s exp(idt)g(t)w(t)r(t)dt=O, dE S. 
R 
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Let H(z) be the Fourier transform of g(f) w(t) r(t). Applying the 
Cauchy-Schwarz inequality we have 

= (2n)-‘(llrl12)2exp(y2) 1 expC-(y+ tJ21 ldt)12df 
R 

<A, exp(y’). 

Thus IH( <A, exp( y2/2). By an application of the Morera and Fubini 
theorems we see that H(z) is an entire function. Since g(t) w(t) r(t) is not 
equivalent to zero, it is clear that H(z) does not vanish identically. Since 
H(a) = H( -a) = 0, we conclude that H,(z) = (z’- a’)-‘z2H(z) is entire 
and vanishes at zero and at all points of S except, perhaps, at &-a. It is also 
clear that [Hi(z)1 Q A, exp(y2/2). Thus, since the imaginary part of 
(1 +~)(2n)‘~‘z is (2n)‘12(x+ y), IH,[(l +i)(2~~)*‘~z]J <A,exp[~(x+y)~]. 
Let Q(Z) = exp(irrz2) H,[(l + i)(2n)“2z]. In view of the preceding remarks 
we see that Q(z) is an entire function, IQ(z)1 <A, exp(rc lzj2), and 

Q(n”‘)=Q(in”‘)=O, n = 1, 2,... . (5) 

We shall consider two cases, according to whether r(t) is (essentially) 
odd or not. Assume first that r(t) is odd; we then see that Q(z) is odd. 
Thus, if {z,; n = 0, 1,2,...} is the set of zeros of Q(z) that have a positive 
real part, or are purely imaginary and have a positive imaginary part, then 
every zero of Q(z) is either at the origin, or equals z, for some n, or equals 
-z, for some n. From (5), we also know that {zf ; n = 0, 1,2,...] contains 
the set of all non-vanishing integers. Applying Hadamard’s factorization 
theorem we readily infer that 

Q(z) = BzZm-’ exp(az2) Z7[ (1 - z’/zi) exp(z2/zt)], 

where m > 0 is an integer and B # 0; thus, 

R(z) = z exp(az) Z7[( 1 -z/z:) exp(z/zi)] 

is an entire function that vanishes on the integers; moreover, since 
IR(z’)l < IBI -I I4 IQ(z)1 if lzl > 1, we readily deduce that IR(z)l 6 
Cl4 ‘I2 exp(nlzl). From a theorem of Valiron and Pblya (cf., e.g., 
[ 14, 9.4.2]), R(z) = A sin(nz); thus Q(z)= K~z~“-~ sin(nz2), whence 
H,(z) = fc2z2-- exp( -z2/4) sinh(z2/4), and therefore H(z) = 
K zZmp5(z2 - a2) exp( -z2/4) sinh(z2/4). Since H(x) is the Fourier trans- 
foim of a function in L,( - co, co), it must vanish at infinity, and therefore 
m = 1. This implies that H(z) has a singularity at z = 0. Since H(z) is an 
entire function, we have obtained a contradiction. 

409!126/2- I 3 
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Assume now that r(t) is not an odd function; since r(t) is not equivalent 
to zero, we also conclude that r(t) + r( - t) is not equivalent to zero. Since 
dE S also implies - dE S, substituting r(t) + Y( - t) for r(r) if necessary, we 
can assume without any loss of generality that r(t) is even. This also 
implies that Q(Z) is even, and Hadamard’s factorization theorem yields: 
Q(Z) = Bz’” exp(az*) Z7[( 1 - z”/zi) exp(z2/zf)], m > 0. Applying the 
Valiron-P6lya theorem in this case we readily conclude that H(z) = 
K 2 z2”’ ~ 4(z2 - a’) exp( - z2/4) sinh(z2/4). This implies that H(x) does not 
vanish at infinity. Since H(x) is the Fourier transform of a function in 
L,( - co, co), we have obtained a contradiction. 

(b) Let h(z) = zp2(z2 -a’) exp( -z2/4) sinh(z2/4), and q(z) = 
2exp( -z2/4) sinh(z2/4). Then Ih(z)I 6 clq(z)l. Since q2(z) = 1 - 
2 exp( -z2/2) + exp( -z’), we infer that exp( -v’) lq2(z)l d exp( -y2) + 
2 exp[ -(x2 + y2)/2] + exp( -x2). It is therefore easy to see that 
~~~~-~2~~ll~~+I~I~~‘~~~f~~~ll.~~2~ ’ is in L, ( - 30, co), and the conclusion 
follows from Theorem 4. Q.E.D. 

Proof of Theorem 6. Assume that S’(g) is not fundamental in 
L2( - co, 00). Proceeding as in the proof of Theorem 5 we readily infer that 
there is a function H(z), entire and not identically zero, such that H(d) = 0 
if dE S’, and IH( <A exp( y2/2). 

Setting H,(z) = H(z) H(iz), Q(z) = H,[(~~c)“~z], and applying 
Hadamard’s factorization theorem and the Valiron-P6lya theorem, as was 
done in the proof of Theorem 5, we easily see that Q(Z) = Bz-’ sin(nz2). 
This implies that all of the zeros of H,(z) must be of order 1. Since 
Q(0) = 0, we see that 0 = H,(O) = [H(O)]‘, and we have a contradiction. 

Q.E.D. 
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