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ABSTRACT. We analyzed 46,161 monthly test-day records of milk 
production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) 
x Holstein cows. The following seven models were compared: standard 
multivariate model (M10), three reduced rank models fitting the first 
2, 3, or 4 genetic principal components, and three models considering 
a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full 
rank residual covariance matrices were considered for all models. The 
model fitting the first two principal components (PC2) was the best 
according to the model selection criteria. Similar phenotypic, genetic, 
and residual variances were obtained with models M10 and PC2. The 
heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for 
models M10 and PC2, respectively. The genetic correlations obtained 
with model PC2 were slightly higher than those estimated with model 
M10. PC2 markedly reduced the number of parameters estimated and 
the time spent to reach convergence. We concluded that two principal 
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components are sufficient to model the structure of genetic covariances 
between test-day milk yields.
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INTRODUCTION

In tropical regions, milk production systems are based on pastures as the main food 
source for animals. In these systems, the genetic material basically comprises dairy Zebu cattle 
and their crossbreds. In Brazil, a National Breeding Program (PNMGL) exists for Gyr dairy 
cattle (Bos indicus), whose main objective is the genetic improvement of the breed through 
the identification and selection of sires that are genetically superior in terms of production, 
conformation and management traits (Verneque et al., 2011). Among the 23 traits evaluated by 
the PNMGL, milk production is certainly the most economically important trait.

Records of daily milk production, generally measured at intervals of 30 days, are used 
for the estimation of 305-day cumulative milk yield (Y305). In Brazil, the latter is applied as a 
selection criterion in genetic evaluations not only of Gyr dairy cattle, but also of other breeds 
such as Guzerat dairy, Girolando and Holstein. At present, there is a consensus to use genetic 
evaluation models that include test-day milk yield (TDMY) instead of Y305, since these mod-
els increase the accuracy of selection (Meyer, 2004) and permit the inclusion of incomplete 
lactations without the need for projections, thus permitting more frequent evaluations and 
reducing the generation interval (Swalve, 2000).

One alternative to the use of TDMY is a multivariate model that considers production 
in each of the 10 months of lactation as a single trait. However, in view of the high computa-
tional requirements and difficulty in accurately estimating a large number of parameters, fit-
ting a genetic evaluation model that includes all 10 traits may be limited (Meyer, 2007a). This 
fact has encouraged the application of reduced rank models at the genetic level, for example, 
principle component analysis (Kirkpatrick and Meyer, 2004). Principal components are uncor-
related variables whose objective is to explain the maximum amount of variation and that are 
obtained by linear combinations of a set of correlated traits (Kirkpatrick and Meyer, 2004). 
Thus, components that show little variation can be ignored, and the number of parameters to 
be estimated is thereby reduced. Another alternative to reduce the number of estimated param-
eters are factor-analytic models (Meyer, 2007a). These models permit us to identify common 
factors that are responsible for the association between traits and that are specific, independent 
and inherent to each trait (Meyer, 2009).

The objective of the present study was to compare standard multivariate, reduced rank 
and factor-analytic models for the analysis of TDMY from first lactations of Gyr dairy cows 
to test their application to genetic evaluations of this breed.

MATERIAL AND METHODS

Data

The data used in the study were extracted from the Brazilian National Dairy Cattle 
Archive. The dataset contained 46,161 TDMY records from 7,453 first lactations of purebred 
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Gyr dairy and crossbred (Gyr dairy x Holstein) cows, daughters of 598 Gyr dairy sires, rang-
ing in age from 24 to 60 months and belonging to 270 herds. Only test-day records comprising 
day 5 to day 305 of lactation were considered. The criteria for inclusion of the cows in the 
study were: first test-day record obtained within 45 days after calving and the number of test-
day records higher than three. In addition, contemporary groups (herd-year-season of test day) 
containing fewer than four cows were eliminated. The months in which the test-day records 
were obtained were divided into four seasons: 1 = rainy season: December to February; 2 = 
transition rainy-dry season: March to May; 3 = dry season: June to August, and 4 = transition 
dry-rainy season: September to November. The cows were divided into five genetic groups: 1 
= 100% Gyr dairy (DG); 2 = 87.5% ≤ DG < 100%; 3 = 75% ≤ DG < 87.5%; 4 = 62.5% ≤ DG 
< 75%, and 5 = 50% ≤ DG < 62.5%. The TDMY records were divided into 10 monthly classes 
of lactation, and each class was considered to be a different trait.

Models

Seven analyses simultaneously considering the 10 traits were performed. First, a stan-
dard multivariate model (M10) was used. Next, three reduced rank models for the additive 
genetic covariance matrix (ΣA), fitting the first 2 (PC2), 3 (PC3) or 4 (PC4) principal com-
ponents, were evaluated. Finally, three models considering a 2- (F2), 3- (F3) or 4-factor (F4) 
structure for ΣA were evaluated.

Additive genetic and residual effects as random effects, as well as the fixed effects of 
contemporary group, genetic group, age of cow at calving (linear and quadratic effects) and 
days in milk (linear effect), were included in all models. 

Standard multivariate model

The following linear mixed model was used:

Y = Xβ + Zu + e (Equation 1)

where y is the vector of observations; β is the vector of fixed effects; u is the vector 
of additive genetic random effects; e is the vector of residual random effects, and X and Z are 
incidence matrices corresponding to the observations for β and u, respectively. It was assumed 
that Var (u) = ΣA ⊗ A, where A is the numerator relationship matrix, and that Var (e) = R, where 
R is the matrix of residual covariances. The equations of the mixed models can be written as 
follows:

(Equation 2)

Reduced rank model

For principal component analysis, model (I) was modified as described by Meyer and 
Kirkpatrick (2005): 

y = Xβ + Z°u° + e (Equation 3)
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where Z° = Z(INA⊗Qm) and u° = (INA⊗Qꞌm)u, with Var (u°) = A⊗Im and Qm = Em(Ʌm)1/2. Here, 
NA is the number of animals included in the analysis; m is the number of principal components 
fitted; E is the matrix (order k x m) of the first m eigenvectors of ΣA, where k is the number of 
traits considered in the analysis, and Λ is the diagonal matrix of the eigenvalues of ΣA. Thus, 
the equations of the mixed models can be written as follows:

(Equation 4)

Factor-analytic model

For factorial analysis, model (I) was modified as described by Meyer (2009):

y = Xβ + Z*c + Zs + e (Equation 5)

where Z* = Z(INA⊗Γm), with Var (c) = Im⊗A and Var (s) = Ψ⊗A. Thus, Γ (order k x m) is the 
factor loading matrix; Ψ is the variance matrix of specific factors (s), a diagonal matrix of 
order k; c is the vector of common factors of length mNA; s is the vector of common factors of 
length km, and m is the number of common factors fitted. The equations of the mixed models 
can be written as follows:

(Equation 6)

Full rank residual covariance matrices (order 10 x 10) were considered in all models tested. 
The covariance components were estimated by the restricted maximum likelihood 

method using the WOMBAT program (Meyer, 2007b).

Model comparison

The models were compared using the maximum log-likelihood function (log L) and 
two information criteria. Akaike’s information criterion adjusted for sample size (AICC) was 
calculated as proposed by Burnham and Anderson (2004):

where p is the number of parameters (variance components) to be estimated, and N is the 
number of observations considered in the analysis. Bayesian information criterion (BIC) was 
calculated as: 

BIC = -2logL + log[N - r(X)]p,

where r(X) is the rank of the coefficient matrix for fixed effects.
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The accuracy of the estimation of a genetic principal component (PC) was evaluated 
as the deviation of the ith eigenvector of the analysis fitting m PC (or factors) in relation to the 
corresponding value obtained with model M10. This deviation was measured as the angle (in 
degrees) between the corresponding eigenvectors (Kirkpatrick and Meyer, 2004):

where ei,m and ei,10 are the ith eigenvectors estimated with the PCm (or Fm) and M10 models, 
respectively, and |.| is the vector norm.

In addition, the models were compared based on similarity between the correlation 
matrices obtained with model PCm (or Fm) and model M10 (Meyer, 2007a):

where rij,m and rij,10 are the correlation estimates between traits i and j obtained with models 
PCm (or Fm) and M10, respectively, and Δr is the square root of the average squared deviation 
of correlations.

RESULTS AND DISCUSSION

The overall mean TDMY was 10.03 kg with a standard deviation of 4.58 kg. The high-
est production was observed in the second month of lactation (Table 1).

Trait (kg)	 N	 Mean	 SD	 aDIM	 NCG

CTD1	 3964	 11.07	 4.27	   18	 653
CTD2	 5469	 11.69	 4.71	   45	 865
CTD3	 5553	 11.19	 4.74	   75	 868
CTD4	 5445	 10.70	 4.73	 105	 855
CTD5	 5207	 10.21	 4.60	 135	 815
CTD6	 4947	   9.66	 4.44	 165	 793
CTD7	 4654	   9.21	 4.23	 195	 748
CTD8	 4262	   8.62	 4.04	 225	 709
CTD9	 3612	   8.27	 3.95	 255	 609
CTD10	 3048	   7.98	 3.95	 285	 513

Table 1. Number of records (N), mean, standard deviation (SD), average days in milk (aDIM), and number of 
contemporary groups (NCG) for the test-day milk yield classes (CTDi) analyzed.

The three largest eigenvalues of the additive genetic covariance matrix obtained with 
model M10 explained 91.14, 6.18 and 1.33% of the total genetic variation between animals. 
These results indicate that a large amount of the genetic variation can be explained by few ei-
genvalues, which are associated with the principal eigenvectors (principal components). This 
result was expected in view of the high genetic correlations between productions during dif-
ferent months of lactation.

Log L increased with increasing number of parameters in the model, with the high-
est value being observed for the full rank model, M10 (Table 2). However, the AICc and BIC 
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values indicated M10 to be the worst model among the models tested (Table 2). According to 
these criteria, the model fitting the first two principal components (PC2), which contained 74 
parameters, was the best. The two criteria simultaneously evaluate goodness-of-fit and degree 
of complexity, and the model chosen showed the best association between goodness-of-fit and 
degree of complexity. Similar results have been reported by Bignardi et al. (2010), who found 
that only two principal components are sufficient to model the structure of genetic covariances 
between TDMY records in Holstein cattle.

Comparison of the log L values obtained for models PCm and Fm showed that the 
improvement in the goodness-of-fit provided by the additional parameters (specific variances) 
of the Fm models was very small. The number of specific variances that explained less than 
0.01% of the phenotypic variation was 5, 7 and 10 for analyses considering 2, 3 and 4 factors, 
respectively. The highest percentage of phenotypic variation explained by a specific variance 
component was 1.43% for TDMY1 using model F2. Since the traits generally show a high 
genetic correlation, common factors are able to explain almost all of the genetic variation be-
tween animals and the addition of specific factors is therefore not necessary, with PCm models 
being preferred over Fm models.

In general, a small increase in total genetic variance and a corresponding decrease in 
total residual variance were observed with an increasing number of parameters in the model 
(Table 2). The angles between the ith eigenvectors were in general very small for all models 
studied. A slightly larger angle was observed for the second eigenvector (Table 2), which 
was however associated with an eigenvalue that only explained a small amount of the total 
variation. Likewise, the similarity between the correlation estimates obtained by PCm (or Fm) 
analysis and those obtained with model M10 were high for all models tested (Table 2).

An eigenvector corresponds to the weights given to original traits when the principal 
component is formed (Meyer, 2007a). The estimates of the first two genetic eigenvectors were 
compared between the PC2 and M10 models (Figure 1). No significant differences were ob-
served between the two analyses, indicating that the direction of the first principal components 
was estimated correctly. The first eigenvector assigned positive and almost constant weights 
to all traits, with its associated breeding value corresponding to the average potential of the 
animal across lactation (Druet et al., 2003). Selection based on the first eigenvector permits 
us to change production across lactation in the same direction. On the other hand, the second 

Model	 P	 log La	 AICc
a			   Genetic			                            Residual

				    BICa	 Σλi	 	 α1	 α2	 Σλi	

PC2	   74	 -9.9	   0.0	     0.0	 15.82	 0.037	 0.8	 4.2	 75.64	 0.005
PC3	   82	 -3.8	   2.0	   36.2	 16.00	 0.029	 0.8	 4.3	 75.46	 0.005
PC4	   89	 -0.4	   5.6	   69.7	 16.15	 0.018	 0.2	 2.4	 75.30	 0.003
M10	 110	  0.0	 26.3	 180.2	 16.44	 0	 0	 0	 75.13	 0
F2	   84	 -3.5	   3.7	   46.5	 16.00	 0.027	 0.6	 4.1	 75.46	 0.004
F3	   92	 -0.2	   8.4	   85.3	 15.99	 0.024	 0.6	 4.7	 75.36	 0.004
F4	   99	 -0.0	 15.2	 122.2	 16.15	 0.018	 0.2	 2.4	 75.30	 0.003

Table 2. Number of parameters (P) for different models, maximum log-likelihood (log L), Akaike (AICc) and 
Bayesian (BIC) information criteria, estimates of the total variation (Σλi), and measures of discrepancy ( , αi) 
to estimates from analysis M10.

PCm = models analysis fitting the leading m principal components; Fm = factor-analytic model with m factors; M10 
= standard multivariate model; avalues scaled as deviation from the respective ‘best’ values;  = square root of the 
average squared deviation of correlations; αi = angle (in degrees) between estimates of the ith eigenvectors.
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eigenvector assigned increasing weights from the beginning (-0.56) to the end of lactation 
(0.54). Selection based on this eigenvector permits us to change the shape of the lactation 
curve (persistency of milk yield) of the population (Olori et al., 1999).

Figure 1. Estimates of the first (A) and second (B) eigenvectors from analysis fitting the first two principal 
components (PC2) and a full rank, standard multivariate analysis (M10).

The phenotypic variance estimates obtained with models M10 and PC2 were closely 
similar and ranged from 8.14 to 10.11 kg2. The highest estimates were observed during the first 
third of lactation. The additive genetic variances showed a similar tendency and ranged from 
1.17 to 2.03 kg2. The heritability estimates obtained with models M10 and PC2 are shown in 
Table 3. Following the tendency of phenotypic and additive genetic variances, heritabilities 
were higher at the beginning of lactation. Similar estimates have been reported by Pereira et al. 
(2010), who studied part of the same population using random regression models. Ledic et al. 
(2002), using TDMY records from the first three lactations of Gyr cattle in two-trait analyses, 
found heritabilities ranging from 0.14 to 0.24. Also using two-trait analyses, Herrera et al. 
(2008) obtained estimates ranging from 0.14 to 0.34 for TDMY of first lactations of Gyr cows. 
The heritabilities estimated with model PC2 and their respective standard errors were closely 
similar to those obtained with model M10.

Model	 CTD1	 CTD2	 CTD3	 CTD4	 CTD5	 CTD6	 CTD7	 CTD8	 CTD9	 CTD10

M10	 0.21	 0.20	 0.20	 0.19	 0.18	 0.17	 0.18	 0.17	 0.15	 0.14
	 (0.04)	 (0.03)	 (0.03)	 (0.03)	 (0.03)	 (0.03)	 (0.03)	 (0.03)	 (0.03)	 (0.03)
PC2	 0.21	 0.20	 0.20	 0.18	 0.18	 0.16	 0.16	 0.16	 0.15	 0.13
	 (0.04)	 (0.03)	 (0.03)	 (0.03)	 (0.03)	 (0.02)	 (0.02)	 (0.03)	 (0.03)	 (0.03) 

Table 3. Estimates of heritabilities and standard errors from the full rank, standard multivariate analysis (M10), 
and that fitting the first two principal components (PC2).
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The genetic correlations between traits (TDMY classes) obtained with the two models 
were also similar, although slightly higher values were estimated with model PC2 (Figure 2). 
This finding can be explained by the fact that correlations between traits are forced to have an 
absolute value of unity when one or few principal components are fitted (Meyer, 2007a). The 
correlations were close to unity between adjacent classes, decreasing to values of about 0.55 
between the first and tenth class. This pattern agrees with those reported by Ledic et al. (2002) 
and Herrera et al. (2008).

Figure 2. Estimates of genetic correlations between the test-day classes CTD1 and CTDi (A); CTD5 and CTDi 
(B); CTD10 and CTDi (C), from analysis fitting the first two principal components (PC2) and a full rank, standard 
multivariate analysis (M10).
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The reduction in the number of parameters estimated was significant for model PC2 
(74 parameters) when compared to model M10 (110 parameters). One advantage of this re-
duced number of parameters is the lower computational requirement for the estimation of 
variance components and genetic evaluation of animals. In addition, model PC2 permitted 
substantially faster convergence than did model M10.

Taken together, these results show that fitting few principal components is sufficient to 
model the covariance structure between TDMY records, probably because of the high genetic 
correlations between most traits (TDMY classes). Although principal component analysis is an 
interesting option in this case compared to standard multivariate analysis (full rank), the num-
ber of parameters to be estimated is still very large. In addition, since genetic evaluations of 
dairy cattle include the simultaneous analysis of milk, fat and protein yield, as well as somatic 
cell scores, the large number of parameters and computational requirements for this type of 
analysis can be a limiting factor. Therefore, further studies using other methods, such as direct 
estimation of principal components with random regression models, are needed to establish the 
best approach to model TDMY and to permit its use in genetic evaluations of Gyr dairy cattle.

CONCLUSIONS

Reduced rank models can be applied to model the structure of covariances between 
TDMY records. The advantage of these models is the reduced number of parameters to be 
estimated. The first two principal components are sufficient to explain most of the genetic 
variation between animals. The use of the factor-analytic model is not indicated in this case 
since the addition of specific variance components does not significantly improve the good-
ness-of-fit of the model. Therefore, a model considering the first two principal components 
is a parsimonious option for the genetic evaluation of Gyr dairy cattle using TDMY under a 
multivariate framework.
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