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I. INTRODUCTION

The first-order Duffin-Kemmer-Petiau (DKP) formal-
ism [1,2] describes spin-0 and spin-1 particles and enjoys
a richness of couplings not capable of being expressed in
the Klein-Gordon (KG) and Proca theories [3,4]. The way
for introducing the minimal coupling has been a subject of
quite some debate. One can introduce the minimal coupling
either at the equation of motion or at the Hamiltonian form
of the DKP theory, and these ways seem not to be equivalent
as already noted by Kemmer in his original work [2]. The
main issue is that when the minimally coupled covariant form
of the DKP equation is written in Hamiltonian form, there
appears an additional term which is called the anomalous
term and additionally the energy-momentum tensor is not
conserved. Ghose [5] suggested that one should introduce
the minimal coupling at the Hamiltonian form of the DKP
theory for avoiding the appearance of the anomalous term,
and a conserved energy-momentum tensor appears as a bonus.
Nowakowski [6] and Lunardi et al. [7] showed that such an
anomalous term disappears when the physical components of
the DKP field are selected. Struyve et al. [8] analyzed the
ambiguity of introducing the minimal coupling and suggested
that despite the nonconservation of the energy-momentum
tensor, we should introduce the minimal coupling via the
covariant form of the DKP equation, in order to obtain
the minimally coupled KG theory. Therefore, there exists a
discrepancy in how to introduce the minimal coupling and
it seems that this discrepancy has still not found a definitive
conclusion.

The main purpose of the present paper is to clarify the
ambiguity of the electromagnetic coupling in the DKP theory.
To achieve this, the continuity equation for a charged boson
minimally coupled to the electromagnetic field is analyzed
by using both the equation of motion and its Hamiltonian

*lrb.castro@ufma.br
†castro@pq.cnpq.br

version. It is shown that the charge quadricurrent Jμ has a
source term when one uses the Hamiltonian version of the
DKP theory. By using a proper set of operators [9] whose
algebraic properties make our conclusions independent of the
choice for representing the DKP matrices, it is also shown
that such a source term disappears from the DKP theory
if one uses the correct physical components of the DKP
spinor as prescribed in [7]. Therefore, it does not matter if
one either put the electromagnetic coupling straight in the
Hamiltonian or in the equation of motion, because the current
is conserved in both versions of the DKP theory. In addition,
some widespread misconceptions about the Hermiticity in the
DKP theory diffused in the literature are discussed.

II. DUFFIN-KEMMER-PETIAU EQUATION

The DKP equation for a free charged boson is given by [2]
(with units in which � = c = 1)

(iβμ∂μ − m)ψ = 0, (1)

where the matrices βμ satisfy the algebra βμβνβλ +
βλβνβμ = gμνβλ + gλνβμ and the metric tensor is gμν =
diag(1,−1,−1,−1). That algebra generates a set of 126 inde-
pendent matrices whose irreducible representations are a trivial
representation, a five-dimensional representation describing
the spin-0 particles, and a ten-dimensional representation
associated to spin-1 particles [10]. The DKP spinor has an
excess of components and the theory has to be supplemented
by an equation which allows one to eliminate the redundant
components. That constraint equation is obtained by multiply-
ing the DKP equation by 1 − β0β0, namely

iβjβ0β0∂jψ = m(1 − β0β0)ψ, j runs from 1 to 3. (2)

This constraint equation expresses three (four) components
of the spinor by the other two (six) components and their space
derivatives in the scalar (vector) sector so that the superfluous
components disappear and there only remain the physical
components of the DKP theory. The second-order KG and
Proca equations are obtained when one selects the spin-0 and
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spin-1 sectors of the DKP theory. The DKP theory has also its
Hamiltonian version in the form (see, e.g., [6,7])

i∂0ψ = Hψ, H = i[βj ,β0]∂j + mβ0. (3)

Note that in this context we can show that H † = H . A
well-known conserved four-current is given by

Jμ = 1
2 ψ̄βμψ, (4)

where the adjoint spinor ψ̄ is given by ψ̄ = ψ†η0 with
η0 = 2β0β0 − 1 in such a way that (η0βμ)† = η0βμ (the
matrices βμ are Hermitian with respect to η0). Despite the
similarity to the Dirac equation, the DKP equation involves
singular matrices, the time component of Jμ given by (4) is
not positive definite, and the case of massless bosons cannot be
obtained by a limiting process [11]. Nevertheless, the matrices
βμ plus the unit operator generate a ring consistent with
integer-spin algebra and J 0 may be interpreted as a charge
density. The factor 1/2 multiplying ψ̄βμψ , of no importance
regarding the conservation law, is in order to hand over a charge
density conformable to that one used in the KG theory and its
nonrelativistic limit [12].

III. INTERACTIONS IN THE DUFFIN-KEMMER-PETIAU
EQUATION

With the introduction of interactions, the DKP equation can
be written as

(iβμ∂μ − m − U )ψ = 0, (5)

where the more general potential matrix U is written in terms of
25 (100) linearly independent matrices pertinent to five (ten)-
dimensional irreducible representation associated to the scalar
(vector) sector. In the presence of interaction, Jμ satisfies the
equation

∂μJμ + i

2
ψ̄(U − η0U †η0)ψ = 0. (6)

Thus, if U is Hermitian with respect to η0 then four-current will
be conserved. The potential matrix U can be written in terms of
well-defined Lorentz structures. For the spin-0 (scalar sector)
there are two scalar, two vector, and two tensor terms [3],
whereas for the spin-1 (vector sector) there are two scalar,
two vector, a pseudoscalar, two pseudovector, and eight tensor
terms [4]. The tensor terms have been avoided in applications
because they furnish noncausal effects [3,4]. The condition (6)
has been used to point out a misleading treatment in the recent
literature regarding analytical solutions for nonminimal vector
interactions [13–15].

A. Duffin-Kemmer-Petiau equation with minimal
electromagnetic coupling

Considering only the minimal vector interaction, the DKP
equation for a charged boson with minimal electromagnetic
coupling is given by

(iβμDμ − m)ψ = 0, (7)

where the covariant derivative is given by Dμ = ∂μ + ieAμ.
In this case, the constraint equation (2) becomes

iβkβ0β0∂kψ − eβkβ0β0Akψ = m(1 − β0β0)ψ, (8)

and the four-current Jμ retains its form as (4). The DKP
theory with minimal electromagnetic coupling has also its
Hamiltonian version in the form (see, e.g., [6,7])

i∂0ψ = Hψ,

H = i[βj ,β0]Dj + eA0 + mβ0

+ ie

2m
Fμν(βμβ0βν + βμg0ν), (9)

with the electromagnetic field tensor given by Fμν = ∂μAν −
∂νAμ. The last term in H is called the anomalous term
because it has no equivalent in the spin-1/2 Dirac theory. For
this reason it has been suggested to put the electromagnetic
coupling straight in the Hamiltonian instead of the equation of
motion [5]. However, it has been shown in Refs. [6,7] that such
an anomalous term disappears when the physical components
of the DKP field are selected. Since

(iF0jβ
jβ0β0)† = −(iF0jβ

jβ0β0) + iF0jβ
j . (10)

H is not equal to H † [16], in opposition to what was adverted
in [6]. Because of this, the Lewis-Riesenfeld invariant method
for studying time-dependent fields is not straightforwardly
applicable as done in Ref. [17], and already criticized in [18].

B. Hamilton form and Hermiticity

At this level, it is worthwhile to note that the Hamiltonian
given by (9) should be Hermitian with respect to η0 and not
with respect a β0 as was stated by Zeleny [19]. Zeleny argued
that an operator, and in particular the Hamiltonian, should be
neo-Hermitian (β0Ô = Ô†β0). Furthermore, Zeleny claimed
that the free Hamiltonian as well as the minimally coupled
Hamiltonian are not neo-Hermitian. Nevertheless, it can be
easily shown that both of them are Hermitian with respect to
η0, and therefore 〈H 〉 is a real quantity.

1. Free case

The Hamiltonian form of the free DKP equation is given
by

i∂0ψ = Hψ, H = i[βj ,β0]∂j + mβ0. (11)

with the constraint equation

iβkβ0β0∂kψ = m(1 − β0β0)ψ. (12)

From the algebra of matrices βμ, it is shown that

[βi,β0]† = [βi,β0]. (13)

Furthermore p̂μ = i∂μ is Hermitian and commutes with the
matrices βμ. With all this, we can show that H † = H . On the
other hand, multiplying (11) by β0 from the left and using the
constraint (12), we obtain

β0H = −iβk∂k + m. (14)

Hermitian conjugation of (14) gives

(β0H )† = iβk∂k + m �= β0H. (15)

022101-2



CORROBORATING THE EQUIVALENCE BETWEEN THE . . . PHYSICAL REVIEW A 90, 022101 (2014)

From this result Zeleny [19] concluded that not even the free
Hamiltonian form is neo-Hermitian; for this reason he tried to
build a neo-Hermitian Hamiltonian. On the other hand, with
the correct criteria it can be shown that

η0(β0H ) = −iη0βk∂k + η0m, (16)

and applying the Hermitian conjugation on (16) we have that

[η0(β0H )]† = iβkη0∂k + η0m = η0(β0H ). (17)

Therefore, the Hamiltonian form of the free DKP theory is
Hermitian with respect to η0.

2. Electromagnetic case

The Hamiltonian form for the minimally coupled case has
the form

i∂0ψ = Hψ,

H = i[βj ,β0]Dj + eA
(1)
0 + mβ0

+ ie

2m
Fμν(βμβ0βν + βμη0ν). (18)

Furthermore, the constraint becomes

iβkβ0β0∂kψ − eβkβ0β0Akψ = m(1 − β0β0)ψ. (19)

Since

(iF0jβ
jβ0β0)† = −(iF0jβ

jβ0β0) + iF0jβ
j , (20)

H is not equal to H †. On the other hand, multiplying (18) by
β0 from the left and using the constraint (19), we obtain

β0H = −iβk∂k + eβkAk + eβ0A0 + m. (21)

Taking the Hermitian conjugation of (21) we have

(β0H )† = iβk∂k − eβkAk + eβ0A0 + m �= β0H, (22)

similarly to the free case. On the other hand, it can be shown
that

η0(β0H ) = −iη0βk∂k + eη0βkAk + eβ0A0 + η0m (23)

and, applying the Hermitian conjugation in (23), we obtain

[η0(β0H )]† = iβkη0∂k − eβkη0Ak + eβ0A0 + η0m

= η0(β0H ). (24)

Therefore, the Hamiltonian form with electromagnetic
interaction of the DKP theory is Hermitian with respect to
η0. Therefore, we can conclude that the operator H of the
Hamiltonian form with electromagnetic interaction is neither
Hermitian in the standard sense (for the sake of the anomalous
term) nor with respect to β0. It does not matter; H should
be Hermitian with respect to η0 in order to provide real
eigenvalues.

IV. FOUR-CURRENT CONSERVED

Returning to the ambiguity with the electromagnetic
coupling, let us begin with the equation of motion. The
conservation law for Jμ follows from the standard procedure

of multiplying (7) and its complex conjugate by ψ̄ from the left
and by η0ψ from the right, respectively. On the other hand, by
carrying through calculations similar to those using the DKP
equation, the Schrödinger-like equation (9) leads to

∂μJμ = [(Dj )∗ψ̄]β0β0βjψ + ψ̄βjβ0β0Djψ

= (∂j ψ̄)β0β0βjψ + ψ̄βjβ0β0(∂jψ)

+ ieAj ψ̄[βj ,β0β0]ψ. (25)

In this case, one sees that the malediction of a source term falls
on Jμ.

Up to this point the physical components of the DKP spinor
have not come into the story at all. The contradictory results
involving the source terms can be solved by following the
prescription put forward in Refs. [6,7]. Instead of working
with a specific representation for the matrices βμ we choose
an alternative way.

A. Scalar sector

To select the physical component of the DKP field for the
scalar sector (spin-0 sector), we define the operator [20]

P = −(β0)2(β1)2(β2)2(β3)2, (26)

which satisfies P 2 = P , P μ = Pβμ, and νP = (P ν)† = βνP .
As it is shown in [20], Pψ and P μψ transform as a
(pseudo)scalar and a (pseudo)vector under an infinitesimal
Lorentz transformation, respectively.

The spin-0 sector can be expressed by the set of operators
{P, μP,P μ, μP ν} with the properties [9]

P (P μ) = P μ, (μP )P = μP,

(P μ)P = P (μP ) = 0, (27)

(μP )(P ν) = μP ν, (P μ)(νP ) = gμνP .

Hence

P ( μP ν) = ( μP ν)P = 0, (P μ)(P ν) = (νP )(μP ) = 0,

βμ = P μ + μP, ψ̄P = (Pψ)†, (28)

in such a way that the DKP equation becomes

Dμ(P μψ) = −im(Pψ), Dμ(Pψ) = −im(P μψ), (29)

which provides

(DμDμ + m2)(Pψ) = 0, (DμDμ + m2)(P νψ) = 0. (30)

These results tell us that all elements of the column matrices
Pψ and P μψ obey the KG equation with minimal coupling
and that P μψ is expressed in terms of the covariant derivative
of Pψ . Then, acting P upon the spinor DKP ψ selects the
scalar sector of DKP theory, making explicitly clear that it
describes a spin-0 particle embedded in a electromagnetic
field. Following this innovative view of the DKP spinor,
Ref. [7] shows that the redundant components of ψ are
projected out, ψ and Pψ are both compatible with gauge
invariance, and the anomalous term in the Hamiltonian version
has no physical consequence. Now, we return our attention to
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the DKP current. The P algebra implies that

Jμ = 1

2
ψ̄(P μ + μP )ψ

= i

2m
{(Pψ)†[Dμ(Pψ)] − [(Dμ)∗(Pψ)†](Pψ)}

= i

2m
{(Pψ)†[∂μ(Pψ)] − [∂μ(Pψ)†](Pψ)}

− e

m
Aμ(Pψ)†(Pψ). (31)

This is nothing but the KG current. In other words, the DKP
current is equivalent to the KG current. Hence ∂μJμ = 0, as
derived from the DKP equation, can be seen as a natural result.
Indeed, it follows from the P algebra that

β0β0βj = P j , βjβ0β0 = jP . (32)

Thus (25) can be written as

∂μJμ = [(Dj )∗ψ̄]P jψ + [ψ̄(jP )]Djψ

= i

m
{[(Dj )∗(Pψ)†]Dj (Pψ) − [(Dj )∗(Pψ)†]Dj (Pψ)}

= 0. (33)

B. Vectorial sector

Now we discuss the vector sector (spin-1 sector) of the DKP
theory. Similar to the scalar sector, we can select the physical
components of the DKP field for the spin-1 sector, so we define
the operator [20]

Rμ = (β1)2(β2)2(β3)2[βμβ0 − gμ0], (34)

which satisfies Rμν = Rμβν and Rμν = −Rνμ. As it is
shown in [20], Rμψ and Rμνψ transform as (pseudo)vector
and (pseudo)tensor quantities under an infinitesimal Lorentz
transformation, respectively.

The spin-1 sector can be expressed by the set of operators
{μV ν, μV νλ, νλV μ, νλV μσ } [9], with

μV ν = (μR)(Rν), μV νλ = (μR)(Rνλ),
(35)

νλV μ = (νλR)(Rμ), νλV μσ = (νλR)(Rμσ ),

where

(Rμ)(νR) = (R0)gμν, (Rμ)(Rνλ) = (Rνλ)gμ0,

(Rμ)(Rν) = (Rν)gμ0,
(36)

(Rμν)(λR) = (Rμ)(νλR) = (Rμν)(Rλ) = 0,

(Rμν)(λσR) = (R0)	μνλσ , 	μνλσ = gμσgνλ − gμλgνσ .

In view of (36) one has

(μV νλ)(ρσV τ ) = (μV τ )	νλρσ ,

(μV νλ)(τV ρσ ) = (νλV μ)(ρσV τ ) = 0,
(37)

βμ =
∑

λ

(μλV λ + λV λμ),

ψ̄(R0) = (R0ψ)†η00, ψ̄(i0R) = (Ri0ψ)†η00,

in such a way that the DKP equation becomes

Dμ(Rνμψ) = −im(Rνψ), (Rμνψ) = − i

m
Uμν,

(38)
Uμν = Dμ(Rνψ) − Dν(Rμψ),

which leads to

DμUμν + m2(Rνψ) = 0,
(39)

Dμ(Rμψ) = ie

2m2
FμνU

μν.

These results tell us that all elements of the column matrix
Rμψ obey the Proca equation interacting minimally with an
electromagnetic field. So, similar to the scalar sector, this
procedure selects the vector sector of DKP theory, making
explicitly clear that it describes a spin-1 particle embed-
ded in an electromagnetic field. A little calculation shows
that

Jμ = 1

2

∑

λ

ψ̄(μλV λ + λV λμ)ψ

= 1

2

∑

λ

ψ̄(λR) (Rλμψ) + 1

2

∑

λ

ψ̄(μλR)(Rλψ)

= − i

2m

∑

λ

[(Rλψ)(Uμλ)∗ − ψ̄(λR)Uμλ], (40)

which shows that Jμ is completely equivalent to the Proca
current. Moreover, in order to evaluate ∂μJμ we use the
relations

β0β0βi =
∑

λ

(λR)(Rλi) − (0R)(R0i) − (0iR)(R0),

(41)
βiβ0β0 =

∑

λ

(Riλ)(Rλ) − (i0R)(R0) − (iR)(Ri0),

so that (25) results in

∂μJμ = ψ̄(R0)Di (R0iψ) + [D∗
i ψ̄(i0R)] (R0ψ)

= − (R0ψ)†Di (R0iψ) − [D∗
i (Ri0ψ)†] (R0ψ)

= 0. (42)

Again, the correct physical components of the DKP spinor
make Jμ conserved if one uses either the equation of motion or
the Hamiltonian. Therefore, there is no problem in introducing
the minimal coupling in the equation of motion or in the form
Hamiltonian, because these two ways provide a conserved
four-current. Recently, the projectors P , P μ, Rμ, and Rμν

have satisfactorily been used to find analytical solutions for
spin-0 and spin-1 particles [21,22].

V. FINAL REMARKS

In summary, using the conservation of the four-current
and the correct interpretation of the physical components
of the DKP spinor, we tried to clarify the ambiguity of the
electromagnetic coupling in the DKP theory. From this point
of view, the ambiguity seen by Kemmer in his original work [2]
does not exist, because the current is conserved in both versions
of the DKP theory if one uses the correct physical components

022101-4



CORROBORATING THE EQUIVALENCE BETWEEN THE . . . PHYSICAL REVIEW A 90, 022101 (2014)

of the DKP spinor as prescribed in [7]. Therefore, it does
not matter if one either put the electromagnetic coupling
straight in the Hamiltonian or in the equation of motion.
Furthermore, Jμ reduces to the KG current or to the Proca
current when one selects the appropriate sector of the theory,
as should be expected from equivalent theories. Thanks to the
algebraic properties of the projectors developed in [9] neither
representation for the DKP matrices was used for reaching
this conclusion, even if the physical fields depend on the
explicit representation of the DKP matrices. Also, we analyzed
the Hermiticity of the Hamiltonian and we showed that the
operator H of the Hamiltonian form is neither Hermitian in
the usual sense nor with respect to β0 as argued by Zeleny [19].
As a matter of fact, the operator H should be Hermitian with

respect to η0, [η0(β0H )]† = η0(β0H ), in order to provide real
eigenvalues. Finally, our results corroborate and complement
the results presented in [6,7] and also they shed some light on
some widespread misconceptions about the Hermiticity of the
Hamiltonian form in the DKP theory.
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