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Abstract
Alterations in stream environments can alter fish food availability, but there is little research data related to the impacts of
urbanization on fish diets in tropical streams. Thus, we sought to compare the diet of ten fish species in urbanized and non-
urbanized streams reaches. Fish stomach contents were obtained for four urban and five non-urban stream reaches from two
medium-sized cities. We verified the similarity of diet composition from urbanized/non-urbanized streams. In-stream features
mainly related to the substrate highlighted a perturbation gradient: gravel, pebbles and cobbles were associated to the wider urban
reaches while silt were representative in the narrow pools from non-urban streams. Fishes changed their diet in response to urban and
non-urban treatments. Omnivorous fishes consumed more detritus and Chironomidae and less terrestrial adult insects in urban
reaches, while invertivorous fish consumedmore terrestrial adult insects and Trichoptera larvae in the non-urbanized stream reaches.
Although the management of the physical structure of streams in Brazil has been basically focused on riparian reforestation, our
results suggest that a restoration plan for urban streams cannot be limited to reforestation of its surroundings, but also need to
consider the physical structure of the channel, especially the substrate, which contributes to promote in-stream variability.
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Introduction

South American freshwaters are characterized by high biodi-
versity, which is threatened by multiple social and economic
pressures (Dudgeon et al. 2006; Barletta et al. 2010). Among
these, urbanization is one of the major conservation chal-
lenges for stream fauna (Allan 1995; Paul and Meyer 2001).
The substitution of natural land cover by anthropogenic con-
struction often causes channel modification, which in turn can
alter the resident aquatic fauna (Lammert and Allan 1999;
Nerbonne and Vondracek 2001; Esselman and Allan 2010;
Cunico et al. 2012; Cruz et al. 2013; Casatti et al. 2015).
Changes in assemblage composition, trophic structure and in
the reproductive guilds are reported as consequences of urban-
ization on ichthyofauna (Helms et al. 2005; Cunico et al.
2006; Roy et al. 2006; Peressin and Cetra 2014). However,
despite widespread alteration of stream fish by urbanization,
most studies are focused on water quality and broad environ-
mental issues such as human health (Francis 2012).
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Substrate composition, meso-habitat availability and ripar-
ian vegetation integrity can alter fish assemblages directly, by
offering shelter, feeding and spawning habitat and nursery
sites (Casatti et al. 2006) or indirectly, by influencing food
availability (Luiz et al. 1998; Bojsen and Barriga 2002;
Bojsen 2005; Wantzen et al. 2008; Lorion and Kennedy
2009; Ferreira et al. 2012). These environmental properties
influence algae (Daruich et al. 2013; Hlúbiková et al. 2014),
macrophytes (Suren 2000; Karpova and Klepets 2014) and
aquatic invertebrates (Jacobsen et al. 2008; Vermonden et al.
2009; Collier 2014) assemblages, thus it is reasonable to
suppose that urbanization also can lead to changes in
food availability to the fish.

Fish trophic structure is usually an important indica-
tor of environmental health (Casatti et al. 2009a), thus,
dietary studies along environmental gradients may im-
prove the understanding of fish assemblage response to
urban disturbance. The trophic plasticity of Neotropical
fish allows their adaptation to changes in food supply
and has been documented in the literature (e.g. Araujo-
Lima et al. 1995; Lowe-McConnell 1999). According to
these authors, Neotropical fishes have great alimentary
flexibility in time and space, which allows fairly rapid
adaptation to change in food supply. Thus, fish diet
reflects the availability of food (Rezende et al. 2013;
Tófoli et al. 2013), and resource availability can be studied
analyzing fish stomach contents (Zeni and Casatti 2014). The
trophic status of species should also be considered in
diet studies to detect shifts in food avalilability, since
previous work have shown that this introduces variability
(Abujanra et al. 2009; Luz-Agostinho et al. 2009; Sato and
Godinho 1999).

The well-defined physical structure and small size of
streams make them good models for evaluating the effect of
physical impacts on aquatic communities (Herder and
Freyhoff 2006). According to Ramírez et al. (2008), there is
still basic knowledge to be acquired before understanding how
the ichthyofauna of tropical streams responds to anthro-
pogenic impacts. Although there are many studies on
the impacts of urbanization on streams, they are heavily
concentrated in North America, Europe and Asia (Francis
2012), comprising mainly temperate streams. However, there
is evidence that the food resource availability and fish trophic
structure of tropical streams are different compared to temper-
ate streams (Boulton et al. 2008). The relative paucity of stud-
ies on the impacts of urbanization on Neotropical streams
indicates a critical knowledge gap. Therefore, this study
sought to evaluate changes in fish diets in urban and
non-urban streams.

Specifically, we seek to answer the following questions: 1-
Does urbanization alter fish diet? 2- Do individual fish species
show flexibility in their diet in response to urbanization? And
3- Are changes in diet related to environmental variables?

Materials and methods

Study area and field sampling

All streams in this study are tributaries of the Upper
Paranapanema River basin, southwestern region of the state
of São Paulo (Fig. 1). The study area encompasses the cities of
Pilar do Sul and SãoMiguel Arcanjo.We sampled nine stream
reaches, between August and December 2010 and 2011. The
choice of streams was primarily based on the proximity of
urban or non-urban areas. Three streams were inside in the
urban area of Pilar do Sul (U1, U2, U3), and one of São
Miguel Arcanjo (U4) (Fig. 1). For the five non-urban (NU)
reaches, we selected reaches without upstream urban develop-
ment. We selected wadeable streams to allow the use of elec-
trofishing. The urban portion of Pilar do Sul has 13.00 km2

where 20,731 inhabitants live (Population density = 1594.69/
km2) and the urban area of SãoMiguel Arcanjo has 18.32 km2

supporting a population of 21,499 inhabitants (Population
density = 1173.53/ km2) (Fundação SEADE 2013). The cities
of Pilar do Sul and São Miguel Arcanjo collected 97% and
92% of its sewage during 2006 and both cities treat 100% of
the sewage collected. In non-urban area, there was a predom-
inance of natural vegetation and agricultural activities, mainly
pastures formed by Brachiaria sp. and reforestation by
Eucalyptus spp. Fragments of semi-deciduous tropical forest,
cerrado and lowland forests compose the natural vegetation,
covering 15% of the basin area.

Fish sampling and environmental data

Fish were collected during the dry season in August–
November 2010/11 during daytime hours by electrofishing
using a portable gasoline generator (Yamaha EF2600 model,
2.3 kVA, 60 Hz) linked to a current rectifier. In each stretch, a
single downstream-upstream sweep was performed, without
block nets at the upper and lower limits. We selected streams
stretches of 70 m in length presenting at least one pool-and-
riffle sequence, which provides a heterogeneous physical en-
vironment that is utilized by many different types of organ-
isms (Fryirs and Brierley 2013). In the dry season, the rela-
tionship between fish assemblages and water conditions in the
streams was expected to be more robust, since flows are lower
and fish can be captured more efficiently (Pinto et al. 2006;
Pease et al. 2012). Furthermore, this ensured only direct dis-
persal interactions between sites, with no confounding in the
data through multiple dispersal events, which occurs in the
rainy season (Cottenie 2005). This sampling protocol has been
efficiently used to collect fishes inhabiting small (width ≈ 5m)
tropical headwater streams (Gonçalves and Braga 2012;
Ferreira et al. 2014).

We measured 18 variables to characterize the stream reach
environment. Bank stability was visually estimated as the
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percentage of rocks, tree roots, tree trunks, steep slopes, and
exposed soil in both banks at three transects positioned per-
pendicular to the 70-m reach. Transects were separated by 20–
25m and selected to represent upper, middle, and low sections
of the reach. Shading was visually estimated as the percentage
of shaded and lighted areas within the 70-m stream reach. To
characterize the riparian vegetative zone, we visually estimat-
ed the percentage (%) of the site-scale riparian vegetation
within a 30 m along both sides of the sampling reach.

Channel morphology and flow velocity were recorded dur-
ing onsite surveys and were taken at 1-m intervals in the three
transects. Channel morphology was defined in terms of the
mean of the width and depth measurements. Flow velocity
was measured with a mechanical General Oceanics model
2030 flowmeter at the middle of the water column and de-
scribed in terms of mean values recorded every meter along
the three transects. The percentage of the meso-habitats runs,
riffles and pools (sensu Harding et al. 2009) were visually
estimated. Substrate composition included the percentage of
silt, sand, gravel, pebbles, cobbles, and boulders estimated at
1-m intervals along transects. To measure substrate variables,
we visually estimated the composition of consecutive 1-m2

plots along each transect and scored substrate composition
in an ordinal scale as 1, 2, 3, or 4, meaning <25, 26–50, 51–
75, >75 percentage composition, respectively. Physical and
chemical variables including temperature, pH and conductiv-
ity were measured once at a single point near a bank of the
middle transect using portable analytical equipment (Marte
MB-10P and Marte MB-11P).

Stomach content analysis

In the laboratory, fish were dissected and only full stomachs
were removed, weighed (g) and stored in 70% ethanol.
Stomach contents were identified at the lowest possible taxo-
nomic level (generally family level). For diet analysis, food
items were assigned values according to the method of Degree

of Food Preference (DFP) (Braga 1999). For the calculation of
DFP we first assigned values of importance of each of the
items in the fish stomachs. Value of 4 is assigned in the case
that only one item is present in the stomach. In cases where
there was more than one item in the stomach, values 3, 2 or 1
were assigned, according to the relative proportion of the item
in the stomach contents analyzed. The most abundant item
was assigned value 3; the least abundant was assigned value
1 and the intermediate item was assigned value 2. In cases
where >3 items were present, two or more was assigned the
same value, according to the method described above. A DFP
value was calculated for each stomach item according to the
following: DFP = S(i)/N, where S(i) is the sum of the values
assigned to each item i and N is the total number of analysed
stomachs.

Data analysis

A Principal component analysis (PCA) was used to reduce the
dimensionality of the environmental data. The variables were
standardized by maximum, and the number of principal com-
ponents was determined by the broken-stick method.

Fish species were assigned to trophic categories based on
the literature. In stomach content analysis, we consid-
ered five items: vegetal material (fruits, seeds and leaves),
detritus, terrestrial adult insect (adults of Coleoptera, Diptera,
Ephemeroptera and Hymenoptera), Trichoptera larvae and
Chironomidae larvae. Trichoptera larvae was chose becaused
this taxa is often pointed as good health environmental indi-
cator (Collier 1995; Cavaca et al. 2014), while Chironomidae
larvae - although being also an important resource for fish in
natural environments (Rezende et al. 2013), is a family
with species recognized by their tolerance to environmental
degradation (Lammert and Allan 1999; Nerbonne and
Vondracek 2001).

Considering only species sampled in urban and non-urban
stream reaches, the similarity in DFP profiles was determined

Fig. 1 Non-urban (NU) and
urban (U) sites located in Pilar do
Sul (PS) and São Miguel Arcanjo
(SMA) municipalities (Brazil)
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using the Bray-Curtis distance metric. Non-metric multidi-
mensional scaling (NMDs) was performed separately on ur-
ban vs non-urban, and the point clouds were aligned using
Procrustes and a procrustes superimposition plot was per-
formed (Peres-Neto and Jackson 2001). Procrustes analysis
attempts to stretch and rotate the points in one matrix
(non-urban), such as points obtained by NMDs, to be as
close as possible to points in the other matrix (urban),
thus preserving the relative distances between points within
each matrix. To verify if the concordance between the two
matrices is not bigger than expected at random we used the
Protest. The Protest uses a correlation-like statistic derived
from the symmetric Procrustes sum of squares and tests the
non-randomness between two configurations (functions pro-
crustes and protest, vegan R-package, R Core Team 2013;
Oksanen et al. 2017).

In order to check for differences in diet composition be-
tween urban and non-urban reaches and between the
omnivorous and invertivorous trophic categories, a non-
parametric multivariate analysis of variance of two factors
(Two-way PERMANOVA) was applied, with 99,999 replica-
tions and Bray-Curtis similarity index (α <0.05). A percentage
of similarity analysis (SIMPER) was used to check the
total dissimilarity of diet composition and the average
abundance of each item between urban and non-urban
sections (Hammer et al. 2011).

Results

Stream reaches were environmentally heterogeneous
(Table 1). The first two principal components from a PCA of
environmental variables explained 65% of the total variation
in the data set. The PCA1 represented a perturbation gradient
and urban and non-urban stream reaches formed two visually
distinct groups (Fig. 2). The PCA1 axis was negatively repre-
sented by width, gravel, pebbles and cobbles and was posi-
tively associated with percent pools and silt (Table 2).

Considering only species sampled in both urban and non-
urban stream reaches, we captured 782 specimens belonging
to three orders, five families and 10 species. One hundred and
thirty-eight specimens had full stomachs that were analyzed
(Table 3).

The DFP profiles of the species sampled in urban and non-
urban stream reaches do not have similar patterns (r = 0.4825,
p = 0.192). The omnivorous Astyanax bockmanni and
Phalloceros reisi have great residual values. On the other
hand, the invertivorous Cetopsorhamdia iheringi, Piabina
argentea and Pimelodella avanhandavae have small residual
values (Table 4 and Fig. 3).

Considering both trophic categories, all items were con-
sumed in urban and non-urban reaches, but in different
amounts. Vegetal material was consumed in higher amounts

in non-urban reaches and mainly by omnivorous. Only om-
nivorous fish consumed detritus, presenting a higher DFP
for this item in urban reaches. Omnivores consumed
Trichoptera larvae only in non-urban reaches. As omnivorous,
invertivorous fish consumed a higher DFP of terrestrial adult
insects in non-urban reaches. Omnivorous and invertivorous
fish consumed more Chironomidae larvae in urban reaches
(Table 5).

Fig. 2 Ordination plot of the PCA analysis with environmental variables.
+ non-urban and * urban stream reaches

Table 1 Median, minimum and maximum values of the environmental
variables

Variable Median Min Max

Channel morphology Width (m) 4.7 2.1 10.5

Depth (cm) 36.0 11.2 50.2

Flow velocity Velocity (ms−1) 0.40 0.15 0.86

Mesohabitat Riffles (%) 86 45 100

Run (%) 0 0 40

Pool (%) 11 0 50

Substrate composition Silt (%) 4 0 20

Sand (%) 8 0 15

Gravel (%) 9 0 36

Pebbles (%) 16 0 28

Cobbles (%) 11 0 46

Boulders (%) 2 0 58

Bank stability Stability (%) 50 10 100

Shading Shading (%) 71 35 100

Riparian vegetation Riparian (%) 5 0 100

Water Conductivity (μS/cm) 30.3 24.1 128.3

pH 7.2 6.0 7.4

Temperature (°C) 18.3 16.3 21.5
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In two-way PERMANOVA, omnivores vs. invertivores
and urban vs. non-urban sections were statistically different
in the diet of the fish. There was significant interaction be-
tween sources of variation trophic category and urbanization
(Table 6).

The total average dissimilarity of diet composition between
urban and non-urban sections was of 82.75%. Detritus and
Chironomidae larvae predominated in urban reaches while
terrestrial adult insect, vegetal material and Trichoptera larvae
prevailed in non-urban reaches (Table 7).

Table 3 Species and code,
number of individuals
(individuals) and number of
stomachs (stomachs) analyzed in
urban (U) and non-urban (NU)
reaches. Total ind = total number
of individuals; Total sto = total
analyzed stomachs. 1 = Casatti
et al. (2009b); 2 = Casatti et al.
(2012); 3 = Silva et al. (2012);
4 = Smith et al. (2013)

Species (code) Individuals Stomachs Total ind Total sto Trophic category

U NU U NU

Characiformes

Characidae

Astyanax bockmanni (Aboc) 74 15 12 8 89 20 Omnivorous2

Astyanax fasciatus (Afas) 48 37 11 13 85 24 Omnivorous2

Piabina argentea (Parg) 5 21 4 11 26 15 Invertivorous1

Crenuchidae

Characidium gomesi (Cgom) 9 19 5 3 28 8 Invertivorous2

Characidium zebra (Czeb) 2 21 2 6 23 8 Invertivorouss2

Siluriformes

Heptapteridae

Cetopsorhamdia iheringi (Cihe) 4 11 1 3 15 4 Invertivorous2

Imparfinis mirini (Imir) 130 29 14 2 159 16 Invertivorous2

Pimelodella avanhandavae (Pava) 91 140 8 9 231 17 Invertivorous2

Loricariidae

Rineloricaria pentamaculata (Rpen) 3 22 3 4 25 7 Omnivorous3

Cypronodontiformes

Poeciliidae

Phalloceros reisi (Prei) 77 24 11 8 101 19 Omnivorous4

Total 443 339 71 67 782 138

Table 2 PCA output and variables scores (correlation values more than
0.7 in italic)

PCA1 PCA2

Variance 7.27 4.34

Broken-stick value 6.11 3.86

Cumulative variance explained 0.40 0.65

Width −0.73 0.26

Depth −0.08 −0.02
Velocity −0.35 −0.52
Riffles −0.24 0.74

Run −0.51 −0.56
Pool 0.73 0.12

Silt 0.67 0.00

Sand −0.20 −0.39
Gravel −0.76 −0.02
Pebbles −0.75 0.07

Cobbles −0.64 −0.39
Boulders −0.40 0.66

Stability −0.36 0.45

Shading −0.56 0.32

Riparian −0.35 0.60

Conductivity −0.54 −0.23
pH 0.52 0.35

Temperature −0.10 −0.28

Table 4 Pointwise residuals for each species from urban and non-urban
stream reaches

Species Residual values

Astyanax bockmanni 1.57

Astyanax fasciatus 0.57

Piabina argentea 0.45

Characidium gomesi 0.54

Characidium zebra 0.70

Cetopsorhamdia iheringi 0.19

Imparfinis mirini 0.78

Pimelodella avanhandavae 0.45

Rineloricaria pentamaculata 1.00

Phalloceros reisi 1.43
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Discussion

Fish diet in the upper Paranapanema River basin changed in
response to urbanization. Urbanization lead invertivores fish
to consume less terrestrial adult insects and Trichoptera larvae
in urban sections. Omnivores, in turn, consumedmore detritus
and Chironomidae larvae in urban sections. The higher con-
sumption of terrestrial insects and plant material by
invertivores and omnivores in non-urban streams reflects
good habitat quality, as well as the greater consumption of
detritus in urban streams is related to a more disturbed habitat.
Aquatic environments in non-urban areas, often have fish with
specialized habits (e.g. terrestrial insectivores, benthonic, in-
tolerant to oxygen-poor water, rheophilic species), unlike the
fish of typically urban degraded streams (detritivores and om-
nivores, surface and tolerant species) (Casatti et al. 2012).

Thus, detritivores, algivores or aquatic insectivores fish are
common feeding habits in homogeneous streams while a
greater diversity of trophic guilds is expected in heteroge-
neous streams (Zeni and Casatti 2014), reflecting an environ-
ment with better resources, as in non-urban streams.

In-stream features, especially substrate were related with a
perturbation gradient: gravel, pebbles and cobbles were asso-
ciated to the wider urban reaches, while silt were representa-
tive of the narrow pools from non-urban streams. Despite the
importance of riparian forest as the main source of allochtho-
nous resources (Pusey and Arthington 2003), land use in
many hydrographic basins will continue to be used in human
activities, such as agriculture and livestock. Therefore, conser-
vation measures should be encouraged (see examples in
Casatti et al. 2015) to stimulate the increase of in-stream var-
iability if it is intended to promote fish diversity avoiding
functional redundancy (Bordignon et al. 2015; Casatti et al.
2015; Ceneviva-Bastos et al. 2017).

Flexible diets are one of the most striking features of
Neotropical fish (Lowe-McConnell 1999). Fish may change
food consumption in response to food supply as a result of
environmental fluctuations (Abelha et al. 2001). Fish species
with generalist and opportunistic feeding habits are more

Fig. 3 Procrustes analysis of 10 species DFP sampled in urban and
non-urban stream

Table 6 Two-way non-parametric multivariate analysis of variance
(Two-way PERMANOVA) for urbanization (urban x non-urban reaches)
and for trophic categories (Omnivores x invert ivores) .
SS = sum of squares; DF = Degrees of freedom; MS = mean square;
Statistical test = F; p = probability value. 99.999 permutations and
α = 0.05

Source SS DF MS F P

Urbanization 3.03 1 3.03 10.90 0.00001*

Trophic category 8.88 1 8.88 31.87 0.00001*

Interaction 0.62 1 0.62 2.24 0.00244*

Residual 37.32 134 0.28 – –

Total 49.86 137 – – –

*indicates significant p values; Bray-Curtis similarity index

Table 5 Degree of food preference (DFP) for each item and trophic
category in urban (U) and non-urban (NU) stream reaches. N = number
of stomachs in which the item was present

Item Omnivore Invertivore

DFP N DFP N

U NU U NU U NU U NU

Vegetal material 0.49 1.33 10 18 0.12 0.29 4 4

Detritus 2.24 1.24 23 11 0 0 0 0

Terrestrial adult insects 0.22 0.55 4 7 0.24 1.44 3 14

Trichoptera larvae 0 0.03 0 1 0.15 0.41 3 9

Chironomidae larvae 0.59 0.12 13 1 2.35 0.91 28 16

Table 7 Percentage of similarity analysis (SIMPER) for food items
consumed by the fish in four urban and five non-urban reaches. Overall
average dissimilarity: 81.92%. U =Mean abundance in urban sections;
NU=Mean abundance in non-urban sections

Item Contribution Cumulative % U NU

Chironomidae larvae 23.92 29.2 1.44 0.52

Detritus 21.54 55.5 1.17 0.61

Terrestrial adult insect 15.98 75 0.23 1

Vegetal material 15.84 94.34 0.31 0.81

Trichoptera larvae 4.64 100 0.07 0.22
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tolerant to habitat alterations than specialist species. The spe-
cies A. bockmanni and A. fasciatus, were more abundant in
urban streams, omnivores and representatives of the
Characidae family. Among the Neotropical fishes, many char-
acins stand out for having omnivorous food habits and for
great feeding plasticity (Barros et al. 2016). It is possible that
these characins are benefited from the changes in food supply
caused by urbanization in these streams. On the other hand,
the South American darters (Crenuchidae family) are general-
ly more specialized (e.g. insectivores) and consequently sen-
sitive, as well as some species of small catfishes of the family
Heptapteridae (Casatti et al. 2012).

Detritus plays an important role in aquatic systems, affect-
ing the trophic structure of communities (Moore et al. 2004).
Detritus increased its importance in urbanized areas, as seen
elsewhere (Oliveira and Bennemann 2005; Bonato et al.
2012). Only omnivorous fish as Phalloceros reisi consumed
high proportion of detritus in urban reaches. Considering the
low nutritional value and digestibility of detritus in relation to
other items (Bowen 1983), we inferred that the increase in
consumption was due to its higher availability compared to
other items. Fish diets usually correspond to the availability of
the food resources, while maintaining some differences related
to its preference or easiness of catching the food (Maroneze
et al. 2011). In continental waters of the southeastern region of
Brazil, Phalloceros species are common and well adapted to
the lentic environments (Lucinda 2008). In addition, tolerant
species may be favored by habitat modifications as a result of
anthropogenic actions (Morgan and Cushman 2005) that often
reduce environmental variability, as discussed. Aquatic habi-
tats may be physically altered by detritus (Casatti et al. 2012),
which may facilitate or inhibit the presence of fish species
(Zeni and Casatti 2014). Land use alteration can increase
availability of detritus and favor omnivorous and opportunis-
tic fish (Noel et al. 1986).

Chironomid larvae also increased its importance in urban
reaches compared to non-urban sections, for both invertivores
and omnivores. Although Chironomid is a family rich in spe-
cies and with distinct ecological adaptations, it is also recog-
nized by its tolerance to environmental degradation (Pedersen
and Perkins 1986; Lammert and Allan 1999; Callisto et al.
2001; Nerbonne and Vondracek 2001; Cavaca et al. 2014),
although the Chironomidae family is rich in species, with
distinct ecological characteristics. Probably, the increase of
chironomid larvae consumption may be due to its higher
abundance in urban sections or even the reduction of other
resources, which makes fish dependent on fewer taxa.

Changes in diet may also occur because of changes in for-
aging tactics (Casatti et al. 2009a; Teresa and Casatti 2012).
The Heptapteridae and Crenuchidae species present in this
study are benthivorous fish with specialized bodymorphology
that allow them to forage in runs among branches, rocks,
pebble and boulder (Uieda and Pinto 2011; Rezende et al.

2013), and favors the obtaining of food in places inaccessible
to other species (Cetra et al. 2011). In this sense, these
invertivorous species can have their foraging efficiency re-
duced by the presence of fine-grained substrates, such as silt.
In fact, the decline of invertivorous fish in an expected re-
sponse to deterioration of the natural condition of the substrate
or siltation (Casatti et al. 2009b; Cetra et al. 2011; Cruz et al.
2013; Krause et al. 2013). Otherwise, fish that are capable to
forage in midwaters, capturing items adduced by the current
(Characidae species, especially Astyanax) (Ferreira and
Casatti 2006) or surface foragers as Phalloceros reisi (person-
al observation), would not have compromised their feeding
activity by these substrate modification. Additionally, car-
ried sediments can remain in suspension and increase
turbidity of the water (Nerbonne and Vondracek 2001),
compromising the foraging of visually-oriented fish
(Pringle and Hamazaki 1998).

Urbanization affected fish assemblages by altering the
stream environment and food availability, resulting in changes
in fish diets. The substrate composition was essential to main-
tain sensitive fish species in temperate streams (Roy et al.
2006), and fish functional diversity in tropical streams
(Casatti et al. 2015). Since less amount of substrates, such as
gravel, pebbles and cobbles was found in the silty urban
stream reaches, we highlight that the heterogeneity of the sub-
strate is critical to maintain the natural feeding habits of fish
species. Currently, we observed that restoration projects
focused on physical structure of streams in Brazil, on
the occasions when that is accomplished, have been
basically focused on riparian reforestation. However,
our results suggest that a restoration plan for urban
streams cannot be limited to reforestation of its sur-
roundings, but also need to consider the physical structure
of the channel, especially the substrate, which contributes to
promote in-stream variability.
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