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WEIXIAN, CHEN. Desenvolvimento e aplicações do modelo hidrodinâmico SPheRIO. 2017, 

107 f. Dissertação (Mestrado em Física) – Universidade Estadual Paulista (Unesp), Faculdade 

de Engenharia de Guaratinguetá, Campus Guaratinguetá, 2017. 

 RESUMO  

Nesta dissertação, investigamos o algoritmo numérico conhecido como hidrodinâmicos 

de Partículas Suavizadas (SPH). O algoritmo de interpolação SPH é amplamente utilizado para 

equações diferenciais e para aplicações como problemas em colisões de íons pesados, por 

exemplo, modelo Landau unidimensional e expansão transveral de escala longitudinal. 

Propriedades importantes, precisão, eficiência e estabilidades, são discutidas. Como SPH é um 

método sem malha, os méritos e desvantagens comparados com os métodos baseados em grade 

anteriores são resumidos. Para colisão de alta energia, o sistema composto pode ser modelado 

pela hidrodinâmica. Em particular, a equação de Euler e sua versão relativística são abordadas. 

Além do método SPH convencional, o método de partículas finitas (FPM), que faz uso da 

expansão da série Taylor de funções suaves desconhecidas, também é investigado. Para o 

modelo Landau unidimensional, ambos os algoritmos são aplicados e os resultados são 

comparados. Devido à melhor precisão do FPM, a equação de movimento hidrodinâmica 

correspondente é derivada. Mostramos que a equação de movimento derivada garante uma 

melhor consistência das partículas. Também foram feitos esforços no desenvolvimento de 

programas para estudar a solução numérica do modelo hidrodinâmico de Landau. Escrevemos 

alguns programs curtos em c++ para calcular numericamente a evolução temporal do modelo 

de Landau. Os resultados são então comparados aos da abordagem analítica. Além disso, o 

código baseado no algoritmo SPH padrão é modificado para investigar o esquema FPM. 

PALAVRAS-CHAVE: SPH. Precisão. Eficiência. Estabilidade. FPM 
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WEIXIAN, CHEN. Development and applications of hydrodynamic model SPheRIO. 2017, 

107 p. Dissertation (Master in Physics) - Paulista State University (Unesp), Faculty of 

Engineering of Guaratinguetá, Campus Guaratinguetá, 2017. 

 ABSTRACT  

In this dissertation, we investigate the numerical algorithm known as the Smoothed Particle 

Hydrodynamics (SPH). The SPH interpolation algorithm are widely used for partial differential 

equations and for applications such as problems in heavy ion collisions for instance one 

dimensional Landau model and transverse expansion under a longitudinal scaling expansion. 

Important properties accuracy, efficiency, stability are discussed. As SPH IS a mesh free 

method, the merits and drawbacks comparing with previous grid based methods are 

summarized. For high energy collision, the compound system can be modeled by 

hydrodynamics. In particular, the Euler equation and its relativistic version are addressed. 

Besides the conventional SPH method, the finite particle method (FPM)  which makes use of 

the Taylor series expansion of unknown smooth functions is also investigated. For the one 

dimensional Landu model, both  algorithms are applied and results are compared. Owing to the 

better accuracy of the FPM, the corresponding hydrodynamic equation of motion is derived. 

We show that the derived equation of motion guarantees better particle consistency. Efforts 

have also been made in developing programs to study the numerical solution of Landau’s 

hydrodynamical model. We write some short programs in c++ to numerically calculate the 

temporal evolution of Landau’s model. The results are then compared to those of the analytic 

approach. Moreover the code based on the standard SPH algorithm is modified to investigate 

FPM scheme.  

 

KEYWORDS: SPH. Accuracy. Efficiency. Stability. FPM. 
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1 Introduction

In this chapter, many aspects about the SPH method would be addressed. First
of all, the motivations of this work are given. As a numerical method to solve
partial equation, it’s advantages and disadvantages have been summarized as it is
compared with other grid based numerical approaches. The important properties
such as accuracy, stability and efficiency are emphasized. The main context
will focus on these crucial properties and also some applications of the SPH
method would be discussed. The detailed illustration would be given as follows.
In general a comprehensive understanding of SPH method would be achieved.

Section one introduces the motivation of my work. Through learning a lot of
work done by pioneering, the investigation of accuracy, stability and efficiency
are tried to be made. By writing own numerical codes and implementing them
in lots of test, it will lay a good foundation to the future research work. Section
two introduces some well known and state of art grid based numerical methods,
like finite difference, finite volume and finite element methods. However with
the developments of techniques and appearance of new problems, they are fac-
ing great challenges. Section three introduces some mesh free methods like W2
method, GSM method and SPH method. Subsequently section four addresses
the merits and drawbacks of the SPH method, which is mainly summarized by
comparing with these mentioned grid based methods. Section five focuses on
the basic idea of the SPH method, while the interpolation of function and its
derivatives have been made. The Euler equation and Navier Stokes equation
have been represented in SPH formulation. In section six, the kernel function
is addressed in detail, including its properties, forms and concerning smoothing
length. Section seven describes an instability named tensile instability which
usually arises in problems of material strength. Section eight introduces the
SPH method application to the discrete system which shows its powerful ability
to deal with such phenomena. Section nine illustrates the SPH method efficien-
cy in handling realistic problems. Section ten involves the accuracy problem
by making use of different kernels, which shows that the selection of kernel
function plays a important role in different problems. Section eleven introduces
the SPH application to three dimensional conditions, in order to demonstrate
high efficiency of SPH method comparing with other numerical method in high
dimensional problems. Section twelve introduces one of the crucial properties
of SPH algorithm named consistency. The definition of consistency, how to
calculate it and how to restore it have been discussed in detail.

Chapter two introduces the finite particle method, which has been proposed
since a few years ago. Here we review it because it has better accuracy than
the conventional SPH method. This is exactly what we are interested. Another
reason is that it is proposed from different view of point by Philipe Mota [1]
comparing with the first proposal by GR LIU and MB LIU [2].

Chapter three introduces the hydrodynamical equation of motion. First
the classical fluid dynamics equation named Euler’s equation is derived. Then
attention would be transient to the relativistic conditions. Starting from the
variational principle, the relativistic equation of motion, in other word, the
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conservation of energy momentum tensor has been deducted. In subsequent,
the relativistic Euler’s equation is derived, which will be used in the subsequent
numerical evaluation.

Chapter four introduces the one dimensional Landau model, the physical
background of the Landau hydrodynamics in dealing with the high energy col-
lisions has been addressed. Then the analytic solutions consists of Riemann
simple wave solution and Khalatnikov solution have been discussed. The relat-
ed results of the analytic solution have been shown by figures and concerned
discussions have been made. Then applying the conventional SPH method and
finite particle method to this physical model, the numerical results are obtained
and also compared with the analytic solution, which show great performance.

Chapter five studies the transverse expansion on longitudinal scaling expan-
sion, which is more realistic situation than the one dimensional Landau model.
Because of the fact that except the longitudinal expansion, the system would
expand in transverse direction. Another reason is that the Landau situation
does not satisfy the Bjorken scaling which is verified by the experiments.

Chapter six derived the new equation of motion based on the same varia-
tional principle but by virtue of the finite particle method. The deduction is not
trivial and the obtained equation motion is satisfactory because it guarantee the
momentum conservation and can be consistent with those of conventional SPH.

Chapter seven gives some outlook of present work. The deduction of new
equation of motion improve the particle consistency. Recently the “ridge” effect
in two particle correlation in relativistic heavy ion collisions has been observed.
The fluctuating initial conditions have great influence on it. The new equation
of motion is useful in the precision and efficiency of the numerical approach.
It will be an interesting topic to simulate the obtained equation of motion for
realistic physical problems.

1.1 Motivations

SPheRIO is a numerical code which implements the entropy representation of
the Smoothed Particle Hydrodynamics (SPH) algorithm for relativistic high
energy collisions. It is the abbreviation of Smoothed Particle hydrodynamical
evolution of Relativistic heavy-Ion collisions, which has been studied and de-
veloped by Sao Paulo and Rio de Janeiro collaboration. The motivation of my
work is to study the a..ccuracy, stability and efficiency of the SPH algorithm,
as well as participate in the further development of the SPheRIO code. By
using numerical simulations, I plan to study the high energy nuclear collisions
at RHIC and LHC.

In the following, I am going to address the definition of the SPH numerical
method and advantages, disadvantages inherent to it. Comparisons with other
numerical approaches have also been made. Then the basic idea and some
features relevant to it would be discussed in detail. Finally attention will be
focused on the accuracy, stability and efficiency of the SPH numerical algorithm.

From the hydrodynamical model, the system formed by relativistic high en-
ergy collisions would behave more like a fluid, instead of a collection of free
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particles. In order to study such a system, we need to get familiar with the
fluid dynamics at first. In physics and engineering, fluid dynamics is a part of
fluid mechanics which gives description of the flow of fluids. The fundamen-
tal rules of fluid dynamics are the conservation laws, such as conservation of
mass, conservation of linear momentum, and conservation of energy. As far as
the governing equations are concerned, they are generally differential or partial
differential equations. To handle these equations, some numerical approaches
have been proposed and well studied.

The SPH method is a computationally numerical method used for simulating
the dynamics of continuum media, such as the fluid flow and solid mechanics. It
divides the fluid into a set of discrete points. These points are assigned material
properties such as mass and energy, so that they are referred to as particles.
The movement of these particles represents the evolution of the whole system,
which can be determined by the governing equation of classical hydrodynamical
mechanics. The properties of these particles are smoothed by a kernel function,
which gives a smoothing length typically represented by h. In consequence, any
arbitrary physical quantity such as the derivative appearing in the equation of
motion can be obtained by summing over the related property of these particles
which interact within the range of the kernel.

1.2 Grid based numerical methods

In fact, there are many other numerical algorithms for solving the differential
equations. One large family of algorithm scheme is the grid based or mesh based
method, such as the finite difference method (FDM), the finite element method
(FEM) and the finite volume method (FVM). In finite difference method, the
derivatives of the differential equations are approximated by finite differences
and they are written by discrete quantities of dependent and independent vari-
ables. In finite element method, the values of the unknowns are approximated at
discrete points over the domain. It solves problem by introducing finite elements
which are modeled by simple equations and assembled into a system of equa-
tions describing the whole problem. In finite volume method, volume integrals
in differential equation that includes the divergence term are usually converted
into surface integrals by virtue of divergence theorem. In general, all of them are
originally defined on meshes of data points, resulting in grids in FDM, elements
in FEM and cells in FVM. In such a mesh, each point has a number of fixed
predefined neighbors and the connectivity of these points can be used to calcu-
late the operators like derivative. And these operators are usually constructing
a part of the equations such as Euler equations or the Navier-Stokes equation-
s. We can also conclude that all values of unknowns are calculated at discrete
places on the meshing geometry. In the past a few years, great developments
and progresses have been achieved for these grid based numerical methods and
they have become dominant in numerical simulations at present [3-7].

However, dealing with problems like free surface, large deformation, mov-
ing interface and deformable boundary, the grid based numerical methods have
suffered from great difficulties. In grid based numerical methods, the mesh
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generation is of first importance. One one hand, for irregular or complicated
geometry of the surface and boundary, a regular grid construction is never easy.
And usually mesh generation takes up a large portion of computation effort
for handling solids and structures. On the other hand, during the occurrence of
large deformation, the connectivity of points in mesh is difficult to maintain and
can not give good evaluation for the values of quantities. Moreover, for system
consists of a set of discrete particles instead of being a continuum, grid based
numerical methods are not desirable either. These problems contain the inter-
action of stars in astrophysics, dynamical behavior of molecules, and movement
of large number of atoms in equilibrium or non-equilibrium state. In summary,
it is necessary to find a numerical approach showing great adaptivity which is
absent from the grid based methods.

1.3 Meshfree methods

Another typical algorithm scheme is called mesh free methods. In recent years,
the mesh free methods have been proposed and become the research focus. It
can be used to obtain accurate and stable solution for the partial differential
equations through a set of discrete particles or nodes [6,8]. In a field of nu-
merical analysis, mesh free methods do not need the connection of nodes, but
are based on the interaction of each node with all its neighbours. In a conse-
quence, the extensive property such as mass are not assigned to mesh but to
the single nodes. Owing to the introduction of nodes, the mesh free method is
capable of simulating some difficult types of problems, which is at the cost of
extra computing time and programming effort. There are a lot of application-
s and theories about the mesh free methods which have been introduced and
discussed in many monographs and reviews [6,8,9-13]. For example, it can be
used for simulation where nodes may be created or destroyed, such as in crack-
ing simulations. For the recent development of mesh free method, the so-called
weakened weak (W2) method and Gradient Smoothing Methods (GSM) are
worthwhile to be discussed. The W2 formulation can formulate various models
which work well with triangular meshes. The triangular meshes can be created
automatically, which makes it much easier in re-meshing and enables automa-
tion in modeling and simulation. The W2 models can produce upper bound
solutions for force-driving problems and bound the solution from both sides
together with stiff models such as fully compatible FEM models [14-17]. The
W2 formulation also leads to the combination of mesh free techniques with the
well-studied FEM method. And the GSM is similar to the FVM, which works
well with the unstructured triangular mesh. It has been developed recently for
CFD problems with the implementation of gradient smoothing idea in strong
form [18,19].

1.4 Merits and drawbacks of SPH

The SPH method is one of mesh free methods, which entirely removes the s-
patial grids. It is a relatively new computational method, which was firstly
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proposed by Lucy [20], simultaneously by Gingold and Monghan [21] to solve
the astrophysical problems in three dimensional open space. Due to its inherent
adaptivity, numerical conservation of physical conserved quantities and capabil-
ity to handle problems involving many orders of magnitude, it becomes popular
and finds widespread use in astrophysics. These applications in astrophysics
contain the simulations of binary stars and stellar collisions [22,23], supernova
[24,25], formation of galaxies [26,27] and so on. Apart from the large range of
applications to astrophysics, it has been extended to a vast range of problems
in fluid flow and solid mechanics. For the use in fluid simulation [28-31], this is
owing to several benefits over the traditional grid based techniques. First of all,
it guarantees mass conservation since particles themselves carry mass. Secondly
the SPH method evaluates the pressure from weighted contributions of neigh-
boring particles instead of solving the linear system of equations. Finally in
dealing with two phase or multi-phase fluid flow, SPH does not require tracking
the boundaries and it can model different fluid using separate particles. For
the extension to solid mechanics, the main advantage of SPH is the possibility
of tackling large local distortion comparing with grid-based methods. Another
merit of SPH is inherent because of its mesh free nature. These features have
been exploited in plenty of applications such as metal forming, high die casting,
fracture and fragmentation and so on [32-35].

As mentioned before, due to the SPH inherent features, it has been suc-
cessfully applied to problems in astrophysics, fluid and solid mechanics. Here
we want to summarize the advantages of the SPH method based on comparing
with the traditional grid based numerical methods. Firstly the concept of SPH
is simple. With the help of a few basic assumptions, all of the equations can be
derived from physical principles with self-consistence. Secondly, the feature of
adaptivity in SPH shows great simplicity in solving changes in density and flow
morphology without the complicated procedure of mesh refinement in grid based
methods. Thirdly, the free surface, material interface, and moving boundaries
can be traced naturally in SPH while present large difficulties for grid based
methods. Fourthly, without using the mesh or grid, the large deformations are
able to be handled straightforwardly. Therefore SPH method is an ideal choice
for modeling application in high energy phenomena such as explosion, underwa-
ter explosion and high velocity impact (HVI). Fifthly, because the SPH method
is similar to the molecular dynamics, so that it is possible to apply it to deal
with complex problems in biophysics and biochemistry. Finally, SPH is suit-
able for problems which do not involve continuum. Such phenomena includes
bio-engineering and nanometer-engineering at nanometer scale, astrophysics at
astronomic scale.

As we all know, each numerical method has its own pros and cons. During
the development of SPH method, some drawbacks of it have also been identified.
First of all, the approximation of a physical quantity in SPH method involves
a summation over all SPH particles. As a matter of fact, not all particles make
contribution and only the neighbour particles work for the summation according
to the range of smoothed function. Consequently a portion of computation cost
is used to construct the neighbour list in simulation. Secondly, the establishment
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of initial conditions are not easy and requires some experience and experiments.
Because a poorer particle deploying can lead to bad simulation results. Thirdly,
the SPH algorithm is still developing and a lot of problems involving accuracy,
stability, convergency and efficiency requires analysis. Unlike the well studied
numerical method like finite difference method and finite volume method, SPH
method is still not a mainstream use. Fourthly, it takes large computational
time particularly in 3-D simulation. Fifthly, it is not easy in prescribing wall
boundary conditions and even greater problems at open boundaries. Finally, it
is difficult to deal with variable space resolution for incompressible flows.

We have known the merits and drawbacks of the SPH method. On one hand,
it has low requirement on the particle distribution than the grid based methods,
therefore it can avoid the accuracy destroy problems when the system subjected
to big deformations. On the other hand, as a pure lagrangian method, it is
able to avoid the problems which take place between Euler grid and material
interface. Consequently it is very suited to high velocity impact problems.
However as a new proposed numerical algorithm, a large number of properties
require to be investigated. Before going further to them, a clear image of how
does the SPH method work should be made.

1.5 Idea of SPH interpolation

The basic idea of SPH method is that for an arbitrary function f(x), we have
the trivial identity:

f(x) =

∫
f(x′)δ(x− x′)dx′. (1)

where the function δ(x− x′) is Dirac delta function given by

δ(x− x′) =

{
∞, x = x′

0, x 6= x′
(2)

and dx′ is the differential volume element. Now for the SPH method interpo-
lation, we introduce the first kernel approximation. In this approximation, the
Dirac delta function is substituted by a smooth kernel function W (x − x′, h)
with finite support h, and the approximation of f(x) is denoted by 〈f(x)〉

〈f(x)〉 =

∫
f(x′)W (x− x′, h)dx′. (3)

where the kernel function is normalized,∫
W (x− x′, h)dx′ = 1. (4)

and W (x − x′, h) tends to Dirac delta function when the length scale h tends
to zero.

lim
h→0

W (x− x′, h) = δ(x− x′). (5)
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For the kernel approximation, there exists second order accuracy. If f(x) is
differentiable, we can obtain

〈f(x)〉 =

∫
f(x′)W (x− x′, h)dx′ (6)

〈f(x)〉 =

∫
[f(x) + (x′ − x)f ′(x) + (x′ − x)2f

′′
(x)]W (x′ − x, h)dx′ (7)

〈f(x)〉 = f(x)

∫
W (x′ − x, h)dx′ +

∫
(x′ − x)f ′(x)W (x′ − x, h)dx′

+ r(h2) (8)

where r(h2) represents the residual. We note that on the r.h.s of equation (8),
the first term is the normalization condition. And for the second term, the
kernel function W (x′ − x, h) is an even function, therefore (x′ − x)W (x′ − x, h)
is an odd function and the integral should be zero. Hence we have

〈f(x)〉 = f(x) + r(h2). (9)

From the above derivations, it is obvious that the SPH kernel approximation of
any function is of second order accuracy.

Now we introduce the second particle approximation. In this approximation,
the integral is represented by a summation over finite discrete points,

〈f(x)〉 =

N∑
i=1

f(xi)W (x− xi, h)∆xi. (10)

where ∆xi is the volume of point.

Considering a set of SPH particles such that particle b has mass mb, density
ρb, and position rb, the interpolation for any physical quantity A(~r), 〈A(~r)〉 can
be written as

〈A(~r)〉 =
∑
b

mb

ρb
A(~rb)W (~r − ~rb, h). (11)

And for the gradient of A(~r), we can write from equation (2)

∇A(~r) = ∇
∫
A(~r′)W (~r − ~r′, h)d~r′ (12)

∇A(~r) =

∫
A(~r′)∇W (~r − ~r′, h)d~r′ (13)

∇A(~r) =

∫
A(~r′)

ρ(~r′)
∇W (~r − ~r′, h)ρ(~r′)d~r′ (14)

∇A(~r) =
∑
b

mb

ρb
A(~rb)∇W (~r − ~rb, h). (15)
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If we want to calculate the density at position ~ra, we just replace A by the
density ρ and the position ~r by ~ra.

ρa =
∑
b

mbW (~ra − ~rb, h). (16)

According to the kernel approximation and the particle approximation, the
SPH simulation of differential or partial differential equations can be derived.
For the fluid dynamics, two famous kinds of equations are involved, which are
the Euler equations and the Navier-Stokes equations. The Euler equations are
a series of quasi-linear hyperbolic equations which govern adiabatic and inviscid
flow. Meanwhile, the Navier-Stokes equations describe the motion of viscous
fluid substances. In fact, the Euler equation can be taken as a particular Navier-
Stokes equations without viscosity and thermal conductivity.

For the Euler equations of inviscid fluid flow, which are the rates of change
of density,velocity and position, namely

dρ

dt
= −ρ∇ · ~v, (17)

d~v

dt
= −∇P

ρ
, (18)

d~r

dt
= ~v. (19)

For the continuity equation, we have obtained the SPH form of density as pre-
vious Eq. (15). Here another SPH form of it is derived

dρ

dt
= ~v · ∇ρ−∇ · (ρ~v), (20)

∇aρ =
∑
b

mb∇aWab, (21)

∇a · (ρ~v) =
∑
b

mb~vb∇aWab, (22)

dρ

dt
=

∑
b

mb(~va − ~vb)∇aWab. (23)

For the equation of motion which was firstly derived by Lucy [20], Gingold and
Monaghan [21], it has the following form,

∇aP =
∑
b

mb
Pb
ρb
∇aWab, (24)

d~va
dt

= − 1

ρa

∑
b

mb
Pb
ρb
∇aWab. (25)

However this SPH form of force can not conserve the linear momentum exactly.
It is clear that the force on particle a exerted by particle b is not equal and
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opposite to the force on particle a due to particle b, namely,

mambPb
ρaρb

∇aWab 6= −mambPa
ρaρb

∇bWab, (26)

∇aWab = −∇bWab. (27)

From the equation (24), owing to Pa 6= Pb, they are not equal. And from the
equation (25), the direction is not opposite. In order to conserve the linear mo-
mentum and be consistent with the Newton’s third law, a new SPH formulation
of the equation of motion was proposed by Gingold and Monaghan [36]. By
virtue of the identity,

∇P
ρ

= ∇(
P

ρ
) +

P

ρ2
∇ρ (28)

and following the SPH interpolation rules,

d~va
dt

= −
∑
b

mb(
Pa
ρ2
a

+
Pb
ρ2
b

)∇aWab. (29)

If we write ∇aWab = rabFab, in which Fab is a scalar function of ra − rb,

mamb(
Pa
ρ2
a

+
Pb
ρ2
b

)rabFab = −mbma(
Pb
ρ2
b

+
Pa
ρ2
a

)rbaFba (30)

It is apparent that in this form the momentum is conserved exactly. As a matter
of fact, we can also deduct the equation of motion which keeps the momentum
conserved from the Lagrangian. The Lagrangian for hydrodynamics is

L =

∫
(
1

2
ρv2 − ρu)dV (31)

Where u stands for the internal energy per unit mass. In the SPH representation,

L =
∑
b

mb(
1

2
v2
b − ub). (32)

Then the equation of motion can be derived from the Euler-Lagrangian equa-
tions

d

dt
(
∂L

∂va
)− ∂L

∂ra
= 0. (33)

where

∂L

∂va
= mava, (34)

∂L

∂ra
=

∑
b

mb
∂ub
∂ρb
|s
∂ρb
∂ra

(35)

From the relation of thermodynamics, we have

∂ub
∂ρb
|s =

Pb
ρ2
b

(36)
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and according to the definition of density, we can get

∂ρb
∂ra

=
∑
c

mc∇aWbc(δba − δca) (37)

Then

∂L

∂ra
=

∑
b

mb
Pb
ρ2
b

∑
c

mc∇aWbc(δba − δca), (38)

∂L

∂ra
= ma

Pa
ρ2
a

∑
c

mc∇aWac −
∑
b

mb
Pb
ρ2
b

ma∇aWba, (39)

∂L

∂ra
= ma

Pa
ρ2
a

∑
b

mb∇aWab −
∑
b

mb
Pb
ρ2
b

ma∇aWba, (40)

∂L

∂ra
=

∑
b

mamb(
Pa
ρ2
a

+
Pb
ρ2
b

)∇aWab. (41)

Finally we can get the equation of motion which is the same as equation (29).
To describe the motion of viscous fluid flow, the Navier-Stokes equations

have the form

Dρ

Dt
= −ρ∂v

β

∂xβ
, (42)

Dvα

Dt
=

1

ρ

∂σαβ

∂xβ
+ F, (43)

De

Dt
=

σαβ

ρ

∂vα

∂xβ
. (44)

where the superscripts α, β stand for the coordinate directions, F is the external
force, the summation is taken over repeated indices. The total derivative D

Dt is
taken in the moving Lagrangian frame. The density ρ, velocity vα, the internal
energy e and the total stress tensor σαβ are related each other, only the coor-
dinate xβ and time t are independent. For the total stress tensor,it consists of
two parts. One part is the isotropic pressure P and the other part is the viscous
stress ταβ

σαβ = −Pδαβ + ταβ , (45)

ταβ = µεαβ , (46)

εαβ =
∂vβ

∂xα
+
∂vα

∂xβ
− 2

3
(∇ · v)δαβ . (47)
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Applying the SPH interpolation to function and its derivative to N-S equations,

Dρi
Dt

=
∑
j

mjv
β
ij

∂Wij

∂xβi
, (48)

Dvαi
Dt

= −
∑
j

mj(
σαβi
ρ2
i

+
σαβj
ρ2
j

)
∂Wij

∂xβi
+ Fi, (49)

Dei
Dt

=
1

2

∑
j

mj(
Pi
ρ2
i

+
Pj
ρ2
j

)vβij
∂Wij

∂xβi
+

µi
2ρi

εαβi εαβi . (50)

where vij equals vi − vj .
Since the kernel function appears in both the kernel approximation and par-

ticle approximation, it is essential to spare some effort to investigate the kernel
function and show some details of it. We have talked about some properties
of the smoothing kernel function as mentioned before, including the normaliza-
tion and tendency to Dirac delta function when smoothing length becomes zero.
However, there exists more requirements for the kernel function in order to keep
a good accuracy for the approximation.

1.6 Kernel function

In this section, some basic properties of kernel function are discussed. These
contain the requirements of function which are to be kernel functions, the general
form of kernel functions and the smoothing length h. Much of work are following
the literature reviews [8,36].

1.6.1 Kernel properties

To be a smoothing kernel function, some requirements must be satisfied. Firstly,
the kernel function is normalized over the support domain, which is displayed
by equation (4). Secondly, it should have compact support, which means that
the kernel function has a cut-off distance. Mathematically it can be expressed
as

W (x− x′, h) = 0, |x− x′| > κh (51)

where κ determines the range of the specified kernel function and the support
domain at point x is |x − x′| ≤ κh. With this requirement it can save the
computation effort and improve the efficiency. Thirdly, the kernel function
should be non-negative over the support domain, because it ensures the physical
meaning of some quantities. For example, as the density interpolation is defined
by equation (16), a negative kernel function may lead to a negative density
which is not desirable in physics. Fourthly, the kernel function value for a
particle should monotonically decrease as the distance between two particles
increase. This is natural because it reflects the general physics picture that
the neighbouring particles make greater contribution than the distant particles.
Finally, if the smoothing length h tends to zero, the kernel function equals the
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Dirac delta function. In this case, the approximation of function value reproduce
the original function exactly, namely, 〈f(x)〉 = f(x).

1.6.2 Kernel general forms

A natural choice that satisfies all of the above properties is the Gaussian kernel
function,

W (r− r′, h) =
σ

hd
exp

[
− (r− r′)2

h2

]
(52)

where d denotes the number of spatial dimensions and σ is a normalization
factor given by π−

1
2 , π−1, π−

3
2 in one, two, and three dimensions. Owing to

the derivative of the Gaussian kernel function is smooth even at higher order,
there exists good stability property. However although the contribution from
neighbouring particle rapidly decrease with the increasing distance, it spans the
whole spatial domain, which requires a lot of computation cost. As a matter of
fact, a kernel function with compact support is required in numerical simulation.
A set of kernel functions which are similar to the Gaussian kernel function but
have compact support are proposed. One of the most commonly used is the
cubic spline kernel function which is given by Monaghan [36],

W (q) =


σ
[
1− 3

2q
2(1− q

2 )
]
, 0 ≤ q < 1

σ
4 (2− q)3, 1 ≤ q < 2

0, q > 2

(53)

where σ is a dimensional normalizing factor given by

σ =
2

3h1
, dim = 1, (54)

σ =
10

7πh2
, dim = 2, (55)

σ =
1

πh3
, dim = 3. (56)

,q = |r−r′|
h and h1, h2, h3 stands for the smoothing length in different dimensions.

From the definition the cubic spline is truncated at 2h, therefore it has compact
support of size 2h. It has smooth first derivative but the second derivative is
a piece wise function. In order to obtain smoother kernels and increase the
compact support domain, the higher order interpolation kernel functions have
been invented. For the quartic spline function,

w(q) = σ


(2.5− q)4 − 5(1.5− q)4 + 10(0.5− q)4, 0 ≤ q < 0.5

(2.5− q)4 − 5(1.5− q)4, 0.5 ≤ q < 1.5

(2.5− q)4, 1.5 ≤ q < 2.5

0. q ≥ 2.5

(57)
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with normalization factor σ = 1
24 ,

96
1199π ,

1
20π and quintic kernel spline function

w(q) = σ


(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 ≤ q < 1

(3− q)5 − 6(2− q)5, 1 ≤ q < 2

(3− q)5, 2 ≤ q < 3

0. q ≥ 3

(58)

with normalization factor σ = 1
120 ,

7
478π ,

1
120π . These higher order spline kernel

functions lead to smoother derivatives and contain bigger size of support domain,
which can reduce the sensitivity of kernel to particle disorder distribution.

1.6.3 Kernel smoothing length

The smoothing length h determines the resolution and the number of neighbor
particles that contribute to the property at a particle. For this reason, it is
crucial that has large influence on the efficiency and accuracy of SPH algorith-
m. For instance, a smaller h means a smaller number of particles summation.
However, how to choose an appropriate value of smoothing length becomes a
problem. One one hand, if the smoothing length is too small, then few particles
are contributed to the interpolation. Large fluctuations will take place because
it is not smoothing enough and the SPH algorithm will only model the single
particle motion instead of the fluid flow. On the other hand, if the smoothing
length is selected too big, then details will be smoothed out which reduces the
accuracy.

The smoothing length has changed a lot in the process of developments
through many literatures. The basic form of smoothing length h is selected
in the beginning and kept constant in the calculations. The magnitude of it is
usually comparable to the particle spacing. However this is not always desirable.
Therefore the varying forms of smoothing length appears. First, it can change
with every time step. As a matter of fact, this form is similar to the basic form
and not large modification need to be made. It is able to be expressed as

h =
1

〈ρ〉1/d
, 〈ρ〉 =

1

N

∑
b

ρb (59)

where d is the number of dimensions and N is the number of particles by Mon-
aghan [37].

Second, it varies for every particle. This is due to the fact that h is too large
for the areas where particles are highly focused and h is too small for other areas
in which particles are extremely sparse. So that h varying for each particle is
proposed, yielding hi for particle i. In this case, how to keep the momentum
conservation requires to be considered. In order to guarantee this condition,
the symmetric kernel is suggested. One way is to replace the h in the standard
kernels by a symmetric combination of the two smoothing lengths of the two
particles.

W (u, h) = W (u,
hi + hj

2
) (60)
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The alternative way is to make use of the average of two kernels which have
smoothing lengths ha and hb respectively.

W (u, h) =
W (u, hi) +W (u, hj)

2
(61)

There are some important aspects involved in the SPH method, including the
accuracy, efficiency, stability and consistency. First of all, we are going to talk
about the numerical instability such as tensile instability which usually appears
in the solid dynamics. In mathematically numerical analysis, numerical stability
is a generally desirable property of numerical algorithms. Usually the definition
of it depends on the context concerned. One is numerical linear algebra and
the other involves the solution for ordinary and partial differential equations by
discrete approximation. The latter is exactly our interest.

1.7 Tensile instability

Let us refer to the example given by Price [37], such a equation of motion as

dva
dt

= −
∑
b

mb(
Pa − P0

ρ2
a

+
Pb − P0

ρ2
b

)∇aWab. (62)

Taking into account the case in one dimension, the kernel derivative with respect
to the coordinate is {

∂Wab

∂xa
> 0, xa > xb

∂Wab

∂xa
< 0. xa < xb

(63)

When P0 > P the particles will move towards each other and clump together.
We can call this phenomenon as ”tensile instability”.

For the measurement of tensile instability , Swegle et al. proposed the fol-
lowing criterion [39],

Wαασ
αα > 0 (64)

where Wαα is the second derivative of kernel function, and σαα is the stress
tensor. For example, the derivative of the cubic spline function is always positive
when the r

h is from 1 to 2. During this support domain, the Wαασ
αα will always

be positive and the tensile instability shows up. In order to illustrate this kind
of physical phenomenon caused by tensile instability, a simple test have been
given. In a two dimensional space, the boundary particles are fixed and the
particles inside are free to move with the external perturbation. Theoretically
it will take a long time for a particle moving over a single particle spacing.
However for the SPH formulation of system under tensile stress with the use of
cubic kernel function, the interior particles will clumped together and form a
void, which means that the system demonstrates a numerical instability. This
phenomenon can be shown clearly in Fig. 22 in the work by Swegle [38],

In order to overcome the tensile instability, Chen and his co-workers proposed
the corrective smoothed particle method (CSPM) [39]. Here one of the examples
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Figure 1: In a two dimensional space, the plot (a) shows the initial particle
distribution, the plot (b) displays the particle distribution after some time steps
under the effect of tensile instability. The plot is excerpted from the reference
[38].

is introduced to illustrate how does the CSPM work. Taking into account an
initially stressed bar perturbed by a velocity at the central particle. For the
conventional SPH, the perturbation grew exponentially for those with initial
tensile stress. Under the method of CSPM, the displace of the perturbed particle
is making comparison with the results of finite element method, which is shown
by the Fig. 2

Morris advised making use of particular smoothing kernel function owing
to the fact that the tensile instability is closely related to the second order
derivative of it [40]. In recent years, an artificial force has been proposed by
Monaghan and his colleagues to stabilize the computation [41,42].

In the notes written by M.B Liu [43], he attributed the tensile instability to
the fact that the particle approximation are carried out only over the particles
that represent the whole system, which can cause not enough ”sampling” points
for setting up equations then lead to numerical instability problem.

We have pointed out the SPH method is suited to deal with a system which
is not a continuum. For example, for the interaction of two stars, these material
properties such as mass, energy and momentum can be transported accurately
by the SPH particles when the stars move through space. However, for the
traditional grid based method like finite difference method, its calculation will
introduce errors owing to the advection through the grid. Moreover, it needs
a large number of cells to cover the space where the stars are moving. In the
following, we will introduce some applications of SPH to discrete system.
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Figure 2: Displacement history of the perturbed particle for the bar under initial
tensile stress. The plot is excerpted from the reference [39].

1.8 SPH for discrete system

As pointed by Volker Springel [44], the SPH method allows an intuitive and
simple formulation of hydrodynamics which has good conservation properties
and is capable of being coupled to self-gravity easily and highly accurately. The
Lagrangian feature of SPH method makes it adjust its resolution to the clumping
of matter, which makes it ideal for many problems in astrophysics. Here we are
going to talk about some detailed examples which the SPH method has been
applied successfully.

The first example is mass exchanging white-dwarf binaries studied by Benz
[45]. It is well-known that white dwarfs are the end stage of stars evolution
for low mass stars. The typical mass density is about 106g/cm3. With this
large density quantum effects are considered and the pressure is mainly from
degenerate electrons.

From the equation of state, we know that the pressure is independent of the
temperature and we can get the mass radius relation for the star

R = cM−α, α = α(M) > 0, c = const. (65)

So that if the star has bigger mass then it has smaller radius. Now making the
assumption that there are two stars coming close enough owing to the gravi-
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Figure 3: Evolution of a double white dwarf binary system consisting of 1.2 and
0.9 solar masses. The plot is excerpted from the reference [45].

tational radiation. Subsequently the less massive star would lose mass to the
primary and its radius would increase. However the total angular momentum
of the system is conserved, the secondary will move outside along with the
exchange of mass, which eventually causes a decrease in the amount of mass
transferred. To illustrate the evolution of two stars mass exchange, setting up
two systems, one with a primary star of 1.2 solar mass and a secondary of 0.9
solar mass, and another with a secondary of 0.4 solar mass with the same prima-
ry. In the SPH method, the primary star has been simulated by 3000 particles
and the secondary with 4000 particles. And the velocity of all the particles
has been projected into the orbital plane, as shown by Fig.1 and Fig.2 in this
paper [45]. From these two plots, the overflow begins at slow rate but the end
points of the two systems are clearly different. In the case of a bigger mass of
the secondary the whole star is disrupted and spread out in a form of disk-like
structure around the primary. However, for the smaller mass of the secondary,
the mass exchange goes on at a slow rate and eventually stop which are not
shown here.

Another example is about the collision stripping of Mercury’s mantle [45].
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Figure 4: Evolution of a double white dwarf binary system consisting of 1.2 and
0.4 solar masses. The plot is excerpted from the reference [45].
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It is well known that the mean density of the earth is around 4.5g/cm3 and
that of Mercury is about 5.3g/cm3 which is anomalously high. For this high
mean density, Mercury must have an high ratio between iron and silicate. A
lot of hypotheses have been suggested and a particular one is that one or more
collisions with Mercury cause plenty of silicate blowing off from the original
Mercury proto planet. Why do people think in this way? Because the escape
velocity from Mercury is very low and relative velocities between colliding ob-
jects are rather high, so that one collision can result in plenty of material loss.
Here a check whether one can obtain a selective loss of material was conducted,
where the silicate mantle is prior to the iron core for the loss, by running these
simulations. In their work, the equation of state CHART D/CSQANEOS was
used, and tables of equation of state data by requiring the specific internal en-
ergy was built as one entry in code. Considering a head-on collision at 20km/s
between a proto mercury of 2.25 times the mass of present Mercury and an
impact of 1/6 its mass, which was displayed in FIG.3. Moreover an off-axis
collision is also shown, in which the collision velocity is increased to 35km/s
in order to produce the same amount of damage to the planet shown in Fig.
4. In these snapshots, 4000 SPH particles are used and 1000 of them are for
the impactor. The collision clearly leads to the disruption of the planet and
most of the material loss spread out in a plane which is perpendicular to the
collision axis. By comparison with the off-axis collision, shocks are greater in
the head-on collisions. The results were in good agreement with theory.

Considering the SPH method as a numerical algorithm, its efficiency should
be studied and discussed. Numerical efficiency is usually related to the com-
putational resource usage. For maximum efficiency, resource usage tends to be
minimized such as high speed, minimum memory usage. An algorithm is taken
into account efficient if its resource consumption is at or below some accept-
able level, which means that it will run in a reasonable amount of time on an
available computer.

1.9 Efficiency of SPH

Now we are going to talk about the efficiency of the SPH method. First of all let
us focus on the SPH simulation of free surface flow. As we all know, free surface
flow is common and important in industry and environment, however it is not
easy to be tackled owing to the arbitrary moving surface. For the modeling of
boundary, SPH shows great adaptivity and flexibility comparing with the grid
based numerical approaches. In the work done by Monaghan [46], the boundary
was modeled by SPH particles and the results for dealing with the free surface
flow are better which are compared with those of MAC method.

We know that the real boundaries are made of atoms or molecules. For
the boundary condition that the velocity normal to the boundary becomes zero
at the boundary, it can be replaced by a boundary force in the equation of
motion. There exists a short range of atomic dimensions for real boundary
force, therefore correspondingly a range close to the resolution length of the
calculation appear in the artificial force. And the boundary particles are able
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Figure 5: Evolution of the collision between proto mercury and impactor of 1
6

its mass which hit head-on at 20km/s. The plot is excerpted from the reference
[45].
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Figure 6: Evolution of the collision between proto mercury and an impactor of 1
6

its mass which hit off-axis at 35km/s. The plot is excerpted from the reference
[45].
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to be established to follow any fixed or moving boundary. Here it is taken
into account that these boundary particles exert central force on fluid particles
and the form of force was following the molecules forces. For example, if the
boundary and fluid particle are separated by a distance r the force per unit
mass f(r) has the form

f(r) = D
[
(
r0

r
)p1 − (

r0

r
)p2
] ~r
r2
. (66)

where if r > r0 it vanishes and the constant p1 is always bigger than p2 to make
sure the force is purely repulsive. The length scale r0 is taken as the initial
spacing between the particles and the coefficient D was selected by taking count
of the physical configuration.

There are some tests like breaking dam, a bore, the simulation of a wave
maker and the propagation of waves towards a beach. Here the flow of an
elliptical drop in two dimensions is illustrated. The SPH simulation results are
shown by Fig. 1 of this article, here shown as Fig. 7.

Figure 7: The particle positions for the evolution of an elliptical drop at two
instants t = 0.0008 and t = 0.0082, which shows the system evolves from a circle
to a narrow ellipse. The plot is excerpted from the reference [46].

The results display that SPH method is capable to be used to simulate the
free surface flows and the approximation of boundaries by boundary particles is

24



satisfactory. The MAC method makes use of the particles to define the surface
and finite differences to solve the hydrodynamic equations, which is a robust
numerical methods. However, it is still complicated to program. The SPH
method overcomes this difficulty, which is easy to carry out and simulate.

The application to the fluid flow is just a simple test, and many aspects
about shocks and shock tube phenomena have been investigated by pioneers.
In physics, a shock wave is a kind of propagation disturbance. It is formed when
a wave moves faster than the local speed of sound in a fluid. A shock wave carries
energy and is able to propagate through a medium, but there exists an abrupt,
discontinuous change in pressure, temperature and density of the medium.

After the discussion of efficiency, the accuracy and precision of the SPH
algorithm are essential to be addressed. For the definition of accuracy, it is
usually taken as a measure of statistical bias, which is a difference between the
result and a “true” value. And the precision is a description of random errors
and a measure of statistical variability. The analysis and discussion of accuracy
and precision shows great significance particularly for a numerical algorithm.

1.10 different kernel leads to distinct accuracy

As follows, some examples which involves the accuracy and precision of the SPH
method are given. We have read the work done by Monaghan and Gingold 1983
[47]. In their work, the particle method SPH was applied to one dimensional
shock tube problems by including an artificial viscosity into the equations of
motion. They talked about the standard artificial viscosity and proposed a new
term of viscosity, and they also used the gaussian interpolating kernel and super
gaussian kernel in SPH method to compare with the results which were obtained
by finite difference methods.

An artificial viscosity described by viscous pressure q is able to be incorporat-
ed into the equations of motion by replacing p by p+q. For the viscous pressure,
two forms of it have been represented, which are the Von Neumann-Richtmyer
viscous pressure and bulk viscosity.

For the one dimensional shock tube problem for a perfect gas, the interpo-
lating gaussian kernel and super gaussian are used respectively. Following the
equation of motion and combining with the equation of state, the numerical
results are shown by Fig.1 from the paper, here as shown in Fig. 8.

It is seen that the numerical results agrees well with the exact solution for
pressure and density, but for velocity profile it appears oscillations. So why
does this phenomenon take place? The reason has been discussed in detail in
the introduction of this paper. Because the artificial viscosity in usual way can
not dampen the irregular motion on the scale of the particle separation since
the scale is smaller than the resolution of the interpolating kernel function.

So a new form of artificial viscosity was proposed to improve the situation.
With this new viscous pressure, the numerical results are displayed by Fig.2 and
Fig.3 in the paper by using the Gaussian and super Gaussian kernel functions,
here demonstrated by Fig. 9 and Fig. 10. The form of Gaussian and super
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Figure 8: Pressure,density and velocity profiles for the shock tube problem. The
upper frames are for the Von Neumann-Richtmyer viscosity, the lower frames
are for the bulk viscosity. The exact results are shown by - - - -, which the
SPH results are shown by dots and full lines. The plot is excerpted from the
reference [47].

Gaussian kernel functions are

W (u, h) =
1

h
√
π

exp−u
2/h2

(67)

and

W (u, h) =
1

h
√
π

exp−u
2/h2

(
3

2
− u2/h2) (68)

Therefore it is easy to find that for the velocity the oscillation vanishes and
the results show good agreement with the exact solution. From this paper, we
can make sure that the SPH method can be applied to deal with the shock
tube problem successfully and it has the advantage that it is easy to carry
out and be generalized to more than one dimension conditions. By comparing
the Fig. 2 and Fig. 3, it is clear that the results of standard gaussian kernel
are inferior to those of super gaussian. These results are expected because
the standard gaussian kernel interpolation with lower accuracy than the super
gaussian kernel.

1.11 SPH extension to three dimensional condition

In the past, simple tests have only been limited to one dimension condition.
However, SPH is an algorithm easy to carry out and simulate. It is significant
to extend it to solve problems involving multi dimensional circumstances. Here
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Figure 9: Density, pressure, velocity and entropy profiles for the shock tube
problem. The exact results are shown by - - - -, which the SPH results are
shown by dots and full lines. The kernel is Gaussian. The plot is excerpted
from the reference [47].

we are going to talk about wave structure interaction which has been studied
in detail by Crespo AJC, Gomez-Gesteira M, and Dalrymple RA [48]. It is a
three dimensional numerical simulation of large waves mitigation with a dike.
The force and moment exerted on the structure are analyzed in terms of the
dike height and the distance between the dike and the structure.

First of all, let us see some SPH validations which describe the wave profiles,
velocities and forces exerted by the waves on the structures, which are shown
by Fig. 1, Fig. 2 and Fig. 3 in this article, here illustrate by Fig. 11, Fig. 12
and Fig. 13

From these diagrams, we know that the SPH method is applied successfully
to multi dimensional condition and satisfactory to handle wave structure inter-
action. and we can also see the wave colliding with the dike by Fig. 10 in their
paper [48], here shown by Fig. 14.

SPH is a pure lagrangian method which permits the study of discontinuities
in the flow without limitations comparing with the presence of a grid. In above
examples, the formation of a jet over a dike and its interaction with the fluid
surrounding the dike can be treated naturally. Additionally the SPH model can
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Figure 10: Density, pressure, velocity and entropy profiles for the shock tube
problem. The exact results are shown by - - - -, which the SPH results are shown
by dots and full lines. The kernel is super Gaussian. The plot is excerpted from
the reference [47].

track the origin of water at certain location inside the medium. One the other
hand, for the investigation of wave structure interaction, the flow information
can be provided,which is able to predict the damage when wave colliding the
dike and correspondingly make some measures to mitigate the impacts.

1.12 SPH application to solid

Over the past few years, SPH for the simulation of solids has been developed
which can be find in the work [49-51]. Here we are going to briefly introduce
a recent work which deal with the specific solid problem fracture [52]. As we
all know, fracture is dependent on the whole stress history of a given piece of
material. For a Lagrangian approach, where the frame of reference is attached
to the material, it is a natural framework for dealing with these equations of
such phenomenon. Euler method shows large difficulties of following accurately
stress history and the development of cracks. However conventional Lagrangian
approach is unable to solve large material deformations because deformation of
the grid severely affect the accuracy of derivatives. Given any spatial distribu-
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Figure 11: The comparison for 2D validation between numerical (solid line) and
experimental (dots) wave profiles. The plot is excerpted from the reference [48].
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Figure 12: The comparison for 2D validation between numerical (dark squares)
and experimental (light dots) wave velocities profile which are averaged during
the first 3m of the tank. The plot is excerpted from the reference [48].

Figure 13: The comparison for 3D validation between numerical (solid line) and
experimental (dark circles) forces profiles which are exerted by the incoming
wave on the structure. The plot is excerpted from the reference [48].
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Figure 14: The collision between water and disk from the lateral and top view.
The plot is excerpted from the reference [48].
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tion of these points, the SPH technique is able to carry out the computation
of spatial derivatives without grids. Once the spatial derivatives have been e-
valuated and the forces have been determined, time integration can be done
subsequently in the usual way. Thus, SPH offers an interesting alternative to
traditional grid-based methods.

In their work a new fracture model is developed which is based on the nu-
cleation of earliest flaws. The number density of it is given by a Weibull dis-
tribution. The detailed implementation of equations into the SPH framework
has been discussed. In order to show the success of SPH method and also the
strengths and weaknesses of the new model, a comprehensive tests have been
done. These tests include a tensile rod, laboratory impact experiments on basalt
spheres and laboratory crater experiments. The detailed numerical results have
been shown by figures one to five in the paper [52].

As a matter of fact, the SPH method simulation involves a lot of aspects.
During their work, these implementation include the discovery of equilibrium
solutions of deformed soid beams, the check for the correct propagation of e-
lastic waves and simulation of the boucing of tennis balls. Anyway the new
model shows great power in handling the propagation of a single crack in a
simple tensile rod. On the other hand, it demonstrates the SPH method can
be successfully applied to fracture problems. Subsequently a important kind
of problem appearing in engineering is the high explosive detonation. And the
underwater explosion as one of this typical phenomenon will be discussed in the
following.

1.13 SPH application to underwater explosion

The underwater explosion is from high explosive detonation which involves a
sequence of complicated energetic processes. Due to its large deformations,
large inhomogeneities and moving interface, it is difficult to use the traditional
grid-based numerical methods like finite difference method and finite volume
method. Owing to the mesh free nature of SPH method, it overcomes the
difficulties and can be successfully applied to this physical phenomenon. The
work done by M.B.Liu and G.R.Liu [53] has been focused on the detonation
of the high explosive, the interaction of the explosive gas with the surrounding
water, and the propagation of the underwater shock.

The underwater explosion are considered as two parts, one is the detonation
process from the high explosive, another is the interaction process between the
produced gas and the surrounding water. For the detonation process, it can
be taken as the propagation of the reactive wave which passes through the
explosive with uniform detonation velocity. If the intense heat and pressure are
initiated, the detonation process is sufficient to be maintained. In underwater
explosions, the produced gas and the water can be regarded as inviscid and
compressible and the explosive process is adiabatic. With these assumptions,
Euler equation coupled with related equation of state can be used to model the
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explosive process,

dρ

dt
= −ρ∇ · v, (69)

dv

dt
= −∇P

ρ
, (70)

du

dt
= −P

ρ
∇ · v, (71)

P = P (ρ, u). (72)

where v, u, ρ, P and t are velocity, internal energy, density, pressure and time
respectively. The first three equations are demonstrating the conservation of
mass, momentum and energy. And the last equation is the equation of state.
Here the standard Jones-Wilkins-Lee equation of state is used,

P = A(1− ωη

R1
)e−

R1
η +B(1− ωη

Re
)e−

R2
η + ωηρ0E (73)

Where η is ration of the detonation products density to the initial density
of the original explosive, E is the specific internal energy per unit mass and
A,B,R1, R2.ω are coefficients. By virtue of the kernel and particle approxima-
tion of SPH, the equations above can be written as

dρi
dt

=
∑
j

mj(vi − vj) · ∇iWij , (74)

dvi
dt

= −
∑
j

mj(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij)∇iWij , (75)

dui
dt

=
1

2

∑
j

mj(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij)(vi − vj) · ∇iWij , (76)

dxi
dt

= vi. (77)

Now there are some tests shown in this paper. First it is about the one dimen-
sional TNT slab detonation, where a 0.1 long TNT slab detonates at one end
of the TNT slab. The density, pressure and velocity transients along the TNT
slab are

P =
16

27

ρ0

D
(
x

2t
+
D

4
)3 (78)

ρ =
16

9

ρ0

D
(
x

2t
+
D

4
) (79)

v =
x

2t
− D

4
(80)

where the parameter D is taken as 105 and ρ0 is the initial density of the high
explosive TNT.
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Figure 15: Pressure profiles along the TNT slab during the detonation process.
The plot is excerpted from the reference [53].
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Figure 16: Pressure transients at 1 and 2µs. The plot is excerpted from the
reference [53].
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Figure 17: Density transients at 1 and 2µs. The plot is excerpted from the
reference [53].
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The comparisons of pressure, density and velocity between theoretical values
and SPH numerical results are shown in Fig. 4, Fig. 5 and Fig. 6 in this paper,
here as shown by Fig. 15, Fig. 16 and Fig. 17.

From these figures, it is apparent that SPH method achieves great success
in dealing with one dimensional detonation problems.

The second example is about the underwater explosion in free space, in which
a cylindrical TNT charge is surrounded by water and then explodes inside it.
The radius of the explosive charge is 0.1m, and the evaluation range is 0.5m.
The boundary is treated as a free surface and it moves with the propagation of
the shock wave. The pressure transients in the gas and corresponding density
and velocity are displayed by Fig. 7, Fig. 8 and Fig. 9 respectively, which are
displayed here by Fig. 18, Fig. 19, Fig. 20.

The SPH method can deal with difficulties appearing in large deformations,
inhomogeneities and discontinuities as well as material interface. From this
work, we know that the SPH method can apply to the underwater explosion
shocks quite well.

1.14 Consistency

As proved in the previous context, the kernel approximation of the SPH method
has the second accuracy for both the function and its derivative. However this
is not definitely the fact, in that the kernel function would be not an even
function and its normalization condition would not be satisfied since it may be
truncated when approaching the boundary regions. So that the concept of the
consistency can be taken as an analysis of truncation error. In the SPH method,
the function approximation and derivative approximation are involved, so the
truncation error of them would be discussed.

For a constant function f(x) = c where c is a constant, to be reproduced by
the kernel approximation, we have

f(x) =

∫
f(x′)W (x− x′, h)dx′ =

∫
cW (x− x′, h)dx′ = c (81)

so that ∫
W (x− x′, h)dx′ = 1 (82)

which is exactly the normalization condition of kernel function.
For the first order polynomial, f(x) = a+ bx, where a and b are constants,

to be recreated, we have

f(x) =

∫
(a+ bx′)W (x− x′, h)dx′ = a+ bx (83)

so that ∫
x′W (x− x′, h)dx′ = x (84)
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Figure 18: Pressure transients in the explosive gas and water as well as the
shock waves at t = 0.8ms and t = 0.12ms. The plot is excerpted from the
reference [53].
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Figure 19: Density profiles in the explosive gas and water at t = 0.8ms and
t = 0.12ms. The plot is excerpted from the reference [53].

39



Figure 20: Velocity profiles in the explosive gas and water at t = 0.8ms and
t = 0.12ms. The plot is excerpted from the reference [53].
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Multiplying x to both side of equation (82), we have∫
xW (x− x′, h)dx′ = x (85)

then subtracting equation (84) from equation (85), we obtain∫
(x− x′)W (x− x′, h)dx′ = 0 (86)

which is naturally satisfied because of the kernel function is an even function.
However we should note that the constant and linear functions are not able

to be reproduced exactly because the equations (82) and (86) are not satisfied if
the kernel approximation is carried out for the boundary regions. In this case,
we can conclude that the conventional SPH method has up to the first order
consistency for interior regions but even does not have zero order consistency
for boundary regions.

As mentioned before the high order accuracy kernel approximation does not
guarantee the high accuracy of the SPH approach. Even though the kernel con-
sistency conditions are satisfied, the SPH method will not have such consistency
because consistency can be distorted by the particle approximation. So that the
consistency of particle approximation is crucial and consistency analysis should
be conducted in the particle approximation process.

The constant and linear consistency conditions in equations (82) and (88)
can be expressed in discrete form as

N∑
j=1

W (x− xj , h)∆Vj = 1 (87)

and
N∑
j=1

(x− xj)W (x− xj , h)∆Vj = 0 (88)

where ∆Vj is the volume element for particle indexed by j.
For boundary regions, it has been proved by pioneers that even for uniform

particle distribution the left hand side of equation (87) is smaller than one and
the right hand side of equation (88) is not zero. And along with irregular par-
ticle distribution for the interior regions the consistency conditions for constant
and linear functions in discrete forms are not exactly satisfied. Therefore the
conventional SPH method even does not have zero order particle consistency
for both interior and boundary regions.

In summary, the inconsistency conditions lead to inaccuracy of solution in
the conventional SPH. And such inconsistency are originated from the difference
between the SPH kernel approximation and particle approximation. In order
to restore the inconsistency and improve the accuracy of SPH method, some
approaches for restoring consistency would be reviewed.
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First of all, a corrective smoothed particle method (CSPM) which is pro-
posed by Chen et al [54] is worth to be addressed. This method is based on
the Taylor series expansion during the process of the SPH approximation of a
function. The process of CSPM can be described as follows.

For a smooth function f(x), conducting Taylor series expansion at a point
xi, we have

f(x) = fi + (x− xi)fi,x +
(x− xi)2

2!
fi,xx + ... (89)

where fi, fi,x, fi,xx stand for the function, its first order derivative and its second
order derivative at point xi.

Multiplying both sides of equation (89) by the kernel function and integrating
over the whole computational domain, we obtain∫
f(x)Wi(x)dx = fi

∫
Wi(x)dx+fi,x

∫
(x−xi)Wi(x)dx+

fi,xx
2!

∫
(x−xi)2Wi(x)dx+...

(90)
Neglecting the derivative terms, it yields a corrective kernel approximation for
function f(x) at point xi

fi =

∫
f(x)Wi(x)dx∫
Wi(x)dx

. (91)

It is apparent that the second term at the right hand side of equation (91) for
interior region will vanish and is not zero for boundary region. So the corrective
kernel approximation shown by equation (91) keeps the second order consistency
for interior region and first order consistency for boundary region.

The corresponding particle approximation for equation (91) can be written
as

fi =

∑N
j=1 fjWij∆Vj∑N
j=1Wij∆Vj

(92)

We should note that even for interior regions the particle approximation of
the second term in equation (90) is not exactly zero owing to the irregular
distribution of particles. Only the uniform distribution of particles causes this
term disappear. Therefore the particle approximation expressed by equation
(92) guarantees the zero order consistency for interior and boundary region
with irregular particle distribution, while keeps the first order consistency for
the uniform particle distribution.

Replacing the kernel function Wi(x) in equation (82) with its derivative Wi,x

and neglecting the second and higher order derivatives, then a corrective kernel
approximation for smoothing function derivative is

fi,x =

∫
(f(x)− f(xi))Wi,xdx∫

(x− xi)Wi,xdx
(93)

The particle approximation for the above equation is

fi,x =

∑N
j=1(fj − fi)Wi,x∆Vj∑N
j=1(xj − xi)Wi,x∆Vj

(94)
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From the equation (94), the CSPM kernel approximations for the function
derivative in uniformly distributed particles are of first order consistency for
interior regions and of zero order consistency for boundary regions. Otherwise
the CSPM kernel approximations are of zero order consistency for both interior
and boundary regions.

From the above discussions the CSPM has better accuracy than the con-
ventional SPH method in that it improves the SPH simulations at boundary
regions. However this method is based on the Taylor series expansion. It is
well known that the function ought to be smooth if the Taylor series analysis is
carried out. For problems involving discontinuities such as hydrodynamic prob-
lems which create shock waves, the CSPM method is not desirable. To resolve
the discontinuity problems, Liu and his co-workers suggested a method called
discontinuous SPH (DSPH) [55].

The present report is organized as follows. In the next section, we will intro-
duce the idea of SPH algorithm and we are going to focus on the SPH algorithm
called finite particle method (FPM). In the section III, we will spare effort to
discuss the hydrodynamical equations of motion, including the classical Euler
equation and the relativistic equation of motion. Some detail derivation of them
will be shown. In the section IV, we will reproduce the entropy density distri-
bution with time evolution in laboratory system about one dimensional Landau
model and compare these numerical results with the exact Khalatnikov analytic
solution accompanying with simple rarefied wave solution. In the section V, we
will reproduce the temperature profile of a cylindrically symmetric flow with
longitudinally scaling expansion. In the section VI, we show a new equation of
motion based on the new SPH algorithm. Some concluding remarks and outlook
will be given in section VII.

2 Finite particle method

As discussed in previous chapter, consistency is one of important numerical
properties of the SPH method. In order to restore it many approaches have
been proposed. Liu MB and Liu GR proposed an approach called Finite Particle
Method (FPM) to restore the particle consistency [2]. This approach maintains
the conventional non-negative smoothing function rather than to construct new
smoothing function. Here we will spare efforts to address it because it is closely
related to the Taylor SPH algorithm devised by Philipe Mota [1]. First of all,the
FPM method would be discussed. Then the work done by Philipe Mota about
SPH schemes would be addressed in the following.

For a sufficiently smooth function f(x) at spatial place x = x, y, z, by per-
forming Taylor series expansion at a surrounding point xj = xj , yj , zj and only
retaining the second order derivatives, it can be written as

f(x) = fj + (xα − xαj )fj,α +
(xα − xαj )(xβ − xβj )

2!
fj,αβ + r((x− xj)

3) (95)

where α, β are the indices of dimension ranging from x to z. r((x−xj)
3) is the
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remainder of the expansion. Here fj , fj,α and fj,αβ have the form

fj = f(xj), (96)

fj,α = fα(xj) = (∂f/∂xα)j , (97)

fj,αβ = fαβ(xj) = (∂2f/∂xα∂xβ)j (98)

Now multiplying a function ψ(x−xj) at both sides of equation (99) and making
integration over the whole space Ω yield∫

Ω

f(x)ψ(x− xj)dx = fj

∫
Ω

ψ(x− xj)dx + fj,α

∫
Ω

(xα − xαj )ψ(x− xj)dx

+
fj,αβ

2!

∫
Ω

(xα − xαj )(xβ − xβj )ψ(x− xj)dx + r((x− xj)
3)

(99)

From the above equation, the integration is conducted over the whole space
which is quite time consuming. Usually one assumption is made that a variable
at point xj is affected by the variables at nearby points and the influence from
variables at points far away from point xj is very small and therefore is able
to be ignored. In this case, the global integration is converted into a local
integration. The support domain for point xj can be defined where the variables
at nearby points are determined. It is convenient to regard the shape of the
support domain as sphere in three dimensions and circle in two dimensions
with the radius of κh, where κ is a constant factor and h is smoothing length
characterising the support domain. So that the function ψ(x−xj) has limitation
of the support domain and therefore can be written as ψ(x− xj , h).

Due to the fact that the points in the space are particles, each of them
has own volume, the equation (99) can be represented by summation over the
particles near point xj

N∑
i=1

f(xi)ψ(xi − xj , h)∆Vi = fj

N∑
i=1

ψ(xi − xj , h)∆Vi + fj,α

N∑
i=1

(xαi − xαj )ψ(xi − xj , h)∆Vi

+
fj,αβ

2!

N∑
i=1

(xαi − xαj )(xβi − xβj )ψ(xi − xj , h)∆Vi

(100)

where N denotes the number of particles within the support domain of particle
i. Here the term r((x− xj)

3) appearing in equation (99) has been omitted.
For the above equation, further simplification can be made as the following

equation
G1j = HT

1kjFkj (101)

where
Fkj =

[
fj fj,α fj,αβ

]T
,

G1j =

N∑
i=1

f(xi)ψ(xi − xj , h)∆Vi (102)
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H1kj =


∑N
i=1 ψ(xi − xi, h)∆Vi∑N

i=1(xαi − xαj )ψ(xi − xj , h)∆Vi
1
2!

∑N
i=1(xαi − xαj )(xβi − xβj )ψ(xi − xj , h)∆Vi

 .
For the one, two, and three dimensions, there are one function value, one,

two and three first derivatives and one, three and six second order derivatives
correspondingly. The k is three, six and ten corresponding to one, two and three
dimensional cases. It is clear that in 1, 2 and 3 dimensions, in total 3, 6 and 10
functions ψM (x− xj , h) are needed in order to calculate the function value, its
first derivative and second derivative. These functions ψM (x−xj , h) form a set
of basis functions.

It is natural to summarize that to multiply a body of basis functions at both
sides of equation (99) and integrate over the whole problem space, sum over
the nearest particles in the local support domain of particle i, a set of matrix
equations can be created to evaluate the function value, the first and second
derivatives at particle i. The matrix equation at particle i has the form

GMj = HT
MkjFkj (103)

where

GMj =

N∑
i

f(xi)ψM (xi − xj , h)∆Vi (104)

HMkj =


∑N
i=1 ψM (xi − xi, h)∆Vi∑N

i=1(xαi − xαj )ψM (xi − xj , h)∆Vi
1
2!

∑N
i=1(xαi − xαj )(xβi − xβj )ψM (xi − xj , h)∆Vi

 .
This is the basic idea of the FPM method. Only if the coefficients of matrix
H is not singular, can these M equations determine the M unknowns in vector
G. By solving these matrix equations, the function value as well as its first
derivative and second derivative can be approximated. Here only second order
terms are retained as the Taylor series expansion is carried out. For problems
involve higher order terms, the same procedure can be conducted. In that case,
more unknowns are required to be solved and more basis equations are included.

After introducing the FPM method, the Taylor SPH algorithm is going to
be addressed. We named the new algorithm as Taylor SPH algorithm, because
it actually is related to the Taylor series expansion for the function and its
derivative. And there are many kinds of SPH schemes and detailed discussion
about Taylor SPH algorithm in the note of Philipe Mota [1]. Now we introduce
the idea of interpolation for Taylor SPH algorithm. From the Taylor series
expansion we have

f(x) =
∑
n

(x− ra)ni
n!

(∂ni f)ra . (105)

where the index i expresses the position component and index n means the
derivative order. Now we multiply both sides by W (x− ra) and integrate over
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x ∫
dxf(x)W (x− ra) =

∑
n

(∂ni f)ra
n!

∫
dx(x− ra)niW (x− ra). (106)

and simultaneously we also multiply both sides by the gradient of kernel function
W (x− ra),∫
dxf(x)

x− ra
|x− ra|

W ′(x− ra) =
∑
n

(∂ni f)ra
n!

∫
dx(x− ra)ni

x− ra
|x− ra|

W ′(x− ra).

(107)
By virtue of neglecting the second and higher order derivatives in Taylor series
expansion (106) and (107), we obtain a linear system in function and its first
derivative.∫

dxf(x)W (x−ra) = fa

∫
dxW (x−ra)+∂jfa

∫
dx(x−ra)jW (x−ra). (108)

∫
dxf(x)

(x− ra)i
|x− ra|

W ′(x−ra) = fa

∫
dx

(x− ra)i
|x− ra|

W ′(x−ra)+∂jfa

∫
dx(x−ra)j

(x− ra)i
|x− ra|

W ′(x−ra).

(109)
Using particle approximation and written in the form of matrix,

AF = B. (110)

A =

[ ∑
b
νb
ρb
W (rb − ra)

∑
b
νb
ρb

(rb − ra)jW (rb − ra)∑
b
νb
ρb

(rb−ra)i
|rb−ra| W

′(rb − ra)
∑
b
νb
ρb

(rb − ra)j
(rb−ra)i
|rb−ra| W

′(rb − ra)

]
,

F =

[
fa
∂jfa

]
,

B =

[ ∑
b
νbfb
ρb
W (rb − ra)∑

b
νbfb
ρb

(rb−ra)i
|rb−ra| W

′(rb − ra)

]
.

where ρb is the reference density, νb is the weight carried by every SPH particle
which is located at rb. It easily comes out

F = A−1B. (111)

Generally speaking, the above expressions are obtained by expanding the inter-
polation up to the first order terms in Taylor series. In this context, the standard
SPH algorithm can be equivalently viewed as the zeroth order approximation
of the present scheme.

By reviewing the previous FPM method, it is easy to find that the Taylor
SPH algorithm is an special case of FPM. If the smoothing kernel function and
its first and second derivatives are selected as the basis functions, then Taylor
SPH algorithm is equivalent to the FPM.

To compare the standard SPH and Taylor SPH in interpolation, let’s apply
them to some given test functions. The results are shown in detail by Sibilla [56]
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and we can know that if a uniform particle distribution is used, the functions
and their derivatives are reproduced correctly, except for the region near the
boundaries. Here we show an ordinary function which is a superposition of
Gaussian function under a random particle distribution. From the graphs below,
the Taylor SPH algorithm performs better in function and its derivative.

Figure 21: Standard SPH, f is original function value and 〈f〉 is interpolated
value, df is original function derivative value and 〈df〉 is interpolated value

Figure 22: Taylor SPH, f is original function value and 〈f〉 is interpolated value,
df is original function derivative value and 〈df〉 is interpolated value

So that we can make conclusion that the standard SPH shows great deficien-
cy in interpolation when the particles are not distributed uniformly however the
Taylor SPH algorithm overcomes this problem. This is attributed to the particle
consistency restoring.
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3 Introduction of hydrodynamical equations of
motion

It is well known that hydrodynamics is a subdisciplines of fluid dynamics. It
mainly focuses on the study of liquids motion. The foundational theorems of it
are the conservation laws, like mass conservation, momentum conservation and
energy conservation. In the following, the dominant equation of motion named
Navier-Stokes equations will be discussed. Euler’s equations as one of the special
case will also be addressed. Then the topic will be transited to the relativistic
circumstances along with the derivation of relativistic Euler equation of motion.
Most of what we have discussed here is based on the book written by G.R. Liu
and M.B. Liu [57].

3.1 Navier-Stokes equations in Lagrangian form

We have known that the basic governing equations of fluid dynamics are based
upon three fundamental physical laws of conservation. However different form-
s of equations can be used to describe the fluid flow, which depend on the
specific conditions. There exist two approaches named Euler description and
Lagrangian description. The coordinate system is fixed in Euler description and
usually it moves with fluid in Lagrangian description. The total time derivative
is employed in the Lagrangian description and the SPH method is actually a
Lagrangian meshfree method. To appeal the Lagrangian nature of the SPH
method, the governing equations in Lagrangian form will be addressed. And
the equations of motion will be deducted based upon these equations.

3.1.1 The continuity equation

The continuity equation is originated from the conservation of mass. Consid-
ering an infinitesimal element with volume of δV , the mass belonging to this
volume is

δm = ρδV (112)

where ρ and m are density and mass respectively.
Because the mass is conserved in the element, the time rate of mass change

is zero.
Dδm

Dt
=
D(ρδV )

Dt
= δV

Dρ

Dt
+ ρ

D(δV )

Dt
= 0 (113)

The above equation can be written as

Dρ

Dt
+ ρ

1

δV

D(δV )

Dt
= 0 (114)

Here the time rate of volume change is involved. It is clear that the volume
change ∆V due to the movement of surface dS over a time interval ∆t is

∆V = v · n∆tdS (115)
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where n denotes the unit perpendicular to the surface dS. Then the total volume
change equals the integral over the surface S

∆V =

∮
S

vδt · ndS (116)

Therefore it is easy to obtain

∆V

∆t
=

∮
s

v · ndS =

∫
V

∇ · vdV (117)

Where ∇ is the gradient operator and the divergence theorem has been em-
ployed. For an infinitesimal element with volume of δV ,

∆(δV )

∆t
= (∇ · v)

∫
d(δV ) = (∇ · v)δV (118)

So that the time change rate of the infinitesimal volume is

D(δV )

Dt
= (∇ · v)δV (119)

then the velocity divergence has the form

∇ · v =
1

δV

D(δV )

Dt
(120)

Substituting into the continuity of equation (114) yields

Dρ

Dt
= −ρ∇ · v (121)

3.1.2 The momentum equation

The momentum equation is established according to Newton’s second law, which
states that the net force on a Lagrangian fluid element equals to its mass mul-
tiplying its acceleration. For example, in the x acceleration, all the forces in-
cluding the body forces and surface forces exerting on the infinitesimal element
are

−[(p+
∂p

∂x
dx)− p]dydz+

[(τxx +
∂τxx
∂x

dx)− τxx]dydz+

[(τyx +
∂τyx
∂y

dy)− τyx]dxdz+

[(τzx +
∂τzx
∂z

dz)− τzx]dxdy

= −∂p
∂x
dxdydz +

∂τxx
∂x

dxdydz +
∂τyx
∂y

dxdydz +
∂τzx
∂z

dxdydz

(122)
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where p is the pressure and τij is the stress in the j direction exerted on the
plane perpendicular to the i axis. Assuming the body force in the x direction
per unit mass is Fx, we have

m
dvx
dt

= ρdxdydz
dvx
dt

= −∂p
∂x
dxdydz+

∂τxx
∂x

dxdydz+
∂τyx
∂y

dxdydz+
∂τzx
∂z

dxdydz+Fxρdxdydz

(123)
Finally the momentum equation in the x direction has the form

ρ
Dvx
Dt

= −∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρFx (124)

The same procedure can be done in the y and z directions yielding

ρ
Dvy
Dt

= −∂p
∂y

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρFy, (125)

ρ
Dvz
Dt

= −∂p
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρFz (126)

3.1.3 The energy equation

The energy equation is based on the energy conservation. It is a representation
of the first thermodynamics law. It means that the energy time change rate
equals the summation of the net heat flux into the fluid element, and time rate
of work due to the body forces and surface forces. It can be written as

ρ
De

Dt
= −p(∂vx

∂x
+
∂vy
∂y

+
∂vz
∂z

)

+τxx
∂vx
∂x

+ τyx
∂vx
∂y

+ τzx
∂vx
∂z

+τxy
∂vy
∂x

+ τyy
∂vy
∂y

+ τzy
∂vy
∂z

+τxz
∂vz
∂x

+ τyz
∂vz
∂y

+ τzz
∂vz
∂z

(127)

In summary, the Navier-Stokes equations are a set of partial differential equa-
tions in Lagrangian description, which demonstrate the conservation of mass,
momentum and energy. If α and β express the coordinate directions, and the
summation is taken over repeated indices, the Navier-Stokes equations can be
written as the following

Dρ

Dt
= −ρ∂v

β

∂xβ
(128)

Dvα

Dt
=

1

ρ

∂σα

∂xβ
(129)

De

Dt
=
σαβ

ρ

∂vα

∂xβ
(130)
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where σαβ is the total stress tensor. It consists of two parts, one is the isotropic
pressure p and the other is viscous stress τ .

σαβ = −pδαβ + ταβ (131)

3.2 Euler’s equation

Taking into account some volume in the fluid, it is exerted by the force which
equals the integral of the pressure over the surface surrounding the volume
−
∮
pdf . By virtue of the diverge theorem, we obtain

−
∮
pdf = −

∫
∇pdV (132)

From the above equation, it is clear that the unit volume is affected by force
−∇p. In this case, we can write down the acceleration equation:

ρ
Dv

Dt
= −∇p (133)

Here v stands for the velocity of a given fluid particle moving about in space,
we have

v = v(t, x, y, z) (134)

So the derivative of it can be written as

Dv

Dt
=
∂v

∂t
+ v · ∇v (135)

Finally we obtain
∂v

∂t
+ v · ∇v = −1

ρ
∇p (136)

This is the equation of motion of the fluid, and it is also called Euler’s equation.

3.3 SPH representations for equations

After introducing the Navier-Stokes equations and Euler’s equation, the SPH
formulation for these equations are discussed. First of all, the density approxi-
mation is represented. It is crucial because it determines the particle distribution
and the smoothing length. There are two approaches approximating the den-
sity. One approach is to directly approximate it by virtue of SPH formulation,
which is a form of summation

ρa =

N∑
b=1

mbWab (137)

where N is the number of particles within the support domain of particle a, and
mb is the mass of particle b. Wab is the smoothing kernel function of particle a
calculated at particle b.

51



Another approach to evaluate the density is according to the continuity
equation. Taking a look at the equation (128), the SPH approximation can be
applied to the velocity divergence, which is

Dρa
Dt

= −ρa
N∑
b=1

mb

ρb
vβb ·

∂Wab

∂xβa
(138)

As a matter of fact, there are some other transformations for the velocity diver-
gence. Considering the approximation on the gradient of the unity, we obtain

∇1 =

∫
1∇W (x− x′, h)dx′ =

N∑
b=1

mb

ρb

∂Wab

∂xβa
= 0 (139)

Multiplying the term ρav
β
a on both sides of the above equation yields

ρav
β
a (

N∑
b=1

mb

ρb

∂Wab

∂xβa
) = ρa

N∑
b=1

mb

ρb
vβa
∂Wab

∂xβa
(140)

Finally we add this equation to the continuity of equation, obtaining another
form of density approximation equation

Dρa
Dt

= ρa

N∑
b=1

mb

ρb
vβab ·

∂Wab

∂xβa
(141)

where
vβab = vβa − vβb (142)

Here the velocity difference are introduced in the particle approximation, which
is preferred in the SPH formulations. It takes into account the relative velocities
of particle pairs which in some problems can reduce the error coming from the
particle inconsistency.

There exists another form of the density gradient expression by applying the
following equation

−ρ∂v
β

∂xβ
= −[

∂(ρvβ)

∂xβ
− vβ · ∂ρ

∂xβ
] (143)

Therefore with the help of this identity, the continuity equation has the form

Dρa
Dt

=

N∑
b=1

mbv
β
ab ·

∂Wab

∂xβa
(144)

For these two approaches, summation density and continuity density approx-
imations, both of them have merits and drawbacks. The density summation
can conserve the mass exactly because the integral of the density over the whole
problem space is exactly the total mass of the system. But the continuity equa-
tion can not guarantee this. However the summation density approach shows
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deficiency as it is applied to boundary particles of the fluid domain. This edge
effect can be remedied by the continuity equation by using boundary virtual
particles. Another comparison is arising from the computational calculation.
For the summation density approach, it takes more computational time because
the evaluation of density have to be done before other parameters are calculat-
ed and the smoothing kernel function also need to be evaluated. However the
continuity density method does not require calculating other parameters in the
beginning and therefore save a lot of computational efforts.

For the SPH formulation of the equation of momentum, the procedure is very
similar to the continuity density approach. And there are many transformations
for deriving different forms of momentum approximation equations. Directly
applying the SPH particle approximation to the RHS of equation (129) yields

Dvαa
Dt

=
1

ρb

N∑
b=1

mb
σαβb
ρb

∂Wab

∂xβa
(145)

Using the following identity

N∑
b=1

mb
σαβa
ρaρb

∂Wab

∂xβa
=
σαβa
ρa

(

N∑
b=1

mb

ρb

∂Wab

∂xβa
) (146)

we can obtain a new form of the momentum equation

Dvαa
Dt

=

N∑
b=1

mb
σαβa + σαβb

ρaρb

∂Wab

∂xβa
(147)

This above equation is usually used because of its symmetrized form which can
reduce error from the particle inconsistency.

If we consider the following identity

1

ρ

∂σαβ

∂xβ
=

∂

∂xβ
(
σαβ

ρ
) +

σαβ

ρ2

∂ρ

∂xβ
(148)

Now applying the SPH particle approximation to the identity and the momen-
tum equation becomes

Dvαa
Dt

=

N∑
b=1

mb

ρb

σαβb
ρb

∂Wab

∂xβa
+
σαβa
ρ2
a

N∑
b=1

mb

ρb
ρb
∂Wab

∂xβa
(149)

Through some rearrangements, finally we can get

Dvαa
Dt

=

N∑
b=1

mb(
σαβa
ρ2
a

+
σαβb
ρ2
b

)
∂Wab

∂xβa
(150)

For the internal energy evolution in equation (128), combination with the
equation (131), the viscous shear stress is proportional to the shear strain rate
expressed by ε through the dynamic viscosity µ,

ταβ = µεαβ (151)
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where

εαβ =
∂vβ

∂xα
+
∂vα

∂xβ
− 2

3
(∇ · v)δαβ (152)

Then the energy equation can be rewritten as

De

Dt
= −p

ρ

∂vβ

∂xβ
+

µ

2ρ
εαβεαβ (153)

Taking into account the following relation

−p
ρ

∂vβ

∂xβ
=

p

ρ2
(−ρ∂v

β

∂xβ
) =

p

ρ2

Dρ

Dt
(154)

for the pressure work, it can be approximated as

−p
ρ

∂vβa

∂xβa
=
pa
ρ2
a

N∑
b=1

mbv
β
ab ·

∂Wab

∂xβa
(155)

Another way to approximate the pressure work is by using the following identity

−p
ρ

∂vβ

∂xβ
= − ∂

∂xβ
(
pvβ

ρ
) + vβ

∂

∂xβ
(
p

ρ
) (156)

so it leads to

−p
ρ

∂vβa

∂xβa
=

N∑
b=1

mb
pb
ρ2
b

vβab ·
∂Wab

∂xβa
(157)

By adding equation (155) and equation (157), we can obtain the another form
of approximation of the pressure work

−p
ρ

∂vβa

∂xβa
=

1

2

N∑
b=1

mb(
pa
ρ2
a

+
pb
ρ2
b

)vβab
∂Wab

∂xβa
(158)

Using the following transformation

−p
ρ

∂vβ

∂xβ
= −1

ρ
[
∂

∂xβ
(pvβ)− vβ

∂P

∂xβ
] (159)

another form of SPH approximation for pressure work is got

−p
ρ

∂vβa

∂xβa
=

1

ρa

N∑
b=1

mb
pb
ρb

vβab
∂Wab

∂xβa
(160)

Adding the equation (158) and equation (160) together produces another useful
form of the pressure work approximation

−p
ρ

∂vβa

∂xβa
=

1

2

N∑
b=1

mb
pa + pb
ρaρb

vβab ·
∂Wab

∂xβa
(161)
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As discussed before, there are many kinds of form for the pressure work. How-
ever the most frequently used are the following two forms

Dea
Dt

=
1

2

N∑
b=1

mb(
pa
ρ2
a

+
pb
ρ2
b

)vβab
∂Wab

∂xβa
+

µa
2ρa

εαβa εαβa (162)

and

Dea
Dt

=
1

2

N∑
b=1

mb(
pa + pb
ρaρb

)vβab
∂Wab

∂xβa
+

µa
2ρa

εαβa εαβa (163)

The SPH equations for the Navier-Stokes equations for evolving the density,
momentum and energy have been discussed in the previous paragraphs. If
we ignore the viscous term appearing in the Navier-Stokes equations, then we
can obtain the Euler equations. The SPH formulations for Euler equations of
evolving density, momentum and energy are listed as follows. First the density
approximation has forms

ρa =

N∑
b=1

mbWab (164)

ρa =

∑N
b=1mbWab∑N
b=1(mbρb )Wab

(165)

Dρa
Dt

= −ρa
N∑
b=1

mb

ρb
vβb ·

∂Wab

∂xβa
(166)

Dρa
Dt

= ρa

N∑
b=1

mb

ρb
vβab ·

∂Wab

∂xβa
(167)

Dρa
Dt

=

N∑
b=1

mbv
β
ab ·

∂Wab

∂xβ
(168)

the conservation of momentum can be approximated as

Dvαa
Dt

= −
N∑
b=1

mb
pa + pb
ρaρb

∂Wab

∂xαa
(169)

Dvαa
Dt

= −
N∑
b=1

mb(
pa
ρ2
a

+
pb
ρ2
b

)
∂Wab

∂xαa
(170)

And the conservation of energy can be expressed as

Dea
Dt

=
1

2

N∑
b=1

mb
pa + pb
ρaρb

vβab
∂Wab

∂xβa
(171)

Dea
Dt

=
1

2

N∑
b=1

mb(
pa
ρ2
a

+
pb
ρ2
b

)vβab
∂Wab

∂xβa
(172)
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3.4 Relativistic hydrodynamical equations of motion

As a matter of fact, we can obtain the relativistic hydrodynamic equations of
motion from variational approaches. Let us first briefly review this method. We
start the action

I =

∫
d4x(−ε). (173)

where ε is the proper energy density. In the following, we regard the velocity of
light as unity c = 1. The velocity field of matter is

~v = ~v(~r, t). (174)

and the four-vector velocity has the form

u0 = γ, ~u = γ~v. (175)

where it satisfies
uµu

µ = 1. (176)

In order to help the discussion, we have the assumption that the baryon number
is conserved. We write the local density of baryon in comoving frame as n, then
we have

∂µ(nuµ) = 0. (177)

now we can define the specific volume V as

V =
1

n
. (178)

So that the energy of matter in this volume E equals

E = εV (179)

With the assumption of local equilibrium, we have the thermodynamical rela-
tion,

(
∂E

∂V
)S = −P (180)

where S denotes the entropy of the matter in this volume and P is the pressure.
According to the energy density and baryon density, we can get

(
∂E

∂V
)S = (

∂(εV )

∂V
)S = ε+ V (

∂ε

∂V
)S = ε+

1

n
(
∂ε

∂( 1
n )

)S = −P (181)

then

(
∂ε

∂n
)S =

ε+ P

n
(182)

From the above discussion, the hydrodynamical equations of motion for the
fluid involves the proper energy density ε, the local baryon density n and the
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four vector velocity uµ. In terms of the Lagrangian multipliers method, we can
incorporate them into the action,

I =

∫
d4x{−ε+ ξ∂µ(nuµ) +

1

2
ζ(uµu

µ − 1)} (183)

and use the variational principle

δI = 0 (184)

where ξ and ζ are the Lagrangian multipliers and they are arbitrary functions
of x. If we make variations with respect to ξ and ζ, we can get the constraint
equations (176) and (177). Doing the integration by parts for the second term
in equation (181), we can obtain the effective Lagrangian,

Leff = −ε(n)− nuµ∂µξ(x) +
1

2
ζ(x)(uµuµ − 1), (185)

I =

∫
d4xLeff (186)

The variations in n and uµ cause immediately

−µ− uµ∂µξ = 0, (187)

−n∂µξ − ζuµ = 0. (188)

Multiplying the both sides of equation (186) by uµ, and by virtue of Eqs. (176,
177), we obtain

ζ = ε+ P (189)

We substitute ζ into equation (186) and multiply uν ,

ζuµuν = −nuν∂µξ (190)

now taking the divergence of it,

∂ν(ζuµuν) = −nuν∂ν∂µξ = n∂µ(uν∂
νξ)− n∂νξ∂µuν = −n∂µµ− n∂νξ∂µuν

(191)
so that

∂ν(ζuµunu) = n∂µµ+ ∂µuνζu
ν = ∂µP (192)

and finally we get the standard form of the relativistic hydrodynamic equation
of motion

∂νTµν = 0 (193)

where
Tµν = (P + ε)uµuν − gµνP (194)

is the energy momentum tensor of the fluid.
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3.5 Derivation of relativistic Euler’s equation

In cartesian coordinate frame,

∂µT
µν = 0, (195)

Tµν = (ε+ P )uµuν − Pgµν , (196)

∂µT
µν = ∂µ[(ε+ P )uµuν ]− ∂µ(Pgµν), (197)

∂µT
µν = ∂µ[suµ

ε+ P

s
uν ]− gµν∂µP, (198)

∂µT
µν = suµ∂µ(

ε+ P

s
uν)− gµν∂µP, (199)

∂µT
µν = sγ

d

dt
(
ε+ P

s
uν)− gµν∂µP (200)

Considering the time part of it,

sγ
d

dt
(
ε+ P

s
u0)− gµ0∂µP = 0, (201)

sγ
d

dt
(
ε+ P

s
γ)− g00∂0P = 0, (202)

sγ
d

dt
(
ε+ P

s
γ) =

∂P

∂t
. (203)

Taking into account the spatial part,

sγ
d

dt
(
ε+ P

s
γvi)− gµi∂µP = 0, (204)

sγ
d

dt
(
ε+ P

s
γ)vi + sγ(

ε+ P

s
γ)
dvi

dt
− gµi∂µP = 0, (205)

∂P

∂t
vi + (ε+ P )γ2 dv

i

dt
+ ∂iP = 0. (206)

If we write them by the vector form,

d~v

dt
= − 1

(ε+ P )γ2
(~∇P + ~v

∂P

∂t
), (207)

∂~v

∂t
+ (~v · ~∇)~v = −1− v2

ε+ P
(~∇P + ~v

∂P

∂t
). (208)

Here we have made use of the conservation of entropy.

3.6 summary

We have derived the relativistic hydrodynamics equations, now its application
to nuclear collisions is going to be discussed. First, we will follow the pioneering
work by Landau which investigated the multiple production of particles with the
use of hydrodynamic theory. Second, we are going to study the more realistic
condition of particle collisions involved with a well known characteristic method.
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4 One dimensional Landau Model

In this chapter, one dimensional Landau model will be discussed, which is taken
as a test that the SPH can be applied to high energy nuclear collision. The
analytic solution of this model will be described in detail and the SPH numerical
simulation of the system would be carried out. The obtained results have been
compared which show the SPH method achieves success.

From the point view of Landau [58], the qualitative analysis of the high
energy collision process can be divided into several stages. First, as two nucleons
collision, a new compound system appears and the energy is concentrated in a
small volume. The lorentz contraction takes place in the collision direction.
A large amount of particles is produced at the moment of collisions and the
collision mean free path is small as it compares with the volume of the system.
Second, the system expands which is determined by hydrodynamics theory, and
the expansion is regarded as motion of ideal fluid. During the evolution of the
system, the collision mean free path is still small so that the hydrodynamics
equations work. Due to the velocities in the system are comparable with light
velocity, the relativistic hydrodynamics is applied. Third, as the system evolves,
the interaction decreases and the collision free path increases. When the mean
free path is comparable to the system volume, the system will break up into
separate particles.

We are mainly interested in the second stage of high energy collisions which
make use of the hydrodynamics theory to describe the expansion of the com-
pound system. As a matter of fact, all SPH particles are set static in the
foregoing discussion. However the SPH particles should follow the equation of
motion and they are not still any more if problems are taken into account in real
fluid. Therefore we investigate the one dimensional Landau model, with the ap-
plication of the FPM algorithm. Since the analytic solution is well known [59],
we can compare the SPH numerical results to it. The analytic solution consists
of two parts. One part is Riemann simple wave solution, while the other part is
Khalatnikov solution. Both the standard SPH and Taylor SPH algorithms are
applied to obtain numerical results.

4.1 Analytic solutions

Before we introduce the two parts of analytic solution for one dimensional Lan-
dau model, some important physical quantities and notations need to be il-
lustrated, including the energy density ε, the velocity v, the energy density
logarithm ζ, the flow rapidity y, the hydrodynamical potential χ, the tempera-
ture T ,the entropy density s and the sound velocity cs. The relations between
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the physical quantities are as follows

ζ =
1

4
ln(ε/ε0) = ln(T/T0), (209)

ε/ε0 = (T/T0)4 = e4ζ , (210)

s/s0 = (ε/ε0)3/4 = (T/T0)3 = e3ζ , (211)

v = tanh y. (212)

4.1.1 The Riemann simple wave solution

After the relativistic high energy collisions, the system in the center of mass
reference frame has a form of a flat slab whose thickness is 2l. The slab is in
contact with the vacuum at the two edge boundaries. The Riemann simple wave
could be regard as the superposition of the propagation of sound wave with the
sound speed cs and the propagation of the fluid element with the flow velocity
v, which is originated from the disturbance presenting at edge boundaries. It
can be formulated by

y = − ζ

cs
, (213)

x

t
=

tanh(−ζ/cs)− cs
1− tanh(−ζ/cs)cs

. (214)

Considering an initial slab with width 2l at rest in the beginning, it has an
initial energy density ε0. The slab contacts the vacuum and the energy density
of the slab will decrease from the matter region to the vacuum region. In this
case, the early stage evolution of the slab is governed by the Riemann simple
wave solution.

Numerically we conduct the equation (213) and equation (214) as follows.
For a definite value of time t, which is smaller than l/cs, we set the value of
the rapidity y to zero at beginning and increase it stepwise. If the value of
rapidity y is known, then from equation (213), the energy density logarithm ζ
can be evaluated. Subsequently the value of x can be calculated. To obtain
the next value of rapidity y, same calculation is repeated. The results of the
slab evolution at the early stage can be shown from the Fig 1 in this paper [60],
From this figure, the rarefaction wave begins at z = l and propagates inside
to z = 0 with the speed of sound cs. It reaches the spatial position z = 0 at
time t = l/cs =

√
3l. Second, as the value of rapidity y increases, the value of

energy density logarithm ζ gets more and more negative, which corresponds to
the energy density ε reduction. So that the change of y yields the whole profile
of ε/ε0 as a function of z/l for every constant time t. The fluid expands outside
and the velocity of fluid element increases. However the velocity will be limited
by the speed of light as it contacts the vacuum. So that the farthermost reach
of fluid element is corresponding to z = l + t.
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Figure 23: The profile of the energy density ratio ε/ε0 and the flow rapidity y
as a function of z/l at different values of t/l is achieved by the Riemann simple
wave solution. The plot is excerpted from the reference [60].

61



4.1.2 The Khalatnikov solution

After the time t ≥ l/cs, the simple wave that begins at edges and propagates
inward reaches the center of slab. Subsequently the fluid expands in the middle
region following the Khalatniov solution. For the Khalatnikov analytic solution,

χ = −l
√

3eζ
∫ −ζ
y/
√

3

e2ζ′I0

[√
ζ ′2 − 1

3
y2

]
dζ ′, (215)

t(ζ, y) = e−ζ(
∂χ

∂ζ
cosh y − ∂χ

∂y
sinh y), (216)

x(ζ, y) = e−ζ(
∂χ

∂ζ
sinh y − ∂χ

∂y
cosh y). (217)

From the form of the hydrodynamical potential in equation (215), the terms ∂χ
∂ζ

and ∂χ
∂ζ can be written as

∂χ

∂ζ
(ζ, y) = χ+ l

√
3e−ζI0[

√
ζ2 − 1

3
y2] (218)

∂χ

∂ζ
(ζ, y) = −l

√
3eζ

∫ −ζ
y/
√

3

e2ζ′
I1[
√
ζ ′2 − 1

3y
2]√

ζ ′2 − 1
3y

2
dζ
′
+ leζe2y/

√
3. (219)

Numerically we want to express (ζ, y) as a function of (z, t). To achieve this
purpose, we consider the value of rapidity y starting from zero and increasing
stepwise with a fixed value of time t. From equation (216), for each pair values
of (t, y), the unknown quantity ζ can be calculated. For the evaluation of ζ, we
can use the Newton’s method by giving a good guess on the value of ζ for a
given time t and y = 0. Subsequently from the equation (217), the value of x
can be defined. The results are shown in the Fig. 2 in this paper,

4.1.3 summary

In this section, we present the analytical solutions of Landau hydrodynamics.
The earliest history can be described by the Riemann simple wave solution, and
the later evolution stage can be illustrated by the Khalatnikov solution. What’s
more, the Khatnikov solution has to be matched to the Riemann simple wave
solution at boundary regions. In the following, we are going to introduce the
SPH algorithm to deal with the one dimensional Landau model. The equation
of motion will be derived and carried out by numerical codes. The numerical
results will be represented and compared with the exact analytic solutions.
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Figure 24: The profile of the energy density ratio ε/ε0 and the flow rapidity y as
a function of z/l at different values of t/l is achieved by Khalatnikov solution.
The solid line give the Khalatnikov solution but it has to match the Riemann
simple wave solutions at the boundary regions that are shown as dashed lines.
So that a total hydrodynamical solution is made of the Khalatnikov solution for
small z/l combining with the matched Riemann solution for large z/l. The plot
is excerpted from the reference [60].
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4.2 Equation of motion for SPH particles

The equation of motion followed by SPH particles in Cartesian coordinate is
written as [61],

d

dt
(νi

pi + εi
si

γi~vi) +
∑
j

νiνj [
pi
s∗2i

+
pj
s∗2j

]∇iW (~ri − ~rj ;h) = 0. (220)

Taking into account a system of one dimensional relativistic massless free baryon
gas initially at rest, the equation of state is

p =
1

3
ε = Cs

4
3 , (221)

where

C = (
15

128π2
)

1
3 . (222)

The derivation of the equation of motion is as follows:

4.3 Derivation of EOM

The action of the system

I = −
∫
d4xε. (223)

and the Lagrangian has the form

L = −
∫
d3~rε. (224)

In the SPH representation, the Lagrangian can be written as

LSPH(~ri, ~vi =
d~ri
dt

) = −
∑
i

νi(ε/a
∗)i = −

∑
i

(
E

γ
)i (225)

where Ei is the rest energy of particle i which equals νi(ε/a)i and a∗ is the
refrence density in space-fixed frame. In this case, the action of SPH model is

ISPH = −
∫
dt
∑
i

(E/γ)i. (226)

then we have

δISPH = −
∫
dt
∑
i

(
δEγ − Eδγ

γ2
)i (227)
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where

δE = −PδV, (228)

δγi = δ
1√

1− v2
i

= γ3~vi · δ~vi, (229)

Vi = δ
νi
ai

= δ
γνi
a∗i

, (230)

δVi = Vi(
δγi
γi
− δa∗i

a∗i
), (231)

δVi = −νi
ai

(−γ2
i ~vi · δ~vi +

1

a∗i

∑
j

νj(δ~ri − δ~rj) · ∇iWij). (232)

then we can write the variation of action like

δISPH = −
∫
dt
∑
i

{Pi
νi
γiai

(−γ2
i ~vi · ~vi +

1

a∗i

∑
j

νj(δ~ri − δ~ri) · ∇iWij)

−Ei
γ2
i

γ3
i ~vi · δ~vi}.

(233)

Subsequently,

δISPH = −
∫
dt
∑
i

−νi
ai

(P + ε)iγi~vi · δ~vi−∫
dt
∑
i

Piνi
a∗2i

∑
j

νj(δ~ri − δ~rj) · ∇iWij

(234)

For the equation (234), the first term can be simplified by using the integration
by parts, for example,

Aδ~vi = Aδ
d~ri
dt

= A
d

dt
δ~ri =

d

dt
(Aδ~ri)−

dA

dt
δ~ri. (235)

then the equation (234) can be written like

δISPH =−
∫
dt
∑
i

δ~ri
d

dt
[νi(

P + ε

a
)iγi~vi]

−
∫
dt
∑
i

Piνi
a∗2i

∑
j

νj(δ~ri − δ~rj) · ∇iWij

(236)

and finally

d

dt
[νi(

P + ε

a
)iγi~vi] = −

∑
j

[
νiνj
γ2
i

P

a2
i

+
νiνj
γ2
j

P

a2
j

]∇iWij (237)

From this equation, it is clear that it conserves the momentum of system.
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4.4 numerical results for entropy density in laboratory
frame

Now according to the equation of motion of SPH particles combining with the
equation of state, numerical implementation can be carried out. Some impor-
tant parameters related to the evaluation are: the number of SPH particles is
1000 and the number of fixed spatial points is 200. The initial SPH particle
is uniformly set in [-1.0,1.0], while the fixed points are distributed equally in
[-12.0,12.0]. The entropy density distribution at fixed spatial points for t=0.0,
2.0, 4.0, 6.0, 8.0, 10.0 is shown as follows.

There exists a essential difference when we implement the numerical calcula-
tion making use of standard algorithm and Taylor SPH algorithm. For standard
SPH algorithm, the entropy density in space-fixed frame has the form

s∗i =
∑
j

νjWij . (238)

while for the Taylor SPH algorithm, it can be written as

s∗j =

∑
i

νi
s∗i

(ri − rj) ~∇jWji ·
∑
k

νkWjk −
∑
i

νi
s∗i

(ri − rj)Wji ·
∑
k

νk ~∇jWjk∑
i

νi
s∗i
Wji ·

∑
k

νk
s∗k

(rk − rj) ~∇jWjk −
∑
i

νi
s∗i
~∇jWji ·

∑
k

νk
s∗k

(rk − rj)Wjk

, (239)

s∗i =
∑
k

νkWik.(240)

where the laboratory entropy density s∗i in equation(239) should be substituted
by equation(240).

From Fig. 3 and Fig. 4, We can see that entropy density distribution repro-
duced with the use of Taylor SPH algorithm is as satisfactory as the application
of standard SPH algorithm, which at lease illustrates that the new algorithm
Taylor SPH is useful and applicable at present.

5 Transverse expansion on longitudinal scaling
expansion

In this chapter, a three dimensional hydrodynamic evolution has been taken into
consideration. The transverse expansion of a cylindrically symmetric homoge-
nous massless pion gas, which undergoes a longitudinally scaling expansion, has
been investigated. Compared with one dimensional Landau model, this system
is more closer to the realistic condition. It shows the SPH ability to deal with
multi-dimensional problems appearing in heavy ion collisions. Most of the con-
text is based on the work by Y. Hama and F.W.Pottag [62]. From this chapter
a good understanding of SPH application to complex high dimensional problems
can be formed
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Figure 25: Entropy density for different values of t applying standard SPH,
the exact results are given by broken curves, the SPH solution is shown by full
curves.

5.1 Resolution of transverse expansion analytically

Considering the transverse expansion of a flat disc, which has the uniform
thickness 2l and its radius R >> l, its initial temperature T0 is constant and
T0 >> Td, where Td is the breaking up temperature. As discussed before, the
equations of relativistic hydrodynamics are

∂µT
µν = 0 (241)

where the energy momentum tensor Tµν and the pressure p have the form

Tµν = (ε+ p)uµuν − pgµν (242)

p = c20ε (243)

and here c0 is the sound velocity. The equations have been resolved by Khalat-
nikov in the case of one dimensional evolution. Define the temperature ratio y
and denote flow rapidity by α, giving the conditions

y2 − c20α2 >> 1 (244)
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Figure 26: Entropy density for different values of t using Taylor SPH, the exact
results are given by broken curves, the SPH solution is shown by full curves.

y2 >> α2 (245)

where

y = ln
T

T0
(246)

Under these circumstances, his solution can be written as

α =
1

2
ln
t+ x

t− x
(247)

y = −1 + c20
4

ln
t2 − x2

∆2
+

1− c20
4

[ln2 t
2 − x2

∆2
− ln2 t+ x

t− x
]1/2 (248)

where

∆ =

√
1− c20
π

l (249)

If α << ln
√
t2−x2

∆ , we can simply y as

y = −c20 ln

√
t2 − x2

∆
(250)
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In summary, the equation (247) and equation (250) appear as the solutions of
the relativistic hydrodynamical equations in one dimension.

Now to investigate the transverse flow expansion, new coordinate system
needs to be established. The coordinate system is introduced as follows

τ =
√
t2 − x2, (251)

α0 = tanh−1 x

t
, (252)

r =
√
y2 + z2, (253)

φ = tan−1 z

y
. (254)

according to the above relations we have

t = τ coshα0, (255)

x = τ sinhα0, (256)

y = r cosφ, (257)

z = r sinφ. (258)

So that it is easy to get the metric tensor gµν and gµν in this new coordinate
system

g00 = 1, (259)

g11 = − 1

τ2
, (260)

g22 = −1, (261)

g33 = − 1

r2
. (262)

and gµν = 0 for µ 6= ν.

g00 = 1, (263)

g11 = −τ2, (264)

g22 = −1, (265)

g33 = −r2. (266)

and gµν = 0 for µ 6= ν.
In the new coordinate system, the four velocity can be rewritten as

uµ(x) = (cosh(α− α0) cosh ξ,
sinh(α− α0)

τ
cosh ξ, sinh ξ, 0), (267)

uµ(x) = (cosh(α− α0) cosh ξ,−τ sinh(α− α0) cosh ξ,− sinh ξ, 0) (268)

where ξ is the transverse rapidity.
The relativistic hydrodynamical equation can be generalized as

1√
−g

∂(
√
−gTµν )

∂xµ
− 1

2

∂gµ∇
∂xν

Tµ∇ = 0 (269)
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According to the form of energy momentum tensor and pressure, by virtue of
the thermodynamical relations, it can be simplified as

∂y

∂xν
= − c

2
0uν√
−g

∂

∂xµ
[
√
−guµ] + uµ

∂uν
∂xµ

− uµu∇

2

∂gµ∇
∂xν

(270)

and now making the assumption that

α = α0 (271)

which yields

∂y

∂τ
= −c

2
0 cosh2 ξ

τ
− c20 sinh ξ cosh ξ

r
+ (1− c20) sinh ξ cosh ξ

∂ξ

∂τ

+(sinh2 ξ − c20 cosh2 ξ)
∂ξ

∂r

(272)

∂y

∂α0
= 0 (273)

∂y

∂r
=
c20 sinh ξ cosh ξ

r
+
c20 sinh2 ξ

r
− (cosh2 ξ − c20 sinh2 ξ)

∂ξ

∂τ

−(1− c20) sinh ξ cosh ξ
∂ξ

∂r

(274)

∂y

∂ϕ
= 0 (275)

Here we can see that there are two unknown functions y and ξ, and there
exist two independent variables τ and r. To solve this system, the boundary
conditions require to be specified.

Physically for the central region of the disc and for t ≤ R, the Khalatnikov
one dimensional solution is good for describing the phenomena. However to
explain the system expansion at the boundary, the deviation appears with this
solution. As a matter of fact, the fluid in three dimensional flow has such
boundary conditions. It will be bounded by the surface

r = R+ τ (276)

one the vacuum side and would relate the one dimensional flow region on

r = R− c0τ (277)

and when r = R+ τ ,

ξ = ∞, (278)

y = −∞ (279)

and when r = R− c0τ

ξ = 0, (280)

y = −c20 ln
τ

∆
(281)
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Along the axis and for τ ≥ R
c0

,
ξ = 0 (282)

which implies
∂y

∂r
= 0 (283)

After figuring out these boundary conditions, the equation (272) to equation
(275) can be solved. These equations are going to be resolved by characteristic
method.

5.2 Characteristic method

Mathematically the method of characteristics is a technique to solve the partial
differential equations. It ca reduce a partial differential equation to a family of
ordinary differential equations. For example, let us see how it works for first
order partial differential equation. Considering a function z of two independent
variables x and y, it satisfies the following relation

a(x, y, z)
∂z

∂x
+ b(x, y, z)

∂z

∂y
= c(x, y, z) (284)

From this partial differential equation, a normal vector to the surface z = z(x, y)
is

N = (
∂z

∂x
(x, y),

∂z

∂y
(x, y),−1) (285)

In this case, we can regard the partial differential equation as the vector field D

D = (a(x, y, z), b(x, y, z), c(x, y, z)) (286)

tangent to the surface z = z(x, y). Because for every point at the surface, the
dot product of vector field D with the normal vector N is zero. Therefore the
solution can be considered as a set of integral curves of the vector field. These
integral curves can be expressed by

dx

a(x, y, z)
=

dy

b(x, y, z)
=

dz

c(x, y, z)
(287)

Finally assuming the parameter t of the curves is fixed, we can obtain

dx

dt
= a(x, y, z), (288)

dy

dt
= b(x, y, z), (289)

dz

dt
= c(x, y, z). (290)

We call these equations as characteristic equations for the original system.
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Now applying the characteristic method to the transverse flow expansion,
we have

y = yt − c20 ln
τ

∆
(291)

where yt denotes the transverse contribution which separates from the longitu-
dinal contribution −c20 ln τ

∆ . It should note that the new variable yt satisfies the
boundary condition

yt = 0 (292)

at r = R − c0τ which is equivalent to the equations (280) and (281). For the
rapidity variables yt and ξ, introducing the variables ψ and ϕ, they have such
relations

ψ = yt + c0ξ, (293)

ϕ = yt − c0ξ. (294)

so that it is easy to obtain the reverse relations

yt =
1

2
(ψ + ϕ), (295)

ξ =
1

2c0
(ψ − ϕ) (296)

With the help of these transformations, the equations we need to calculate
become

∂ψ

∂τ
+

vt + c0
1 + c0vt

∂ϕ

∂r
+

c20vt
1 + c0vt

[
1

r
− c0
τ

] = 0, (297)

∂ϕ

∂τ
+

vt − c0
1− c0vt

∂ϕ

∂r
+

c20vt
1− c0vt

[
1

r
+
c0
τ

] = 0. (298)

where

vt = tanh
ψ − ϕ

2c0
(299)

From the above quasi-linear equations, the following characteristics curves are
obtained

dr

dτ
=

vt + c0
1 + c0vt

, (300)

dr

dτ
=

vt − c0
1− c0vt

(301)

Along the curve expressed by equation (300), we have

dψ =
c20vt

1 + c0vt
[
c0
τ
− 1

r
]dτ (302)

and along the curve illustrated by equation (301), we obtain

dϕ = − c20vt
1− c0vt

[
c0
τ

+
1

r
]dτ (303)
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Figure 27: Radial distribution of T/T0 at different instants τ =
1.0, 5.0, 10.0, 15.0. The plot is excerpted from the reference [63].

In summary, to solve the transverse part of hydrodynamical equations, the pro-
cedure is to integrate the equations (302) and (303) along the curves (300) and
(301) with the help of the boundary conditions as discussed before.

The discussion of how to solve the hydrodynamical equations of transverse
flow expansion is over which is based on the work done by Yogiro Hama and
Pottag [63]. Here we want to show the temperature evolution at the radial
direction which is display at Fig. 6 in their work.

5.3 SPH formulation and evaluation for the transverse ex-
pansion

Here we emphasis on the numerical resolution by using SPH method. We are
going to introduce the general coordinate because it is very important when we
take into account realistic initial conditions for simulations of RHIC processes.
It is well known that during a relativistic heavy ion collisions, the initial state
of the system is a cold and quantum nuclear matter. After the process of
collisions, the hadronic matter will stay at an off-shell state and the process
of materialization takes place only after ∼ 1fm/c in the proper time. In this
case, the local thermodynamical state occurs not for the global space-fixed time
but for local proper time. So that it is significant to choose specific coordinate
system to describe the relativistic heavy ion collisions. Therefore the hyperbolic
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time and longitudinal coordinates will be addressed subsequently.

5.3.1 General coordinate system

Taking into account a general coordinate system,

ds2 = gµνdx
µdxν (304)

Here the time-time coordinate is orthogonal to the space-time coordinates in
order to define the conserved quantity without any doubts,

gµ0 = 0 (305)

And the variation of the action for the relativistic fluid has the form

δI = −δ
∫
d4x
√
−gε = 0 (306)

The total entropy of the system is conserved due to the adiabatic approximation,
which can be expressed by

1√
−g

∂µ(
√
−gsuµ = 0) (307)

1√
−g

∂τ (
√
−gsγ) +

1√
−g

3∑
i=1

∂i(
√
−gsγvi) = 0 (308)

where

vi =
ui

u0
(309)

There are some notations going to be used,

τ = x0, (310)

γ = u0 (311)

and the general gamma factor can be derived by virtue of the identity

uµu
µ = 1 (312)

therefore it has the following form

γ =
1√

g00 − vTgv
(313)

Now the SPH formulation for the action principle will be addressed. Before
talking about this, the SPH representation for the entropy density is important
and essential. As a matter of fact, there are two ways to define the entropy
density, √

−gsγ = s∗ (314)
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or
sγ = s∗ (315)

Since the total entropy is written as

S =

∫
d3r
√
−gsγ =

∑
i

νi (316)

therefore for the parametrization equation (314), the normalization of kernel
function W is ∫

d3rW (r− r′) = 1 (317)

and for the parametrization equation (315), it should be taken as∫
d3r
√
−gW (r− r′) = 1 (318)

It should be noted that the −g is the three by three space part of the general
metric tensor gµν which is dependent on space time. In the usual calculation,
it is not desirable for the kernel function to depend on space time. So that the
expression of entropy density is taken as the form of equation (314).

After making sure of the approximation of the entropy density, the SPH
action is given by

ISPH = −
∫
d4x
√
−gε = −

∫
dτ

∫
d3r
√
−gε, (319)

ISPH = −
∫
dτ

∫
d3r

∑
i

νi(

√
−gε√
−gsγ

)iW (r− ri), (320)

ISPH = −
∫
dτ
∑
i

(
ε

sγ
)i (321)

Using the above form of action and applying the variational principle, the fol-
lowing equation of motion is obtained,

dπi
dτ

= −
∑
j

νiνj [
1√
−giγ2

i

pi
s2
i

+
1

√−gjγ2
j

pj
s2
j

]∇iWij

+
νipi
γisi

(
1√
−g
∇
√
−g)i

+
νiγi

2
(
p+ ε

s
)i(∇g00 − vT∇gv)i

(322)

where the momentum πi has the form

πi = γiνi(
p+ ε

s
)igvi (323)

The detailed deduction of the above equation of motion is going to be ad-
dressed as follows. The Lagrangian of the system has the form

L = −
∑
i

νi(
ε

sγ
)i = −

∑
i

(
E

γ
)i (324)
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where Ei denotes the rest energy of the particle i. The variation of the La-
grangian is written as

δL = −
∑
i

δ(
E

γ
)i =

∑
i

pi
γi
δVi +

∑
i

εiνi
siγ2

i

δγi (325)

where the variation of Ei equaling pδVi has been used. Now it is necessary to
obtain the variation of gamma factor δγiand the volume δVi.

δγi = δ[g00 − vµ2gµµ]
− 1

2
i

= −1

2
[g00 − vµ2gµµ]

− 3
2

i (−2)(v1g11δv
1 + v2g22δv

2 + v3g33δv
3)i

− 1

2
[g00 − vµ2gµµ]

− 3
2

i (∇g00 − vµ2∇gµµ)iδri

= γ3
i v

T
i giδVi −

1

2
γ3
i (∇g00 − vT∇gv)iδri

(326)

and the volume has the form

Vi =
νi
si

=
νiγi
√
−gi

s∗i
(327)

therefore

δVi = Vi(
δγi
γi
− δs∗i

s∗i
) +

νiγi
s∗i

δ(
√
−gi)

=
νi
si

[γ2
i v

T
i giδVi −

1

2
γ2
i (∇g00 − vT∇gv)iδγi]

− νi√
−gis2

i γi

∑
j

νj∇iWij(δri − δrj) +
νiγi
s∗i

δ(
√
−gi)

(328)

Now the two key terms δγi and δVi are obtained, so that the variation of La-
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grangian can be expressed as

δL =
∑
i

piνi
γisi

[γ2
i v

T
i giδvi −

1

2
γ2
i (∇g00 − vT∇gv)iδγi]

−
∑
i

∑
j

pi
γi

νiνj√
−gis2

i γi
∇iWij(δri − δrj) +

∑
i

pi
νi

νiγi
s∗i
∇
√
−giδγi

+
∑
i

εiνi
siγ2

i

γ3
i v

T
i giδVi −

1

2

∑
i

εiνi
siγ2

i

γ3
i (∇g00 − vT∇gv)iδγi

=
∑
i

(
piνi
si

γiv
T
i gi +

εiνi
si

γiv
T
i gi)δVi

− 1

2

∑
i

piνi
si

γi(∇g00 − vT∇gv)iδri

−
∑
i

∑
j

νiνj(
pi√
−gis2

i γ
2
i

+
pj√
−gjs2

jγ
2
j

)∇iWijδri

− 1

2

∑
i

εiνi
si

γi(∇g00 − vT∇gv)iδri

+
∑
i

piνi
s∗i
∇
√
−giδγi

=
∑
i

d

dt
[
(pi + εi)νi

si
νiv

T
i giδri]

−
∑
i

d

dt
[
pi + εi
si

νiγiv
T
i g]δri

− 1

2

∑
i

pi + εi
si

νiγi(∇g00 − vT∇gv)iδri

−
∑
i

∑
j

νiνj(
pi√
−gis2

i γ
2
i

+
pj√
−gjs2

jγ
2
j

)∇iWijδri

+
∑
i

piνi
siγi
√
−gi
∇
√
−giδri

(329)

5.3.2 Hyperbolic coordinate system

For the hyperbolic coordinate, which is related to the Cartesian coordinate by

τ =
√
t2 − z2, (330)

x = x, (331)

y = y, (332)

η =
1

2
ln
t+ z

t− z
. (333)

Where the τ is not exactly the proper time of matter but the time-like coordinate
in hyperbolic coordinate. From the relation between coordinates, the metric
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tensor is given by

g00 = 1, g11 = −1, g22 = −1, g33 = −τ2, (334)

gµν = 0, µ 6= ν. (335)

Deriving from the conservation of energy momentum tensor and only consider
the spatial part,

∂µ(τTµi) = 0. (336)

where the energy momentum tensor has the form Tµi = (ε+P )uµui− gµiP, i =
1, 2, 3. And finally we can obtain the equation of motion:

d

dτ
(
ε+ P

s
giju

j) =
1

sγ
∂iP. (337)

If we consider the system evolution in the cartesian coordinate, from the
equations (185) to (188), we can have the relation

dτ
dx
dy
dη

 =


cosh η 0 0 − sinh η

0 1 0 0
0 0 1 0

− sinh η
τ 0 0 cosh η

τ



dt
dx
dy
dz

 (338)

Divided by the proper time on both sides, we will have
γ′

u′x
u′y
u′η

 =


cosh η 0 0 − sinh η

0 1 0 0
0 0 1 0

− sinh η
τ 0 0 cosh η

τ



γ
ux
uy
uz

 (339)

where γ′ denotes the lorentz factor in the hyperbolic coordinate and γ is the
one in cartesian coordinate frame. Now the relation between velocity in both
frames is clear,

γ′ = γ(cosh η − sinh ηvz), (340)

v′x =
vx

cosh η − sinh ηvz
, (341)

v′y =
vy

cosh η − sinh ηvz
, (342)

vη =
− sinh η + cosh ηvz
τ(cosh η − sinh ηvz)

. (343)

For example, for the equation of motion at z direction,

dvz
dt

= − 1

(ε+ P )γ2
(∂zP + vz

∂P

∂t
) (344)
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where

d

dt
= cosh η

d

dτ
− sinh η

τ

d

dη
, (345)

vz =
τvη cosh η + sinh η

τvη sinh η + cosh η
, (346)

∂zP = − sinh η
∂P

∂τ
+

cosh η

τ

∂P

∂η
, (347)

∂P

∂t
= cosh η

∂P

∂τ
− sinh η

τ

∂P

∂η
. (348)

as a test, if vη = 0 and the pressure P is not the function of η, then

vz =
sinh η

cosh η
, (349)

∂P

∂η
= 0, (350)

∂zP + vz
∂P

∂t
= − sinh η

∂P

∂t
+

sinh η

cosh η
cosh η

∂P

∂t
= 0, (351)

dvz
dt

=
d(tanh η)

dt
= 0. (352)

In the previous section, the SPH representation of equation of motion has been
deducted in general coordinate system. Here the hyperbolic coordinate system
as one specific coordinate, the equation of motion can be written as

d

dτ
(
ε+ P

s
γvx) = −1

τ

∑
j

νj

[
pi
γ2
i s

2
i

+
pj
γ2
j s

2
j

]
∂xWij , (353)

d

dτ
(
ε+ P

s
γvy) = −1

τ

∑
j

νj

[
pi
γ2
i s

2
i

+
pj
γ2
j s

2
j

]
∂yWij , (354)

d

dτ
(
ε+ P

s
γτ2vη) = −1

τ

∑
j

νj

[
pi
γ2
i s

2
i

+
pj
γ2
j s

2
j

]
∂ηWij . (355)

where the lorentz factor

γ =
1√

1− v2
x − v2

y − τ2v2
η

. (356)

The analytic solution has been addressed before. Now applying the SPH for-
mulations of equation of motion to obtain the temperature evolution in radial
direction which is in order to make comparisons with the analytic results. The
work has been done by Yogiro, et. al. [62] which is presently in his review paper
by Fig. 10, here is shown by Fig. 28.
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Figure 28: Radial distribution of T/T0 at different instants τ =
1.0, 5.0, 10.0, 15.0, the SPH results at η = 0 shown by circles are compared with
the numerical solution by using characteristic method. The plot is excerpted
from the reference [62].
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5.4 Conclusions

In summary, the transverse expansion of a cylindrically symmetric homogeneous
massless pion gas, which is undergoing a longitudinal scaling expansion and
stay at rest initially in transverse directions has been discussed. This test is
closer to a realistic situation comparing with the one dimensional Landau model.
The detailed analytic solution by virtue of the characteristic method and SPH
numerical results have been presented. The SPH simulations of temperature
evolution at transverse direction is compared with those of analytic solution,
which is satisfactory.

The SPH simulations have achieved success in dealing with the problems of
realistic heavy ion collision process. During these implementations, the stan-
dard SPH scheme is employed. However, as discussed before, the FPM method
restores the particle consistency which may improve the accuracy of the numer-
ical results. So that we are interested in investigating the FPM method and
apply it to realistic problems. The first thing is to derive a new equation of
motion based on the FPM method.

6 Hydrodynamic equation of motion in FPM

In this chapter, a hydrodynamic equation of motion in FPM is derived. As
mentioned in the previous paragraphs, the FPM method keeps good particle con-
sistency, which can lead to better numerical results. Although the form of equa-
tion of motion in FPM is more complex than that in standard SPH, it is still
meaningful. The detailed derivation of equation of motion will be given.

The standard SPH presents some inherent problems which cause low nu-
merical accuracy under certain circumstances. The particle consistency is one
of the notable problems that reflects the difference between the discrete form
summation over particles and the corresponding continuous form involving the
kernel function integral. The particle inconsistency in standard SPH is illus-
trated since it is unable to reproduce a constant function. This is result from
the particle approximation which is closely related to the boundary particles,
irregular particle distribution and the smoothing length. The FPM method, as
discussed before, is proposed to restore particle consistency. The basic idea of
this method is performing the Taylor series expansion of a function and multi-
plying both sides of equation by basis functions and integrating over the whole
problem space. It has been demonstrated that the particle consistency is asso-
ciated to the order of the expansion terms, which is independent of the specific
form of these basis functions and the particle distribution.

In usual SPH calculations to the partial differential equations, the gradient
terms are usually symmetrized or asymmetric based upon some rules. For the
equation of motion, the pressure gradient is symmetrized in order to obey the
Newton’s third law. The pair of forces exerting on the two particles should
be equal in size but opposite in direction. As mentioned before, the equation
of motion can be derived from the conservation of energy momentum tensor
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or variational principle. The satisfaction of Newton’s third law is guaranteed if
one deducts the hydrodynamic equations making use of the variational principle.
For system of event by event fluctuating initial conditions, although the SPH
particles distribution is set uniformly at the initial moment, it will be irregular
as the system evolves in time. In this case, the FPM approach is desirable to
deal with such physical system. The momentum conservation is very crucial
for small systems produced in the relativistic heavy ion collisions, so that a
model which exactly and explicitly guarantee the conservation of momentum
need to be developed. However as shown in chapter two, the form of FPM is
not straightforward to keep the momentum conservation just by symmetrizing
some certain physical quantities. To apply the FPM method to relativistic
heavy ion collisions, like the one dimensional Landau model and the transverse
expansion flow, we need to use the variational principle combing with the FPM
approach to obtain the corresponding equation of motion. How to obtain the
new equation of motion by virtue of the FPM method is the main goal of this
section.

The relativistic hydrodynamic equation for ideal fluid has been deducted in
previous context,

d

dτ
(
ε+ p

s
γgijv

j)− 1

sγ
∂iP = 0 (357)

where ε, p, s are the energy density, pressure and entropy density in the la-
grangian frame. γ, vj are the gamma factor, three velocity of the fluid element,
the gij denotes the metric in Minkowski space.

For the standard SPH, the gradient of pressure has been symmetrized which
is given by

(∂P )i =
∑
j

νjs
∗
i (
Pi
s∗2i

+
Pj
s∗2j

)∇iW (ri − rj , h) (358)

together with the expression of entropy density

s∗i =
∑
j

νjW (ri − rj , h) (359)

so that the hydrodynamic equation in SPH representation is

d

dt
(νi

pi + εi
si

γivi) = −
∑
j

νiνj [
Pi
s∗2i

+
Pj
s∗2j

]∇iW (ri − rj , h) (360)

the R.H.S of equation (360) can be written as∑
j

fij (361)

with

fij = −νiνj
Pi
s∗2i
∇iW (xi − xj ;h) (362)
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Because the kernel function W is an even function, it is clear that

fij = −fji (363)

This exactly reflects the Newton’s third law.
One method to get the new equation of motion is directly approximation

the entropy density and the gradient of pressure by FPM method,

s∗i =
〈∆x〉i,x 〈s〉i − 〈∆x〉i 〈s〉i,x
〈1〉i 〈∆x〉i,x − 〈1〉i,x 〈∆x〉i

(364)

(∂p)i =
〈1〉i 〈P 〉i,x − 〈1〉i,x 〈p〉i
〈1〉i 〈∆x〉i,x − 〈1〉i,x 〈∆x〉i

(365)

where the term 〈p〉i , 〈p〉i,x can be written as

〈p〉i =
∑
j

νjpj
ρj

Wij , (366)

〈p〉i,x =
∑
j

νjpj
ρj
∇iWij (367)

If we follow this idea to write down the hydrodynamic equation of motion, it
is easy to find that this obtained hydrodynamic equation does not take into
account the momentum conservation.

As the equation of motion derived in one dimensional Landau Model, we
have

δISPH = −
∫
dt
∑
i

δ~ri
d

dt
[νi(

P + ε

a
)iγi~vi]−

∫
dt
∑
i

Piνi
a∗2i

δa∗i (368)

Now using the new algorithm, choosing the entropy density as the reference
density. Before making variation with respect to s∗i , we consider the general
variation for arbitrary quantity ai and bi, which has the form

ai = gi
∑
j

tjW
(e)(xi − xj ;h), (369)

bi = hi
∑
j

ujW
(o)(xi − xj ;h). (370)

where W (e)(xi − xj ;h) is any even kernel function and W (o)(xi − xj ;h) is any
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odd kernel function. In this case, it is easy to find

δ(
∑
i

ai) = δ
∑
i

gi
∑
j

tjW
(e)(xi − xj ;h)

= δ
∑
i

∑
j

gitjW
(e)(xi − xj ;h)

=
∑
i

∑
j

gitjδW
(e)(xi − xj ;h)

=
∑
i

∑
j

gitjW
(e)
i (δri − δrj)

=
∑
i

∑
j

gitjW
(e)
i δxi −

∑
i

∑
j

gitjW
(e)
i δxj .

(371)

For the second term on the r.h.s of equation (371), exchanging the index i and
j yields

δ(
∑
i

ai) =
∑
i

∑
j

gitjW
(e)
i δxi −

∑
j

∑
i

gjtiW
(e)
j δxi (372)

For the even function W (e)(xi − xj ;h), the derivative to the spatial coordinate
xi and xj has the relation

W
(e)
j (xi − xj ;h) =

∂W (e)

∂xj
(xi − xj ;h)

= −∂W
(e)

∂xi
(xi − xj ;h)

(373)

Therefore

δ(
∑
i

ai) =
∑
i

∑
j

gitjW
(e)
i δxi +

∑
j

∑
i

gjtiW
(e)
i δxi

=
∑
ij

(gitj + gjti)W
(e)
i (xi − xj ;h)δxi

(374)

The same procedure can be done for the variation of summation of b,

δ(
∑
i

bi) = δ
∑
i

hi
∑
j

µjW
(o)(xi − xj ;h)

= δ
∑
i

∑
j

hiµjW
(o)(xi − xj ;h)

=
∑
i

∑
j

hiµjδW
(o)(xi − xj ;h)

=
∑
i

∑
j

hiµjW
(o)
i (δri − δrj)

=
∑
i

∑
j

hiµjW
(o)
i δxi −

∑
i

∑
j

hiµjW
(o)
i δxj .

(375)
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For the second term on the r.h.s of equation (375), exchanging the index i and
j yields

δ(
∑
i

bi) =
∑
i

∑
j

hiµjW
(o)
i δxi −

∑
j

∑
i

hjµiW
(o)
j δxi (376)

For the odd function W (o)(xi − xj ;h), the derivative to the spatial coordinate
xi and xj has the relation

W
(o)
j (xi − xj ;h) =

∂W (o)

∂xj
(xi − xj ;h)

=
∂W (o)

∂xi
(xi − xj ;h)

(377)

So that

δ(
∑
i

ai) =
∑
i

∑
j

gitjW
(e)
i δri +

∑
j

∑
i

gjtiW
(e)
i δri

=
∑
ij

(gitj + gjti)W
(e)
i (xi − xj ;h)δxi

(378)

In summary,

δ(
∑
i

ai) =
∑
ij

(gitj + gjti)W
(e)′(xi − xj ;h)δxi

=
∑
j

(f
(e)
ij + f

(e)
ji )δxi

(379)

δ(
∑
i

bi) =
∑
ij

(hiuj + hjui)W
(o)′(xi − xj ;h)δxi

=
∑
j

(f
(o)
ij + f

(o)
ji )δxi.

(380)

where

f
(e)
ij =

∑
i

gitjW
(e)′(xi − xj ;h), (381)

f
(e)
ji =

∑
i

gjtiW
(e)′(xi − xj ;h), (382)

f
(o)
ij =

∑
i

hiµjW
(o)′(xi − xj ;h), (383)

f
(o)
ji =

∑
i

hjµiW
(o)′(xi − xj ;h). (384)

In both cases, f
(e,o)
ij = −f (e,o)

ji . And the hydrodynamic equation is as follows

d

dt
(νi

Pi + εi
si

γivi) =
∑
j

f
(n)
ij , (385)
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where
f

(n)
ij = −[(l

(n)
i m

(n)
j + (−1)k(n)l

(n)
j m

(n)
i )]W (n)′(xi − xj ;h) (386)

with

k
(1,3,6,8)
i = 1, (387)

k
(2,4,5,7)
i = 2, (388)

l
(1)
i =

Di 〈s〉i
Bi

, (389)

l
(2)
i =

Di 〈∆x〉i,x
Bi

, (390)

l
(3)
i = −

Di 〈s〉i,x
Bi

, (391)

l
(4)
i = −

Di 〈∆x〉i
Bi

, (392)

l
(5)
i = −

CiDi 〈∆x〉i,x
B2
i

, (393)

l
(6)
i = −

CiDi 〈1〉i
B2
i

, (394)

l
(7)
i =

CiDi 〈∆x〉i
B2
i

, (395)

l
(8)
i =

CiDi 〈1〉i,x
B2
i

, (396)

m
(1,3,5,6,7,8)
i =

νi
ρi
, (397)

m(2,4) = νi, (398)

W (1,6)(xi − xj ;h) =
x2
ij

|xij |
W
′
(xi − xj ;h), (399)

W (2,5)(xi − xj ;h) = W (xi − xj ;h), (400)

W (3,8)(xi − xj ;h) = xijW (xi − xj ;h), (401)

W (4,7)(xi − xj ;h) =
xij
|xij |

W
′
(xi − xj ;h), (402)

Bi = 〈1〉i 〈∆x〉i,x − 〈1〉i,x 〈∆x〉i , (403)

Ci = 〈s〉i 〈∆x〉i,x − 〈s〉i,x 〈∆x〉i , (404)

Di =
νiPi
s∗2i

. (405)

As a test, the new form of force in equation of motion should be reduced to the
one in standard form. By comparison of equation (385) and equation (360), it
is not difficult to see that equation (360) is corresponding to the specific term

f
(2)
ij in one dimensional case when one assumes 〈1〉i → 1 and 〈1〉i,x → 0.
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In this section, we mainly try to study the implementation of FPM into the
entropy-based SPH hydrodynamic model. And the equation of motion derived
from the variational principle guarantees the momentum conservation which
plays a important role in small systems dynamics arising from relativistic heavy
ion collisions. The new equation of motion keeps the conservation of momentum
in another way. It says that not a pair of forces between two particles are equal
in size and opposite in direction but the total force summation over all particles
are zero. This idea is creative and the derived equation of motion can reduce to
the standard SPH form as a limit.

Owing to the observation of the “ridge” effect in two-particle correlation in
relativistic heavy ion collision, the fluctuating initial conditions play an increas-
ingly important role in the hydrodynamical description of nuclear collisions. The
improvement of particle consistency brought by the FPM, therefore, can be sig-
nificant in the context of precision and efficiency of the numerical approach. It
is interesting to implement the obtained equation of motion for realistic collision
simulations, which will be carried out in our subsequent study.

7 Discussion and Outlook

The results throughout this dissertation will be summarized and commented.
The goal of this chapter is to make summary of the work as a whole and the
future research direction are going to be addressed. The work is based on a lot of
literatures written by many pioneers in this field. By reading and learning plenty
of their work, more and more understanding of the SPH numerical method is
achieved.

In the section of introduction, the history and development of the SPH
method are reviewed. As a new numerical method to handle the partial dif-
ferential equations, it is compared with the state of art numerical methods like
FVM, FEM and FDM. Through the comparisons, its merits and drawbacks are
present. As a numerical method, some important numerical properties like sta-
bility and consistency are required to be discussed. The whole dissertation can
be broken into two main categories. One is to review some important numerical
properties of SPH and the other is to make implementation of SPH. For the
most part of the chapter one focus on the numerical properties of SPH and the
other parts including chapter four and chapter five discuss the SPH implemen-
tation. Every chapter in the dissertation will now be reviewed according to the
above discussion.

7.1 Numerical Properties of SPH

In chapter one section seven, the tensile stability is discussed. As a common
instability phenomena appearing in material strength problems, it is well ad-
dressed. And some approaches to avoid such instability have been addressed.

Chapter one section nine focuses on the efficiency of SPH implementation.
The efficiency of a numerical technique usually refers to its speed and resource
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usage. The SPH method shows great efficiency in dealing with problems of free
surface flow due to its inherent properties without the use of grids or meshes.

Chapter one section ten concentrate on the accuracy of SPH method. It is
meant to illustrate the selection of smoothing kernel function in different prob-
lems is significant and it may affect the accuracy of numerical results simulated
by SPH approach.

In chapter one section twelve concentrates on consistency. It begins with a
detailed derivation of the kernel approximation and the particle approximation
for a function and its derivative. Then a discussion of how to maintain the
kernel consistency and particle consistency are performed. The detailed method
includes the CSPM, DSPH and the FPM method.

7.2 The kernel function

Chapter one section six focus on the SPH kernel. The kernel function is included
in the SPH interpolations so that it is essential to talk about it in detail. The
kernel properties, specific form and the smoothing length inherent to it have
been addressed. Although in usual SPH implementations, the cubic spline kernel
is used. However corresponding to different problems and different requirements,
other kernel functions would be chosen. Since it appears in kernel approximation
and particle approximation, it has a great influence on the numerical properties
like consistency and stability.

7.3 The SPH implementation

In the discussion about the numerical properties of SPH method, it is unavoid-
able to involve the SPH implementation both in physical and engineering prob-
lems. To compare with the SPH method and the FPM method, the interpolation
of an arbitrary function is performed firstly. For the SPH implementation in
the relativistic heavy ion collisions, the one dimensional Landau model and the
transverse flow expansion with longitudinally scaling expansion are applied.

7.4 Future research directions

Actually predicting the future development direction of SPH is very difficult.
However based on the work in this dissertation, there are some possible paths.
Maybe it is not complete and mature, but it is worthwhile to discuss.

First of all, the numerical properties like consistency, stability and accuracy
should be investigated more deeply. Stability is the investigation of error prop-
agation in numerical methods. As a matter of fact, there are some approaches
to analyze the error for the stability problems, like the linear stability analysis
and total variation stability analysis.

Secondly further study into the effects of a variable smoothing length. This
contains the effects on consistency, stability and accuracy.
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Thirdly the SPH applications to astrophysics and engineering are enormous.
It should enlarge its application into relativistic heavy ion collisions like dealing
with shock wave, viscosity fluid and turbulence phenomena.

Fourthly the new derived equation of motion based upon the FPM method
should be tested. Theoretically it is consistent but detailed test has not been
performed.

8 Publications

This work has been published in Commun. Theor. Phys. 68 (2017) 382. The
arXiv number of the work is 1704.06165.
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