Lefschetz coincidence class for several maps

Thaís F. M. Monis and Stanisław Spież

To Professor Carlos Biasi

Abstract

The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps $f_{1}, \ldots, f_{k}: X \rightarrow N$ from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class

$$
L\left(f_{1}, \ldots, f_{k}\right) \in H^{n(k-1)}\left(X ;\left(f_{1}, \ldots, f_{k}\right)^{*}\left(R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)\right)
$$

is defined in such a way that $L\left(f_{1}, \ldots, f_{k}\right) \neq 0$ implies that the set of coincidences

$$
\operatorname{Coin}\left(f_{1}, \ldots, f_{k}\right)=\left\{x \in X \mid f_{1}(x)=\cdots=f_{k}(x)\right\}
$$

is nonempty.
Mathematics Subject Classification. Primary 55M20; Secondary 54H25.
Keywords. Coincidence point, Lefschetz coincidence number.

1. Introduction

In [1], a Lefschetz coincidence class is defined for continuous functions,

$$
f_{1}, \ldots, f_{k}: X \rightarrow N
$$

from a topological space into a closed connected oriented n-manifold, where $k \geq 2$. Such class, $\mathcal{L}\left(f_{1}, \ldots, f_{k}\right)$, lives in $H^{n(k-1)}(X ; \mathbb{Z})$ and if $\mathcal{L}\left(f_{1}, \ldots, f_{k}\right) \neq$ 0 , then there is $x \in X$ such that $f_{1}(x)=f_{2}(x)=\cdots=f_{k}(x)$. Accurately,

$$
\begin{aligned}
& \mathcal{L}\left(f_{1}, \ldots, f_{k}\right) \\
& \quad=\left(f_{1}, f_{2}\right)^{*}\left(j^{*}(\mu)\right) \smile\left(f_{2}, f_{3}\right)^{*}\left(j^{*}(\mu)\right) \smile \cdots \smile\left(f_{k-1}, f_{k}\right)^{*}\left(j^{*}(\mu)\right),
\end{aligned}
$$

where $\mu \in H^{n}(N \times N, N \times N \backslash \Delta ; \mathbb{Z})$ is the Thom class of the oriented manifold N and $j: N \times N \hookrightarrow(N \times N, N \times N \backslash \Delta)$ is the inclusion. In [3], the authors considered a Lefschetz coincidence number for maps $f_{1}, f_{2}: M \rightarrow N$ between closed manifolds of the same dimension, not necessarily orientable, using twisted coefficients and assuming f_{2} orientation true, that is, a loop α in M preserves local orientation if and only if the loop $f_{2} \circ \alpha$ preserves local
orientation. In this work, using twisted coefficients, we present an extension of the definition of $\mathcal{L}\left(f_{1}, \ldots, f_{k}\right)$ given in [1] to the case where N is nonorientable. In order to construct our Lefschetz class, which we denote by $L\left(f_{1}, \ldots, f_{k}\right)$, we consider the composition

$$
X \xrightarrow{\left(f_{1}, \ldots, f_{k}\right)} N^{k} \xrightarrow{i}\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right),
$$

where

$$
\Delta_{k}(N)=\left\{(x, \ldots, x) \in N^{k} \mid x \in N\right\}
$$

is the diagonal in N^{k} and

$$
i: N^{k} \rightarrow\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right)
$$

is the inclusion. Let $\xi_{k}(N)$ be the fiber bundle pair given by

$$
\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right) \xrightarrow{\pi_{1}} N
$$

where π_{1} is the projection onto the first factor of N^{k}. Thus, the fiber over $x \in N$ is

$$
F_{x}=\{x\} \times\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1}\right) .
$$

In [6] it was proved that $\xi_{2}(N)$ has a unique Thom class

$$
\mu \in H^{n}\left(N \times N, N \times N \backslash \Delta(N) ; R \times \Gamma_{N}^{*}\right)
$$

where R is a principal ideal domain and Γ_{N} is the orientation system (over R) of N. Similarly, one can prove that $\xi_{k}(N)$ has a unique Thom class

$$
\mu_{k} \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

for each $k \geq 2$. We define

$$
L\left(f_{1}, \ldots, f_{k}\right):=\left(f_{1}, \ldots, f_{k}\right)^{*}\left(i^{*}\left(\mu_{k}\right)\right)
$$

which is an element of $H^{n(k-1)}\left(X ;\left(f_{1}, \ldots, f_{k}\right)^{*}\left(R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)\right)$. In Section 4 we prove that the above class is given by the cup product

$$
L\left(f_{1}, \ldots, f_{k}\right)=L\left(f_{1}, f_{2}\right) \smile L\left(f_{1}, f_{3}\right) \smile \cdots \smile L\left(f_{1}, f_{k}\right)
$$

We also show that whenever N is R-oriented, our definition coincides with that found in [1]. In Section 5 we focus on the case where N is the real projective n-space, n even. We prove that, in such case, $L\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ does not depend on f_{1}.

For products in cohomology, we are following [5].

2. System of orientation

Throughout this paper, R denotes a principal ideal domain.
An n-manifold means a paracompact Hausdorff space having an open covering of coordinate neighborhoods each homeomorphic to \mathbb{R}^{n}.

For definitions of local system and of the homology and cohomology with coefficients in a local system see [6] or [9].

Given a local system Γ on a topological space X, we denote by Γ^{*} the local system $\operatorname{Hom}(\Gamma, R)$ on X. Given a local system Γ on X and a local system Γ^{\prime} on Y, we denote by $\Gamma \times \Gamma^{\prime}$ the local system on $X \times Y$ defined by

$$
\left(\Gamma \times \Gamma^{\prime}\right)(x, y)=\Gamma(x) \otimes \Gamma(y)
$$

for $(x, y) \in X \times Y$ and

$$
\left(\Gamma \times \Gamma^{\prime}\right)\left(\omega_{1}, \omega_{2}\right)=\Gamma\left(\omega_{1}\right) \otimes \Gamma^{\prime}\left(\omega_{2}\right)
$$

for a path $\left(\omega_{1}, \omega_{2}\right)$ in $X \times Y$.
Let N be an n-manifold. A small cell of N is defined to be a subset C having an open neighborhood V such that (V, C) is homeomorphic to $\left(\mathbb{R}^{n}, E^{n}\right.$), where $E^{n}=\left\{z \in \mathbb{R}^{n} \mid\|z\| \leq 1\right\}$.

For our purposes, we will consider Γ_{N} the orientation system (over R) of N. In such system, for each $x \in N, \Gamma_{N}(x)=H^{n}(N, N \backslash x ; R)$ and if ω is a path in N, the definition of $\Gamma_{N}(\omega)$ is given by the following: Let $\{C\}$ be a family of small cells of N whose interiors cover N and such that if $C, C^{\prime} \in\{C\}$ and $C \cap C^{\prime} \neq \emptyset$, then $C \cup C^{\prime}$ is contained in some small cell of N. Given a path $\omega: I \rightarrow N$, let $0=t_{0}<t_{1}<\cdots<t_{m}=1$ be points of I such that for $1 \leq i \leq m$ there is some $C_{i} \in\{C\}$ with $\omega\left(\left[t_{i-1}, t_{i}\right]\right) \subset C_{i}$. Then the composite isomorphism

$$
\begin{aligned}
H^{n}(N, N \backslash \omega(0) ; R) & \underset{\rightarrow}{\approx} H^{n}\left(N, N \backslash C_{1} ; R\right) \approx H^{n}\left(N, N \backslash \omega\left(t_{1}\right) ; R\right) \\
& \approx \cdots \xrightarrow{\approx} H^{n}\left(N, N \backslash C_{m} ; R\right) \stackrel{\approx}{\approx} H^{n}(N, N \backslash \omega(1) ; R)
\end{aligned}
$$

is independent of the choice of the points $\left\{t_{i}\right\}$ and the collection $\{C\}$ and is defined to be $\Gamma_{N}(\omega)$. When $R=\mathbb{Z}$ we will use the notation \mathcal{O}_{N} instead of Γ_{N}.

Another way to define $\Gamma_{N}(\omega)$ is the following.
Lemma 2.1. Let $\omega:[0,1] \rightarrow N$ be a path and $F: N \times I \rightarrow N$ an isotopy such that $F(x, 0)=x$ for all $x \in N$ and $F(\omega(0), t)=\omega(t)$ for all $t \in[0,1]$. Then $\Gamma_{N}(\omega)=\left(F(\cdot, 1)^{*}\right)^{-1}$.

Proof. Let C be a small cell in N such that $\omega(0) \in \operatorname{int} C$. We can find a partition

$$
0=s_{0}<s_{1}<\cdots<s_{K}=1
$$

of $[0,1]$ such that for all $k \in\{0,1, \ldots, K-1\}$ we have
(a) $\omega\left(\left[s_{k}, s_{k+1}\right]\right) \subset C_{k}:=F\left(C, s_{k}\right)$,
(b) $\omega\left(s_{k+1}\right) \in F(C, t)$ for each $t \in\left[s_{k}, s_{k+1}\right]$.

For each $s \in[0,1]$, let $G^{s}: N \times[0,1] \rightarrow N$ be the isotopy defined by

$$
G^{s}(x, t)=F\left(F_{s}^{-1}(x), t\right),
$$

where $F_{s}: N \rightarrow N$ is the homeomorphism given by $F_{s}(x)=F(x, s)$. We have
(c) $G^{s}(x, s)=x$ for all $x \in N$,
(d) $G^{s}\left(F_{s}(x), t\right)=F(x, t)$ for all $(x, t) \in N \times[0,1]$.

For each $k \in\{0,1, \ldots, K-1\}$, from (b) it follows that $G^{s_{k}}$ defines a homotopy

$$
\left(N, N \backslash C_{k}\right) \times\left[s_{k}, s_{k+1}\right] \rightarrow\left(N, N \backslash \omega\left(s_{k+1}\right)\right)
$$

Note that this homotopy connects the maps $i_{s_{k+1}}^{k}$ and $G^{s_{k}}\left(\cdot, s_{k+1}\right) \circ i_{s_{k}}^{k}$, where

$$
G^{s_{k}}\left(\cdot, s_{k+1}\right):\left(N, N \backslash \omega\left(s_{k}\right)\right) \rightarrow\left(N, N \backslash \omega\left(s_{k+1}\right)\right)
$$

and $i_{s_{k}}^{k}:\left(N, N \backslash C_{k}\right) \hookrightarrow\left(N, N \backslash \omega\left(s_{k}\right)\right), i_{s_{k+1}}^{k}:\left(N, N \backslash C_{k}\right) \hookrightarrow\left(N, N \backslash \omega\left(s_{k+1}\right)\right)$ are the inclusions. Hence,

$$
\left(G^{s_{k}}\left(\cdot, s_{k+1}\right)^{*}\right)^{-1}=\left(\left(i_{s_{k+1}}^{k}\right)^{*}\right)^{-1} \circ\left(i_{s_{k}}^{k}\right)^{*}
$$

Thus

$$
\begin{aligned}
\Gamma_{N}(\omega) & =\left[\left(\left(i_{s_{K}}^{K-1}\right)^{*}\right)^{-1} \circ\left(i_{s_{K-1}}^{K-1}\right)^{*}\right] \circ \cdots \circ\left[\left(\left(i_{s_{1}}^{0}\right)^{*}\right)^{-1} \circ\left(i_{s_{0}}^{0}\right)^{*}\right] \\
& =\left(G^{s_{K-1}}\left(\cdot, s_{K}\right)^{*}\right)^{-1} \circ \cdots \circ\left(G^{s_{0}}\left(\cdot, s_{1}\right)^{*}\right)^{-1} \\
& =\left(G^{s_{0}}\left(\cdot, s_{1}\right)^{*} \circ \cdots \circ G^{s_{K-1}}\left(\cdot, s_{K}\right)^{*}\right)^{-1} \\
& =\left(\left(G^{s_{K-1}}\left(\cdot, s_{K}\right) \circ \cdots \circ G^{s_{0}}\left(\cdot, s_{1}\right)\right)^{*}\right)^{-1}
\end{aligned}
$$

Now, note that

$$
G^{s_{K-1}}\left(\cdot, s_{K}\right) \circ \cdots \circ G^{s_{0}}\left(\cdot, s_{1}\right)=F\left(\cdot, s_{K}\right)=F(\cdot, 1)
$$

Therefore,

$$
\Gamma_{N}(\omega)=\left(F(\cdot, 1)^{*}\right)^{-1}
$$

The next lemma shows the existence of an isotopy such that $F(x, 0)=x$ for all $x \in N$ and $F(\omega(0), t)=\omega(t)$. Its statement and proof are adaptations of [8, Lemma 6.4, p. 150].
Lemma 2.2. Let $\omega: I \rightarrow N$ be a path in N. Then, there is an isotopy $F: N \times I \rightarrow N$ such that $F(x, 0)=x$ for all $x \in N$ and $F(\omega(0), t)=\omega(t)$ for all $t \in I$.

Proof. First, consider the case where $\omega(I)$ is contained in a euclidean neighborhood U. Let $h: U \rightarrow E^{n} \backslash S^{n-1}$ be a homeomorphism. Let $g: E^{n} \backslash S^{n-1} \rightarrow$ \mathbb{R}^{n} be the homeomorphism given by

$$
g(z)=\frac{z}{1-|z|},
$$

whose inverse map is given by

$$
g^{-1}(y)=\frac{y}{1+|y|} .
$$

Let $\beta: I \rightarrow \mathbb{R}^{n}$ be the path $\beta(t)=g(h(\omega(t)))$ between $g(h(\omega(0)))$ and $g(h(\omega(1)))$. Let $F: \mathbb{R}^{n} \times I \rightarrow \mathbb{R}^{n}$ be the homotopy given by

$$
F(y, t)=f_{t}(y):=\beta(t)+y-g(h(\omega(0)))
$$

Note that F is an isotopy between the identity map and the translation

$$
y \mapsto y+(g(h(\omega(1)))-g(h(\omega(0))))
$$

Thus, for each $t \in I$ we have a homeomorphism

$$
g^{-1} \circ f_{t} \circ g: E^{n} \backslash S^{n-1} \rightarrow E^{n} \backslash S^{n-1}
$$

with $g^{-1} \circ f_{0} \circ g=\mathrm{id}$ and $g^{-1} \circ f_{t} \circ g(h(\omega(0)))=h(\omega(t))$. Note that, for each t, the homeomorphism $g^{-1} \circ f_{t} \circ g: E^{n} \backslash S^{n-1} \rightarrow E^{n} \backslash S^{n-1}$ can be extended to a homeomorphism from E^{n} over E^{n} defining such extension as being the identity map over the boundary. Now, define the isotopy $h_{t}: N \rightarrow N$ by

$$
h_{t}(x)= \begin{cases}x & \text { if } x \in N \backslash U \\ h^{-1} \circ g^{-1} \circ f_{t} \circ g(x) & \text { if } x \in U\end{cases}
$$

Such isotopy h_{t} satisfies the required conditions.
Now, consider $\omega(I)$ covered by the euclidean neighborhoods U_{1}, \ldots, U_{k} and let $0=t_{0}<t_{1}<\cdots<t_{k}=1$ be a partition of the interval I such that $\omega\left(\left[t_{i-1}, t_{i}\right]\right) \subset U_{i}$ for $i=1, \ldots, k$. Suppose, by induction, that it is defined an isotopy $F: N \times\left[0, t_{k-1}\right] \rightarrow N$ such that

$$
\begin{aligned}
F(x, 0) & =x & & \text { for all } x \in N, \\
F(\omega(0), t) & =\omega(t) & & \text { for all } t \in\left[0, t_{k-1}\right] \\
F(x, t) & =x & & \text { if } x \notin U_{1} \cup \cdots \cup U_{k-1} .
\end{aligned}
$$

From the previous step, there is an isotopy $H: N \times\left[t_{k-1}, 1\right] \rightarrow N$ with

$$
\begin{aligned}
H\left(x, t_{k-1}\right) & =x & & \text { for all } x \in N, \\
H\left(\omega\left(t_{k-1}\right), t\right) & =\omega(t) & & \text { for all } t \in\left[t_{k-1}, 1\right], \\
H(x, t) & =x & & \text { if } x \notin U_{k} .
\end{aligned}
$$

Define $G: N \times I \rightarrow N$ by

$$
G(x, t)= \begin{cases}F(x, t) & \text { if } t \in\left[0, t_{k-1}\right] \\ H\left(F\left(x, t_{k-1}\right), t\right) & \text { if } t \in\left[t_{k-1}, 1\right]\end{cases}
$$

The map G is an isotopy such that

$$
\begin{array}{ccc}
G(x, 0)=x & & \text { for all } x \in N, \\
G(\omega(0), t)=\omega(t) & & \text { for all } t \in I,
\end{array}
$$

and if $x \notin U_{1} \cup \cdots \cup U_{k-1} \cup U_{k}$, then $G(x, t)=x$.
For any $x \in N$ there is the canonical generator $z_{x, N}$ of $H_{n}\left(N, N \backslash x ; \Gamma_{N}\right)$ (cf. [3, p. 5]) induced by the relative cycle $g_{\sigma} \sigma$ defined by
(a) $\sigma: \Delta^{n} \rightarrow N$ is an embedding with $x=\sigma(p), p \in \operatorname{int} \Delta^{\mathrm{n}}$,
(b) $g_{\sigma} \in \Gamma_{N}(\sigma)$ is the section such that $g_{\sigma}(p)$ is the generator of

$$
\Gamma_{N}(x)=H^{n}(N, N \backslash x ; \mathbb{R})
$$

induced by the relative singular cocycle dual to the relative singular cycle 1σ, where $1 \in R$.
(Here, we use the description of singular homology with local coefficients given in [7].) Note that $z_{x, N}$ does not depend on the choice of σ.

Lemma 2.3 (See [3, Lemma 3.1]). For any compact set $A \subset N$ there exists a unique element $z_{A, N} \in H_{n}\left(N, N \backslash A ; \Gamma_{N}\right)$ such that for any $x \in A$ the natural homomorphism $H_{n}\left(N, N \backslash A ; \Gamma_{N}\right) \rightarrow H_{n}\left(N, N \backslash x ; \Gamma_{N}\right)$ sends $z_{A, N}$ to $z_{x, N}$.
Corollary 2.4 (Existence of fundamental class). If N is compact, then there is a unique element $z_{N} \in H_{n}\left(N ; \Gamma_{N}\right)$, called fundamental class, such that for any $x \in N$ the natural homomorphism $H_{n}\left(N ; \Gamma_{N}\right) \rightarrow H_{n}\left(N, N \backslash x ; \Gamma_{N}\right)$ sends z_{N} to $z_{x, N}$.

Let R_{N} be an arbitrary local coefficient system over a closed n-manifold N with typical group R. Then the cap product with the fundamental class z_{N} give us the Poincaré duality

$$
\begin{equation*}
H^{j}\left(N ; R_{N}\right) \xrightarrow{\simeq} H_{n-j}\left(N ; \mathcal{O}_{N} \otimes R_{N}\right) \tag{2.1}
\end{equation*}
$$

(see [6, Theorem 6.1, p. 107] or [2, Theorem 9.3, p. 330]).
Let us consider the fiber bundle pair $\xi_{k}(N)$ given by

$$
\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right) \xrightarrow{\pi_{1}} N
$$

where π_{1} is the projection onto the first factor of N^{k},

$$
\Delta_{k}(N)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in N^{k} \mid x_{1}=\cdots=x_{k}\right\}
$$

is the k th diagonal of N^{k} and the fiber over $x \in N$ is

$$
F_{x}=\{x\} \times\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1}\right) .
$$

A Thom class of the bundle $\xi_{k}(N)$ is an element

$$
\mu \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

such that for all $x \in N$, the restriction

$$
\mu \mid F_{x} \in H^{n(k-1)}\left(F_{x} ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

is dual to the generator $z_{x^{k-1}, N^{k-1}} \in H_{n(k-1)}\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1} ; \Gamma_{N^{k-1}}\right)$, that is,

$$
\mu \mid F_{x} /\left(z_{x^{k-1}, N^{k-1}}\right)=1 \in H^{0}(x ; R)
$$

for all $x \in N$, where / denotes the slant product.
In [6] it was proved that $\xi_{2}(N)$ has a unique Thom class. Similarly, one can prove that $\xi_{k}(N)$ has a unique Thom class for all $k \geq 2$.

3. Properties of the Thom class of $\xi_{k}(N)$

The fiber bundle pair $\xi_{k}(N)$ is said to be orientable over R if there exists an element

$$
U \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R\right)
$$

such that for all $x \in N$, the restriction

$$
U \mid\{x\} \times\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1}\right)
$$

is a generator of $H^{n(k-1)}\left(\{x\} \times\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1}\right) ; R\right)$. Such a cohomology class U is called an orientation of $\xi_{k}(N)$ over R. For $R=\mathbb{Z}$ we simply say that $\xi_{k}(N)$ is orientable instead of orientable over \mathbb{Z}.

Let $\omega: I \rightarrow N$ be a path. For each $x \in N$, let

$$
F_{x}=\{x\} \times\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1}\right)
$$

be the fiber of $\xi_{k}(N)$ over x. There is a map

$$
G: F_{\omega(0)} \times I \rightarrow\left(N^{k}, N^{k}-\Delta_{k}(N)\right)
$$

such that $\pi_{1}(G(x, t))=\omega(t)$ and $G(x, 0)=x$ for $x \in \omega(0) \times N^{k-1}$ and $t \in I$. Indeed, we can consider an isotopy $F: N \times I \rightarrow N$ as in Lemma 2.2 and we define

$$
G\left(\omega(0), x_{2}, \ldots, x_{k}, t\right)=\left(F(\omega(0), t), F\left(x_{2}, t\right), \ldots, F\left(x_{k}, t\right)\right) .
$$

Let us consider the map

$$
g:=G(\cdot, 1): F_{\omega(0)} \rightarrow F_{\omega(1)} .
$$

Let $[g] \in\left[F_{\omega(0)}, F_{\omega(1)}\right]$ be the homotopy class of g. The association of the path class $[\omega]$ with the homotopy class $[g]$ is a well-defined correspondence (see [5, Theorem 12, p. 101]). Let $h^{k}[\omega]=[g]$ and let $h^{k}[\omega]^{*}$ denote the homomorphism g^{*} induced by g, from $H^{n(k-1)}\left(F_{\omega(1)} ; R\right)$ into $H^{n(k-1)}\left(F_{\omega(0)} ; R\right)$. From [5], we have the following theorem.

Theorem 3.1 (cf. [5, Theorem 19, p. 263]). The fiber bundle pair $\xi_{k}(N)$ is orientable over R if and only if

$$
h^{k}[\omega]^{*}: H^{n(k-1)}\left(F_{\omega(0)} ; R\right) \rightarrow H^{n(k-1)}\left(F_{\omega(0)} ; R\right)
$$

is the identity homomorphism for every closed path ω in N.
Remark 3.2. A connected n-manifold X is said to be orientable (over R) if there exists an element $U \in H^{n}(X \times X, X \times X \backslash \Delta(X) ; R)$ such that for all $x \in X, U \mid\{x\} \times(X, X \backslash x)$ is a generator of $H^{n}(\{x\} \times(X, X \backslash x))$. Such a cohomology class U is called an orientation of X (see [5, p. 294]). Thus, saying the manifold X is orientable (over R) is the same as saying the fiber bundle pair $\xi_{2}(X)$ is orientable (over R). Moreover, X is orientable (over R) if and only if the orientation system Γ_{N} (over R) is constant.

Now, we are able to prove the following theorem.
Theorem 3.3. The fiber bundle pair $\xi_{k}(N)$ satisfies the following conditions:
(a) for k odd, $\xi_{k}(N)$ is orientable (over arbitrary R);
(b) for k even, $\xi_{k}(N)$ is orientable (over R) if and only if N is orientable (over R).

Proof. Following Theorem 3.1, we need to analyze the homomorphisms

$$
h^{k}[\omega]^{*}: H^{n(k-1)}\left(F_{\omega(0)} ; R\right) \rightarrow H^{n(k-1)}\left(F_{\omega(0)} ; R\right)
$$

for every closed path $\omega: I \rightarrow N$.
For each $x \in N$, the fiber of $\xi_{k}(N)$ over x is given by

$$
\begin{aligned}
F_{x} & =\{x\} \times\left(N^{k-1}, N^{k-1} \backslash\{x\}^{k-1}\right) \\
& =\{x\} \times \underbrace{(N, N \backslash x) \times(N, N \backslash x) \times \cdots \times(N, N \backslash x)}_{(k-1) \text { times }} .
\end{aligned}
$$

By the Kunneth formula,

$$
H^{n(k-1)}\left(F_{x} ; R\right)=H^{0}(x ; R) \otimes \underbrace{H^{n}(N, N \backslash x ; R) \otimes \cdots \otimes H^{n}(N, N \backslash x ; R)}_{(k-1) \text { times }} .
$$

With this, we can see that, for each path $\omega: I \rightarrow N$,

$$
\begin{aligned}
h^{k}[\omega]^{*} & =\operatorname{id} \otimes \underbrace{F(\cdot, 1)^{*} \otimes \cdots \otimes F(\cdot, 1)^{*}}_{(k-1) \text { times }} \\
& =\mathrm{id} \otimes \underbrace{\Gamma_{N}(\omega)^{-1} \otimes \cdots \otimes \Gamma_{N}(\omega)^{-1}}_{(k-1) \text { times }} .
\end{aligned}
$$

Since

$$
h^{k}[\omega]^{*}=\operatorname{id} \otimes \underbrace{\Gamma_{N}(\omega)^{-1} \otimes \cdots \otimes \Gamma_{N}(\omega)^{-1}}_{(k-1) \text { times }}
$$

and $\Gamma_{N}(\omega)= \pm \mathrm{id}$, for k odd, $h^{k}[\omega]^{*}$ is always the identity homomorphism. Therefore, for k odd, $\xi_{k}(N)$ is orientable (over arbitrary R).

If N is orientable over R, then $\Gamma_{N}(\omega)$ is the identity homomorphism for every closed path ω in N. It follows that $h^{k}[\omega]^{*}$ is the identity homomorphism for every closed path ω in N. Therefore, if N is orientable over R, then $\xi_{k}(N)$ is orientable over R for arbitrary k.

If N is nonorientable over R, then there is a closed path ω in N such that $\Gamma_{N}(\omega)=-\mathrm{id}$. It follows that for k even, $h^{k}[\omega]^{*}=-\mathrm{id}$. Therefore, if N is nonorientable over R, then $\xi_{k}(N)$ is nonorientable over R for every k even.

Lemma 3.4. Let N be a compact manifold. Then there exists a neighborhood V of $\Delta_{k}(N)$ in N^{k} such that the projections $\pi_{1}\left|V, \ldots, \pi_{k}\right| V: V \rightarrow N$ are homotopic relatively to $\Delta_{k}(N)$.

Proof. The proof is analogous to that of [8, Lemma 6.15, p. 164].
Theorem 3.5. Let N be a closed n-manifold and suppose that $\xi_{k}(N)$ is orientable over R. Let

$$
U \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R\right)
$$

be an orientation. Then, there is an isomorphism between

$$
H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R\right)
$$

and

$$
H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

which maps U onto the Thom class

$$
\mu \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

of $\xi_{k}(N)$.

Proof. We will show that restriction of $\Gamma:=R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}$ to a neighborhood of $\Delta_{k}(N)$ is a constant system. We can suppose N connected. Let V be a neighborhood (connected) of $\Delta_{k}(N)$ in N^{k} such that the projections $\pi_{1}\left|V, \ldots, \pi_{k}\right| V: V \rightarrow N$ are homotopic relatively to $\Delta_{k}(N)$. By excision, we have the isomorphism

$$
H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; \Gamma\right) \xrightarrow{\approx} H^{n(k-1)}\left(V, V \backslash \Delta_{k}(N) ;\left.\Gamma\right|_{V}\right)
$$

In order to know the behavior of the local system Γ on V, we just need to know the action of the fundamental group $\pi_{1}\left(V ;\left(x_{1}, \ldots, x_{k}\right)\right)$ over R with respect to such local system for a point $\left(x_{1}, \ldots, x_{k}\right) \in V$ (see [9, Theorems 1.11 and 1.12 , p. 263]. Thus, let us consider a point $(x, \ldots, x) \in \Delta_{k}(N) \subset V$. By Lemma 3.4, each closed path α in V with base point in $\Delta_{k}(N)$ is homotopic, relatively to the end points, to a closed path in $\Delta_{k}(N)$. Let $\alpha=(\beta, \ldots, \beta)$ be a closed path based on (x, \ldots, x). Since $\xi_{k}(N)$ is orientable over R, by Theorem 3.1, $h^{k}[\beta]^{*}=$ id. Moreover, in the proof of Theorem 3.3, we saw that

$$
h^{k}[\beta]^{*}=\mathrm{id} \otimes \underbrace{\Gamma_{N}(\beta)^{-1} \otimes \cdots \otimes \Gamma_{N}(\beta)^{-1}}_{(k-1) \text { times }} .
$$

On the other hand, by definition,

$$
\Gamma(\alpha)=\operatorname{id} \otimes \underbrace{\Gamma_{N}^{*}(\beta) \otimes \cdots \otimes \Gamma_{N}^{*}(\beta)}_{(k-1) \text { times }}
$$

Since $\Gamma_{N}(\beta)= \pm \mathrm{id}$ and $\Gamma_{N}^{*}(\beta)=\operatorname{Hom}\left(\Gamma_{N}(\beta), R\right)$, it follows that $\Gamma(\alpha)$ is the identity isomorphism.

We conclude that the action of the fundamental group $\pi_{1}(V ;(x, \ldots, x))$ over R with respect to the local system Γ is trivial. Hence, there is an isomorphism between

$$
H^{n(k-1)}\left(V, V \backslash \Delta_{k}(N) ;\left.\Gamma\right|_{V}\right)
$$

and

$$
H^{n(k-1)}\left(V, V \backslash \Delta_{k}(N) ; R\right)
$$

It follows that there is an isomorphism between

$$
H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

and

$$
H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R\right)
$$

and we can take such isomorphism sending the Thom class μ of the bundle $\xi_{k}(N)$ onto the element U.

Corollary 3.6. If k is odd, then $H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)$ is isomorphic to $H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R\right)$.

Proof. It is an immediate consequence of Theorems 3.5 and 3.3.

Let $k, l \geq 2$ and let
$e:\left(N^{k+l-1}, N^{k+l-1} \backslash \Delta_{k+l-1}(N)\right) \rightarrow\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right) \times\left(N^{l}, N^{l} \backslash \Delta_{l}(N)\right)$
be the map defined by

$$
e\left(x_{1}, \ldots, x_{k+l-1}\right)=\left(\left(x_{1}, \ldots, x_{k}\right),\left(x_{1}, x_{k+1}, \ldots, x_{k+l-1}\right)\right) .
$$

Note that the local system

$$
e^{*}((R \times \underbrace{\Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}}_{(k-1) \text { times }}) \times(R \times \underbrace{\Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}}_{(l-1) \text { times }}))
$$

is isomorphic to the local system

$$
R \times \underbrace{\Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}}_{(k+l-2) \text { times }}
$$

over $\left(N^{k+l-1}, N^{k+l-1} \backslash \Delta_{k+l-1}\right)$. We have the following result.
Proposition 3.7. If $\mu_{k} \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)$ is the Thom class of $\xi_{k}(N)$ and $\mu_{l} \in H^{n(l-1)}\left(N^{l}, N^{l} \backslash \Delta_{l}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)$ is the Thom class of $\xi_{l}(N)$, then
$e^{*}\left(\mu_{k} \times \mu_{l}\right) \in H^{n(k+l-2)}\left(N^{k+l-1}, N^{k+l-1} \backslash \Delta_{k+l-1}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)$ is the Thom class of $\xi_{k+l-1}(N)$.

Proof. Let $x_{1} \in N$ be arbitrary. We need to show that the image of $e^{*}\left(\mu_{k} \times \mu_{l}\right)$ in $H^{n(k+l-2)}\left(x_{1} \times\left(N^{k+l-2}, N^{k+l-2} \backslash\left\{x_{1}\right\}^{k+l-2}\right) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)$ is dual to z_{k+l-2}. In order to show that, consider the homeomorphism between

$$
x_{1} \times\left(N^{k+l-2}, N^{k+l-2} \backslash\left\{x_{1}\right\}^{k+l-2}\right)
$$

and

$$
\left(x_{1} \times\left(N^{k-1}, N^{k-1} \backslash\left\{x_{1}\right\}^{k-1}\right)\right) \times\left(x_{1} \times\left(N^{l-1}, N^{l-1} \backslash\left\{x_{1}\right\}^{l-1}\right)\right)
$$

given by

$$
\left(x_{1}, x_{2}, \ldots, x_{k+l-1}\right) \mapsto\left(\left(x_{1}, \ldots, x_{k}\right),\left(x_{1}, x_{k+1}, \ldots, x_{k+l-1}\right)\right) .
$$

Then, the result follows from the commutativity of the diagram

$$
\begin{aligned}
&\left(N^{k+l-1}, N^{k+l-1} \backslash \Delta_{k+l-1}\right) \longrightarrow \\
& \uparrow e \\
&\left.\left(N^{k_{1}}, N^{k_{1}} \backslash\left\{x_{1}\right\}^{k_{1}}\right) \longrightarrow N^{k} \backslash \Delta_{k}\right) \times\left(N^{l}, N^{l} \backslash \Delta_{l}\right) \\
& \longrightarrow\left(N^{k_{2}}, N^{k_{2}} \backslash\left\{x_{1}\right\}^{k_{2}}\right) \times\left(N^{k_{3}}, N^{k_{3}} \backslash\left\{x_{1}\right\}^{k_{3}}\right)
\end{aligned}
$$

where $k_{1}=k+l-2, k_{2}=k-1$ and $k_{3}=l-1$, and the vertical arrows are the inclusions.

Corollary 3.8. Let

$$
e^{\prime}:\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right) \rightarrow \underbrace{\left(N^{2}, N^{2} \backslash \Delta_{2}(N)\right) \times \cdots \times\left(N^{2}, N^{2} \backslash \Delta_{2}(N)\right)}_{(k-1) \text { times }}
$$

be defined by

$$
e^{\prime}\left(x_{1}, \ldots, x_{k}\right)=\left(\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right), \ldots,\left(x_{1}, x_{k}\right)\right) .
$$

If $\mu \in H^{n}\left(N^{2}, N^{2} \backslash \Delta(N) ; R \times \Gamma_{N}^{*}\right)$ is the Thom class of $\xi_{2}(N)$, then $e^{\prime *}(\mu \times \cdots \times \mu) \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)$ is the Thom class of $\xi_{k}(N)$.

4. The Lefschetz coincidence class

Let N be a closed connected manifold of dimension n. Let

$$
\mu_{k} \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

be the Thom class of $\xi_{k}(N)$. Then, given k maps $f_{1}, \ldots, f_{k}: X \rightarrow N$ from a topological space X into the manifold N, the Lefschetz coincidence class $L\left(f_{1}, \ldots, f_{k}\right)$ is defined by

$$
L\left(f_{1}, \ldots, f_{k}\right)=\left(f_{1}, \ldots, f_{k}\right)^{*}\left(i^{*}\left(\mu_{k}\right)\right)
$$

where $i: N^{k} \rightarrow\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right)$ is the inclusion. Thus, $L\left(f_{1}, \ldots, f_{k}\right)$ is an element of

$$
H^{n(k-1)}\left(X ;\left(f_{1}, \ldots, f_{k}\right)^{*}\left(R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)\right)
$$

Theorem 4.1. If $L\left(f_{1}, \ldots, f_{k}\right) \neq 0$, then the set of coincidences

$$
\operatorname{Coin}\left(f_{1}, f_{2}, \ldots, f_{k}\right)=\left\{x \in X \mid f_{1}(x)=f_{2}(x)=\cdots=f_{k}(x)\right\}
$$

is nonempty.
Proof. If there is no $x \in X$ such that $f_{1}(x)=\cdots=f_{k}(x)$, then we have the factorization

which implies $L\left(f_{1}, \ldots, f_{k}\right)=0$.
In Corollary 3.8 we proved that if

$$
e^{\prime}:\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right) \rightarrow \underbrace{\left(N^{2}, N^{2} \backslash \Delta_{2}(N)\right) \times \cdots \times\left(N^{2}, N^{2} \backslash \Delta_{2}(N)\right)}_{(k-1) \text { times }}
$$

is the map defined by

$$
e^{\prime}\left(x_{1}, \ldots, x_{k}\right)=\left(\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right), \ldots,\left(x_{1}, x_{k}\right)\right)
$$

and $\mu \in H^{n}\left(N^{2}, N^{2} \backslash \Delta(N) ; R \times \Gamma_{N}^{*}\right)$ is the Thom class of $\xi_{2}(N)$, then

$$
e^{\prime *}(\mu \times \cdots \times \mu) \in H^{n(k-1)}\left(N^{k}, N^{k} \backslash \Delta_{k}(N) ; R \times \Gamma_{N}^{*} \times \cdots \times \Gamma_{N}^{*}\right)
$$

is the Thom class of $\xi_{k}(N)$.

Now, denote by $j: N^{2} \rightarrow\left(N^{2}, N^{2} \backslash \Delta_{2}(N)\right)$ the inclusion and consider the map

$$
h: X \rightarrow \underbrace{N^{2} \times \cdots \times N^{2}}_{(k-1) \text { times }},
$$

where

$$
h=\left(\left(f_{1}, f_{2}\right),\left(f_{1}, f_{3}\right), \ldots,\left(f_{1}, f_{k}\right)\right)
$$

We have that

$$
e^{\prime} \circ i \circ\left(f_{1}, \ldots, f_{k}\right)=(\underbrace{j \times \cdots \times j}_{(k-1) \text { times }}) \circ h .
$$

Thus

$$
\begin{aligned}
L\left(f_{1}, \ldots, f_{k}\right) & =\left(f_{1}, \ldots, f_{k}\right)^{*}\left(i^{*}\left(\mu_{k}\right)\right) \\
& =\left(f_{1}, \ldots, f_{k}\right)^{*}\left(i^{*}\left(e^{* *}(\mu \times \cdots \times \mu)\right)\right) \\
& =\left(\left(f_{1}, f_{2}\right),\left(f_{1}, f_{3}\right), \ldots,\left(f_{1}, f_{k}\right)\right)^{*}\left((j \times \cdots \times j)^{*}(\mu \times \cdots \times \mu)\right) \\
& =\left(f_{1}, f_{2}\right)^{*}\left(j^{*}(\mu)\right) \smile\left(f_{1}, f_{3}\right)^{*}\left(j^{*}(\mu)\right) \smile \cdots \smile\left(f_{1}, f_{k}\right)^{*}\left(j^{*}(\mu)\right) \\
& =L\left(f_{1}, f_{2}\right) \smile L\left(f_{1}, f_{3}\right) \smile \cdots \smile L\left(f_{1}, f_{k}\right) .
\end{aligned}
$$

Theorem 4.2. $L\left(f_{1}, \ldots, f_{k}\right)=L\left(f_{1}, f_{2}\right) \smile L\left(f_{1}, f_{3}\right) \smile \cdots \smile L\left(f_{1}, f_{k}\right)$.
Theorem 4.2 tells us that the Lefschetz class is almost symmetric, in the following sense.

Corollary 4.3. For each permutation $\sigma \in S_{k}$ satisfying $\sigma(1)=1$,

$$
L\left(f_{1}, f_{2}, \ldots, f_{k}\right)=\operatorname{sign}(\sigma)^{n} L\left(f_{1}, f_{\sigma(2)}, \ldots, f_{\sigma(k)}\right)
$$

Remark 4.4. The R-oriented case presents a stronger form of symmetricity. Namely, for each permutation $\sigma \in S_{k}$,

$$
L\left(f_{1}, \ldots, f_{k}\right)= \pm L\left(f_{\sigma(1)}, \ldots, f_{\sigma(k)}\right)
$$

Indeed, analogously to [8, Lemma 5.16], if

$$
t_{\sigma}:\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right) \rightarrow\left(N^{k}, N^{k} \backslash \Delta_{k}(N)\right)
$$

is the map defined by

$$
t_{\sigma}\left(x_{1}, \ldots, x_{k}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right),
$$

then for any orientation U of $\xi_{k}(N), t^{*}(U)=U$ if the permutation σ is even, and $t^{*}(U)=(-1)^{n} U$ otherwise. Since

$$
t_{\sigma} \circ i \circ\left(f_{1}, \ldots, f_{k}\right)=i \circ\left(f_{\sigma(1)}, \ldots, f_{\sigma(k)}\right),
$$

it follows that

$$
L\left(f_{1}, \ldots, f_{k}\right)= \begin{cases}L\left(f_{\sigma(1)}, \ldots, f_{\sigma(k)}\right) & \text { if } \sigma \text { is even } \\ (-1)^{n} L\left(f_{\sigma(1)}, \ldots, f_{\sigma(k)}\right) & \text { if } \sigma \text { is odd }\end{cases}
$$

Remark 4.5. In [1] a Lefschetz class is defined as follows. First of all, it is requested that the closed connected manifold N be R-orientable, i.e., orientable over R. Then, denoting by $U \in H^{n}\left(N^{2}, N^{2} \backslash \Delta ; R\right)$ the orientation class (also called Thom class), the Lefschetz class of the given maps $f_{1}, \ldots, f_{k}: X \rightarrow N$ is defined by

$$
\begin{aligned}
& \mathcal{L}\left(f_{1}, \ldots, f_{k}\right) \\
& \quad=\left(\left(f_{1}, f_{2}\right), \ldots,\left(f_{k-1}, f_{k}\right)\right)^{*}\left(j^{*}(U) \times \cdots \times j^{*}(U)\right) \\
& \quad=\left(f_{1}, f_{2}\right)^{*}\left(j^{*}(U)\right) \smile\left(f_{2}, f_{3}\right)^{*}\left(j^{*}(U)\right) \smile \cdots \smile\left(f_{k-1}, f_{k}\right)^{*}\left(j^{*}(U)\right) \\
& \quad=\mathcal{L}\left(f_{1}, f_{2}\right) \smile \mathcal{L}\left(f_{2}, f_{3}\right) \smile \cdots \smile \mathcal{L}\left(f_{k-1}, f_{k}\right) \in H^{n \cdot(k-1)}(X ; R),
\end{aligned}
$$

where $j: N^{2} \rightarrow\left(N^{2}, N^{2} \backslash \Delta\right)$ is the inclusion.
We observe that the formula presented in Theorem 4.2 is slightly different than the formula established in [1]. Despite such difference, we shall show, by induction on the number of maps, that in R-oriented case our definition coincides with the class defined in [1]. For two maps the result is obvious. Suppose that the statement is true for k maps. Then, applying Theorem 4.2, the symmetricity of the Lefschetz class in the R-oriented case and the induction hypothesis, we have

$$
\begin{aligned}
L\left(f_{1}, f_{2} \ldots, f_{k-1}, f_{k}, f_{k+1}\right) & =(-1)^{n} L\left(f_{k}, f_{2}, \ldots, f_{k-1}, f_{1}, f_{k+1}\right) \\
& =(-1)^{n} L\left(f_{k}, f_{2}, \ldots, f_{k-1}, f_{1}\right) \smile L\left(f_{k}, f_{k+1}\right) \\
& =L\left(f_{1}, f_{2}, \ldots, f_{k-1}, f_{k}\right) \smile L\left(f_{k}, f_{k+1}\right) \\
& =\mathcal{L}\left(f_{1}, f_{2}, \ldots, f_{k-1}, f_{k}\right) \smile \mathcal{L}\left(f_{k}, f_{k+1}\right) \\
& =\mathcal{L}\left(f_{1}, f_{2} \ldots, f_{k-1}, f_{k}, f_{k+1}\right) .
\end{aligned}
$$

5. Examples

Let us now consider the case where R is a field. Let $y_{i} \in H^{*}(N, R)$ and $y_{i}^{\prime} \in H^{*}\left(N ; \Gamma_{N}\right)$ be bases such that $\left\langle y_{i}^{\prime}, D\left(y_{i}\right)\right\rangle=1$, where

$$
D: H^{j}(N ; R) \rightarrow H_{n-j}\left(N ; \Gamma_{N}\right)
$$

denotes the Poincaré isomorphism. Then we have the following result.
Proposition 5.1. With the above notation, the image of the Thom class μ of $\xi_{2}(N)$ is given by

$$
j^{*}(\mu)=\sum_{i}(-1)^{\left|y_{i}\right|} y_{i} \times y_{i}^{\prime},
$$

where $\left|y_{i}\right|$ denotes the dimension of y_{i}, i.e., $y_{i} \in H^{\left|y_{i}\right|}(N ; R)$.
Proof. The proof is analogous to that of [4, Proposition 30.18, p. 288].

Example 5.2. Consider $N=\mathbb{R} P^{2}$ the projective plane and $R=\mathbb{Q}$. Then

$$
\begin{aligned}
H^{0}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right) & =\mathbb{Q} \\
H^{q}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right) & =0 \quad \text { for } q>0, \\
H^{2}\left(\mathbb{R} P^{2} ; \Gamma_{\mathbb{R} P^{2}}\right) & =H_{0}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)=\mathbb{Q} \\
H^{q}\left(\mathbb{R} P^{2} ; \Gamma_{\mathbb{R} P^{2}}\right) & =H_{2-q}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)=0 \quad \text { for } q \neq 2 .
\end{aligned}
$$

Thus,

$$
j^{*}(\mu)=1 \times e,
$$

where the element $1 \in H^{0}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)$ is the identity of the ring $H^{*}\left(\mathbb{R} P^{2} ; \mathbb{Q}\right)$ and the element $e \in H^{2}\left(\mathbb{R} P^{2} ; \Gamma_{\mathbb{R} P^{2}}\right)$ is a generator.

It follows that, given maps $f_{1}, f_{2}: X \rightarrow \mathbb{R} P^{2}$, the Lefschetz class is given by

$$
L\left(f_{1}, f_{2}\right)=\left(f_{1}, f_{2}\right)^{*}(1 \times e)=f_{1}^{*}(1) \smile f_{2}^{*}(e)=f_{2}^{*}(e)
$$

This shows that, in general,

$$
L\left(f_{1}, f_{2} ; \Gamma_{\mathbb{R} P^{2}}\right) \neq \pm L\left(f_{2}, f_{1} ; \Gamma_{\mathbb{R} P^{2}}\right)
$$

In view of Example 5.2, below we will discuss the general case where the target space is the projective space $\mathbb{R} P^{n}, n$ even.

5.1. The Lefschetz class for the target space $\mathbb{R} P^{n}, n$ even

Consider the projective space $\mathbb{R} P^{n}$, where n is an even number. As in Example 5.2,

$$
\begin{aligned}
H^{0}\left(\mathbb{R} P^{n} ; \mathbb{Q}\right) & =\mathbb{Q}, \\
H^{q}\left(\mathbb{R} P^{n} ; \mathbb{Q}\right) & =0 \quad \text { for } q>0, \\
H^{n}\left(\mathbb{R} P^{n} ; \Gamma_{\mathbb{R}} P^{n}\right) & =H_{0}\left(\mathbb{R} P^{n} ; \mathbb{Q}\right)=\mathbb{Q}, \\
H^{q}\left(\mathbb{R} P^{n} ; \Gamma_{\mathbb{R}} P^{n}\right) & =H_{n-q}\left(\mathbb{R} P^{n} ; \mathbb{Q}\right)=0 \quad \text { for } q \neq n .
\end{aligned}
$$

Thus, the Thom class μ of $\mathbb{R} P^{n}$ is given by

$$
j^{*}(\mu)=1 \times e,
$$

where the element $1 \in H^{0}\left(\mathbb{R} P^{n} ; \mathbb{Q}\right)$ is the identity of the ring $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Q}\right)$ and the element $e \in H^{n}\left(\mathbb{R} P^{n} ; \Gamma_{\mathbb{R} P^{n}}\right)$ is a generator. It follows that, given maps $f_{1}, \ldots, f_{k}: X \rightarrow \mathbb{R} P^{n}$, the Lefschetz class is given by

$$
\begin{align*}
L\left(f_{1}, \ldots, f_{k}\right) & =L\left(f_{1}, f_{2}\right) \smile L\left(f_{1}, f_{3}\right) \smile \cdots \smile L\left(f_{1}, f_{k}\right) \\
& =f_{2}^{*}(e) \smile \cdots \smile f_{k}^{*}(e) \tag{5.1}\\
& =\left(f_{2}, \ldots, f_{k}\right)^{*}(e \times \cdots \times e) .
\end{align*}
$$

The above formula does not depend on f_{1}. Consider the particular case where $X=\mathbb{R} P^{n}, f_{1}: \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n}$ is an arbitrary self-map and f_{2} is the identity map. Then we obtain the well-known fact that $\mathbb{R} P^{n}$ has the fixed point property if n is even, since $L\left(f_{1}, \mathrm{id}\right)=\mathrm{id}^{*}(e)=e \neq 0$.

A map $f: M \rightarrow N$ between manifolds is called orientation true if each $\alpha \in \pi_{1}(M)$ preserves local orientation of M if and only if $f \alpha \in \pi_{1}(N)$ preserves local orientation of N. If $\operatorname{dim} M=\operatorname{dim} N$, then the degree of f is defined as being the natural number k satisfying $f_{*}\left(z_{M}\right)=k \cdot z_{N}$.

If X is a closed connected manifold of dimension $n(k-1)$ and f_{2}, \ldots, f_{k} are orientation true, it is well defined the degree of

$$
\left(f_{2}, \ldots, f_{k}\right): X \rightarrow\left(\mathbb{R} P^{n}\right)^{k-1}
$$

From (5.1), $L\left(f_{1}, \ldots, f_{k}\right) \neq 0$ if and only if $\operatorname{deg}\left(f_{2}, \ldots, f_{k}\right) \neq 0$.
Theorem 5.3. Let X be a closed connected manifold of dimension $n(k-1)$ and $f_{1}, \ldots, f_{k}: X \rightarrow \mathbb{R} P^{n}$ orientation true. If, for some $1 \leq i \leq k, \operatorname{deg}\left(\hat{f}_{i}\right) \neq 0$, then there is $x \in X$ such that $f_{1}(x)=f_{2}(x)=\cdots=f_{k}(x)$, where \hat{f}_{i} denotes the map $\left(f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{k}\right): X \rightarrow\left(\mathbb{R} P^{n}\right)^{k-1}$.

Proof. Suppose $i \in\{1, \ldots, k\}$ such that $\operatorname{deg}\left(\hat{f}_{i}\right) \neq 0$, where

$$
\hat{f}_{i}=\left(f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{k}\right): X \rightarrow\left(\mathbb{R} P^{n}\right)^{k-1}
$$

From (5.1),
$L\left(f_{i}, f_{1}, f_{2}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{k}\right)=\left(f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{k}\right)^{*}(e \times \cdots \times e)$.
Since $\operatorname{deg}\left(\hat{f}_{i}\right) \neq 0, L\left(f_{i}, f_{1}, f_{2}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{k}\right) \neq 0$. Therefore, by Theorem 4.1, there is $x \in X$ such that $f_{i}(x)=f_{1}(x)=\cdots=f_{k}(x)$.

Lemma 5.4 (See [3, Lemma 4.11]). If $p: \tilde{M} \rightarrow M$ is a k-fold covering, then $\operatorname{deg}(p)=k$.

Example 5.5. Consider the maps $c, f, g: S^{2} \times S^{2} \rightarrow \mathbb{R} P^{2}$, where c is a constant map, $f(x, y)=\{x,-x\}$ and $g(x, y)=\{y,-y\}$. Then,

$$
(f, g): S^{2} \times S^{2} \rightarrow \mathbb{R} P^{2} \times \mathbb{R} P^{2}
$$

is a 4 -fold covering. It follows from Lemma 5.4 that $\operatorname{deg}(f, g)=4$. Therefore, by the above theorem, the Lefschetz class $L(c, f, g)$ is nontrivial. On the other hand, considering (co)-homology with coefficients in \mathbb{Z}_{2} we have

$$
L\left(c, f, g ; \mathbb{Z}_{2}\right)=\operatorname{deg}_{2}(f, g)=0
$$

Here, deg_{2} denotes the degree that we obtain when we consider homology with coefficients in \mathbb{Z}_{2}.

Acknowledgments

The first author was supported by FAPESP of Brazil Grant no. 2013/07936-1 and 2012/03316-6.

We are grateful to the referee for helpful suggestions and comments.

References

[1] C. Biasi, A. K. M. Libardi and T. F. M. Monis, The Lefschetz coincidence class of p maps. Forum Math. 27 (2015), 1717-1728.
[2] G. E. Bredon, Sheaf Theory. 2nd ed., Springer-Verlag, New York, 1997.
[3] D. L. Gonçalves and J. Jezierski, Lefschetz coincidence formula on nonorientable manifolds. Fund. Math. 153 (1997), 1-23.
[4] M. J. Greenberg and J. R. Harper, Algebraic Topology. A first Course. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1981.
[5] E. Spanier, Algebraic Topology. McGraw-Hill, New York, 1966.
[6] E. Spanier, Duality in topological manifolds. In: Colloque de Topologie Tenu à Bruxelles (Brussels, 1964), Librairie Universitaire, Louvain, 1966, 91-111.
[7] E. Spanier, Singular homology and cohomology with local coefficients and duality for manifolds. Pacific J. Math. 160 (1993), 165-200.
[8] J. W. Vick, Homology Theory. An Introduction to Algebraic Topology. 2nd ed., Springer-Verlag, New York, 1994.
[9] G. Whitehead, Elements of Homotopy Theory. Springer-Verlag, New York, 1978.

Thaís F. M. Monis
Department of Mathematics
IGCE, UNESP - Universidade Estadual Paulista
Av. 24-A no. 1515
13506-900 Rio Claro/SP
Brazil
e-mail: tfmonis@rc.unesp.br
Stanisław Spież
Institute of Mathematics
Polish Academy of Sciences
ul. Śniadeckich 8
00-656 Warsaw
Poland
e-mail: spiez@impan.pl

