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Abstract. The aim of this paper is to define a Lefschetz coincidence
class for several maps. More specifically, for maps fi,...,fx : X = N
from a topological space X into a connected closed n-manifold (even
nonorientable) N, a cohomological class

L(fi, e s fo) € H"* (X5 (fr ooy fi) " (RX D x == x T))

is defined in such a way that L(fi,..., fx) # 0 implies that the set of
coincidences

COin(flv"‘7fk) = {.CU €X ‘ fl(x) == fk(m)}
is nonempty.
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1. Introduction

In [1], a Lefschetz coincidence class is defined for continuous functions,
fi,... . fu: X =N,

from a topological space into a closed connected oriented n-manifold, where
k > 2. Such class, L(f1,. .., fr), lives in H*"*~V(X;Z) and if L(f1, ..., frx) #
0, then there is « € X such that fi(x) = fo(z) =+ = fr(z). Accurately,

‘C(fla"'afk)
= (f1.£2)" G (1) = (f2, f3)" (G (1)) = -+ = (fr—1, fo)" (G (1)),

where p € H*(N x N, N x N\ A;Z) is the Thom class of the oriented man-
ifold N and j : N x N — (N x N,N x N\ A) is the inclusion. In [3], the
authors considered a Lefschetz coincidence number for maps fi, fo: M — N
between closed manifolds of the same dimension, not necessarily orientable,
using twisted coefficients and assuming f, orientation true, that is, a loop «
in M preserves local orientation if and only if the loop fs o a preserves local
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orientation. In this work, using twisted coefficients, we present an exten-
sion of the definition of L(f1,..., fx) given in [1] to the case where N is
nonorientable. In order to construct our Lefschetz class, which we denote by
L(f1,..., fx), we consider the composition

X (f1oeerfr) Nk i (N*, Nk\ AL(N)),

where
AR(N) = {(z,...,z) e N* |z € N}

is the diagonal in N* and

i: NF = (N*, N¥\ Ap(N))
is the inclusion. Let & (V) be the fiber bundle pair given by

(N%, N*\ Ay(V)) =5 N,
where 7 is the projection onto the first factor of N*. Thus, the fiber over
x €N is

F, = {z} x (qu,qu \ {x}kfl).
In [6] it was proved that (V) has a unique Thom class
peH"(NxN,NxN\AN);RxTy),
where R is a principal ideal domain and T is the orientation system (over R)
of N. Similarly, one can prove that £, (V) has a unique Thom class
p € HMF=D(NF NF\ AR(N); Rx Ty x -+ x I'y)

for each k > 2. We define

L(fla"'7fk?) = (fhafk?)*(l*(/’tk))

which is an element of H™*=V(X:(f1,...,fr)* (R x % x --- x I'%)). In
Section 4 we prove that the above class is given by the cup product

L(f1,..., fx) = L(f1, f2) — L(f1, f3) — --- — L(f1, fr)-

We also show that whenever N is R-oriented, our definition coincides with
that found in [1]. In Section 5 we focus on the case where N is the real
projective n-space, n even. We prove that, in such case, L(f1, f2,. .., fx) does
not depend on fi.

For products in cohomology, we are following [5].

2. System of orientation

Throughout this paper, R denotes a principal ideal domain.

An n-manifold means a paracompact Hausdorff space having an open
covering of coordinate neighborhoods each homeomorphic to R™.

For definitions of local system and of the homology and cohomology
with coefficients in a local system see [6] or [9].



Vol. 18 (2016) Lefschetz coincidence class 63

Given a local system I' on a topological space X, we denote by I'* the
local system Hom(T', R) on X. Given a local system I' on X and a local
system IV on Y, we denote by I" x IV the local system on X x Y defined by

(T x I)(z,y) =T(z) @ T(y)
for (z,y) € X x Y and
(F X F’)(wl,wg) = F(wl) ® F/(WQ)

for a path (w1,wq) in X x Y.

Let N be an n-manifold. A small cell of N is defined to be a sub-
set C having an open neighborhood V such that (V,C) is homeomorphic to
(R™,E™), where E" = {z e R" | ||z|| < 1}.

For our purposes, we will consider I'y the orientation system (over R)
of N. In such system, for each z € N, I'y(z) = H"(N,N \ z; R) and if w
is a path in N, the definition of I'y(w) is given by the following: Let {C}
be a family of small cells of N whose interiors cover N and such that if
C,C" € {C} and CNC" # ), then C UC’ is contained in some small cell
of N. Given apath w:1 — N,let 0 =ty <t; <--- <ty =1 be points of I
such that for 1 < ¢ < m there is some C; € {C'} with w([t;—1,t;]) C C;. Then
the composite isomorphism

H"(N,N\w(0); R) = H"(N,N\ C1;R) <= H"(N,N \ w(t1); R)

=5 .o S5 HY(N,N\ Cp; R) = H™(N,N \w(1); R)
is independent of the choice of the points {¢;} and the collection {C'} and
is defined to be I'y(w). When R = Z we will use the notation Oy instead

of FN.
Another way to define I'y(w) is the following.

Lemma 2.1. Letw: [0,1] = N be a path and F : N x I — N an isotopy such
that F(x,0) = x for all x € N and F(w(0),t) = w(t) for all t € [0,1]. Then
Iy(w) = (F(-,1)")"L
Proof. Let C be a small cell in N such that w(0) € int C. We can find a
partition

O=sp<s1< - <sg=1
of [0, 1] such that for all k € {0,1,..., K — 1} we have

(a) w([sk,sk41]) C Cp := F(C, 51),
(b) w(sg+1) € F(C,t) for each t € [s, Sk+1]-

For each s € [0,1], let G* : N x [0,1] — N be the isotopy defined by
Gs(xvt) = F(Fsil(x)’t)a
where Fy : N — N is the homeomorphism given by Fs(x) = F(z, s). We have

(¢c) G%(z,s) =z for all z € N,
(d) G*(Fs(x),t) = F(x,t) for all (z,t) € N x [0,1].
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For each k € {0,1,...,K — 1}, from (b) it follows that G** defines a
homotopy
(N, N\ C) X [sk; skg1] = (N, N\ w(srt1))-

k

s ik
ooy and G (- sppq) 0d

Sk

Note that this homotopy connects the maps ¢
where

G (- skp1) o (N, N \w(sk)) = (N, N\ w(spt1)),
and i¥ : (N,N\Cy) < (N, N\w(sk)), i’;kﬂ : (N,N\Ck) — (N, N\w(sg+1))
are the inclusions. Hence,

(GSk( " 3k+1)*)_1 = ((Z.Isck+1)*)_1 © (Zék)*
Thus

Now, note that
G ¥ (- sK) 0 0GP (-, 81) = F(-,sx) = F(-,1).

Therefore,
Iy(w) = (F(-,1)")7" O

The next lemma shows the existence of an isotopy such that F'(x,0) =«
for all z € N and F(w(0),t) = w(t). Its statement and proof are adaptations
of [8, Lemma 6.4, p. 150].

Lemma 2.2. Let w : I — N be a path in N. Then, there is an isotopy
F:NxI— N such that F(x,0) = © for all x € N and F(w(0),t) = w(t)
forallt €.

Proof. First, consider the case where w(I) is contained in a euclidean neigh-
borhood U. Let h : U — E™\S"~! be a homeomorphism. Let g : E"\ "~ —
R™ be the homeomorphism given by

z

9(2) = Pt

whose inverse map is given by
-1 Y
g \Y)= .
W=

Let 8 : I — R™ be the path 3(t) = g(h(w(t))) between g(h(w(0))) and
g(h(w(1))). Let F : R™ x I — R™ be the homotopy given by

F(y,t) = fi(y) := B(t) +y — g(h(w(0)))
Note that F' is an isotopy between the identity map and the translation

y =y =+ (9(h(w(1))) — g(h(w(0))))-
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Thus, for each t € I we have a homeomorphism
giloftOgIEn\SnilﬁEn\Snil

with g7to foog = id and g~ o fog(h(w(0))) = h(w(t)). Note that, for each t,
the homeomorphism g=1to fyog: E®\ S 1 — E™\ S"~! can be extended
to a homeomorphism from E™ over E™ defining such extension as being the
identity map over the boundary. Now, define the isotopy h; : N — N by

ha(z) = x ifxe N\U,
t - h_log_loftog(m) if x € U.

Such isotopy h; satisfies the required conditions.

Now, consider w([I) covered by the euclidean neighborhoods Uy, ..., Uy
and let 0 =ty < t; < --- < tx = 1 be a partition of the interval I such that
w([ti—1,t:]) C U; fori = 1,..., k. Suppose, by induction, that it is defined an
isotopy F' : N x [0,t5x—1] — N such that

F(z,0) == for all z € N,
F(w(0),t) =w(t) foralltel0,tr_1],
F(x,t) == fxgUU---UU,_1.

From the previous step, there is an isotopy H : N X [tx—1,1] = N with

H(z,tp—1) == for all x € N,
H(w(tg—1),t) =w(t) forallt € [tr_1,1],
H(z,t) == if v ¢ Uy,
Define G: N x I — N by
Gl t) = {F(x,t) if £ € [0, 1),
H(F(x,tp—1),t) ift € [tr—1,1].

The map G is an isotopy such that
G(z,0) == forall z € N,
G(w(0),t) =w(t) foralltel,
and if 2 € Uy U---UUg_1 UUyg, then G(z,t) = . O
For any « € N there is the canonical generator z, y of H, (N, N\z;T'y)
(cf. [3, p. 5]) induced by the relative cycle g,o defined by
(a) o: A™ — N is an embedding with = = o(p), p € int A",
(b) g, € Tn(0) is the section such that g,(p) is the generator of
Iy(z) = H"(N,N\ z;R)
induced by the relative singular cocycle dual to the relative singular
cycle 1o, where 1 € R.

(Here, we use the description of singular homology with local coefficients
given in [7].) Note that z, y does not depend on the choice of o.
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Lemma 2.3 (See [3, Lemma 3.1]). For any compact set A C N there exists a
unique element za n € H, (N, N\ A;T'n) such that for any x € A the natural
homomorphism H,(N,N\ A;T'n) = H,(N,N\ z;Ty) sends za N to zz nN-

Corollary 2.4 (Existence of fundamental class). If N is compact, then there
is a unique element zy € H,(N;T'y), called fundamental class, such that
for any x € N the natural homomorphism H,(N;Ty) — Hp,(N,N \ z;Tx)
sends zn t0 2z N -

Let Ry be an arbitrary local coefficient system over a closed n-manifold
N with typical group R. Then the cap product with the fundamental class zn
give us the Poincaré duality

HY(N;Ry) — H,_j(N;On ® Ry) (2.1)

(see [6, Theorem 6.1, p. 107] or [2, Theorem 9.3, p. 330]).
Let us consider the fiber bundle pair £, (N) given by

(N5, N* \ (V) =5 N,
where 7, is the projection onto the first factor of N*,
Ap(N) = {(z1,...,2) € N* |2y = --- = 24}
is the kth diagonal of N* and the fiber over z € N is
Fp = {a} x (NF1 NP1\ {2} ).
A Thom class of the bundle & (N) is an element
pe HMF=D(NF NF\ AR(N); Rx Ty x -+ x I'y)
such that for all x € N, the restriction
plFy € H"F D (F Rx Ty x -+ x T'y)

is dual to the generator z x—1 yr—1 € Hypo1)y(N*71 NP1\ {a}F~ 1T v ),
that is,
1 Fy/ (zgr-1 yr-1) =1 € H(2; R)
for all x € N, where / denotes the slant product.
In [6] it was proved that (V) has a unique Thom class. Similarly, one
can prove that & (V) has a unique Thom class for all k¥ > 2.

3. Properties of the Thom class of & (V)
The fiber bundle pair &, (V) is said to be orientable over R if there exists an

element

U e H" =D (N¥ N¥\ Ay(N);R)
such that for all z € N, the restriction

Ula} x (NF=L NI {2} )

is a generator of H™*~1 ({z} x (N*~1, N*=1\{z}*~1); R). Such a cohomology
class U is called an orientation of £, (N) over R. For R = Z we simply say
that & (V) is orientable instead of orientable over Z.



Vol. 18 (2016) Lefschetz coincidence class 67

Let w: I — N be a path. For each x € N, let
Fy = {x} x (N*L, NF1\ {z}F1)
be the fiber of £, (N) over z. There is a map
G : Fy) x I — (N*,NF — AL(N))
such that m1(G(x,t)) = w(t) and G(z,0) = z for z € w(0) x N¥~1 and t € I.
Indeed, we can consider an isotopy F': N x I — N as in Lemma 2.2 and we
define
G(W(O), T2,... 7xk,t) = (F(W(O),t), F(mQat)v RN F(xkvt))
Let us consider the map
g:= G(71) : Fw(O) _>Fw(1)-
Let [g] € [Fi0), Fu(1)] be the homotopy class of g. The association of the
path class [w] with the homotopy class [g] is a well-defined correspondence
(see [5, Theorem 12, p. 101]). Let h¥[w] = [g] and let h*[w]* denote the homo-
morphism ¢* induced by g, from H"* =1 (F,;y; R) into H"*=VD(F,); R).
From [5], we have the following theorem.
Theorem 3.1 (cf. [5, Theorem 19, p. 263]). The fiber bundle pair &, (N) is
orientable over R if and only if
W) s HY7D(Fy); R) = HF D (Fy0); R)
is the identity homomorphism for every closed path w in N.
Remark 3.2. A connected n-manifold X is said to be orientable (over R) if
there exists an element U € H™"(X x X, X x X \ A(X); R) such that for all
x € X, U{x} x (X,X \ x) is a generator of H"({z} x (X, X \ x)). Such
a cohomology class U is called an orientation of X (see [5, p. 294]). Thus,
saying the manifold X is orientable (over R) is the same as saying the fiber
bundle pair £;(X) is orientable (over R). Moreover, X is orientable (over R)
if and only if the orientation system I'y (over R) is constant.

Now, we are able to prove the following theorem.

Theorem 3.3. The fiber bundle pair £, (N) satisfies the following conditions:

(a) for k odd, &;(N) is orientable (over arbitrary R);
(b) for k even, &;(N) is orientable (over R) if and only if N is orientable
(over R).

Proof. Following Theorem 3.1, we need to analyze the homomorphisms
hEW]  HM =D (F, 03 R) — H™ D (E, o) R)

for every closed path w: I — N.
For each x € N, the fiber of £,(N) over z is given by

Fy = {w} x (N1 R0 fa}ht)
={z} x (N,N\z) x (N,N\z)x -+ x (N,N\ z).

(k — 1) times
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By the Kunneth formula,
H"*=V(F;R) = H(#;R) @ H*(N,N\ 2;R) ® ---® H"(N,N \ ; R) .

(k—1) times

With this, we can see that, for each path w: I — N,
W =ideF(-,1)" @9 F(-, 1)’

(k—1) times
=ideTyw) ' ® - @Txw)™t.

(k—1) times

Since
PP =ideTyw) ' @ @ Ty (w) ™!

(k—1) times

and I'y(w) = %id, for k odd, h*[w]* is always the identity homomorphism.
Therefore, for k odd, &, (V) is orientable (over arbitrary R).

If N is orientable over R, then I'y(w) is the identity homomorphism for
every closed path w in N. It follows that h*[w]* is the identity homomorphism
for every closed path w in N. Therefore, if N is orientable over R, then & (V)
is orientable over R for arbitrary k.

If N is nonorientable over R, then there is a closed path w in N such

that Ty (w) = —id. It follows that for k even, h¥[w]* = —id. Therefore,
if N is nonorientable over R, then &, (N) is nonorientable over R for every k
even. g

Lemma 3.4. Let N be a compact manifold. Then there exists a neighborhood V
of Ax(N) in N* such that the projections m|V,...,m|V : V. — N are
homotopic relatively to Ap(N).

Proof. The proof is analogous to that of [8, Lemma 6.15, p. 164]. O

Theorem 3.5. Let N be a closed n-manifold and suppose that &(N) is ori-
entable over R. Let

U e H"*=D(N*¥ NE\ Ay(N); R)
be an orientation. Then, there is an isomorphism between
H"F=D(N* N\ AL(N); R)
and
H"OD (NF NP\ A (N); R x Ty x - x T'y)
which maps U onto the Thom class
e HYED (N9 N9\ A(N); Rx Ty x - x T)
of &k (V).
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Proof. We will show that restriction of I' := R xI'}, x - - - xI'}; to a neighbor-
hood of Ai(N) is a constant system. We can suppose N connected. Let V
be a neighborhood (connected) of Ag(N) in N* such that the projections
m |V,...,m|V : V — N are homotopic relatively to Ag(N). By excision, we
have the isomorphism

H"FD (N NF\ AR(N);T) = HPED(V,V\ AR(N); D).

In order to know the behavior of the local system I' on V', we just need to know
the action of the fundamental group 71 (V; (x1,...,2x)) over R with respect
to such local system for a point (z1,...,2x) € V (see [9, Theorems 1.11 and
1.12, p. 263]. Thus, let us consider a point (z,...,x) € Ag(N) C V. By
Lemma 3.4, each closed path « in V' with base point in Ag(N) is homotopic,
relatively to the end points, to a closed path in Ag(N). Let a = (5,..., )
be a closed path based on (z,...,x). Since & (V) is orientable over R, by
Theorem 3.1, h¥[B]* = id. Moreover, in the proof of Theorem 3.3, we saw
that

B =ideTn(B) - - @Tn(B) " .

(k—1) times

On the other hand, by definition,
I'a) =ideI'y(f) @ @'y (B).

(k—1) times

Since I'y(8) = +id and I'}(8) = Hom(I'n (5), R), it follows that I'(«) is the
identity isomorphism.

We conclude that the action of the fundamental group w1 (V; (z, ..., z))
over R with respect to the local system I is trivial. Hence, there is an isomor-
phism between

HY DV, \ Ap(V); )
and
HY D (V1 \ Ag(N); R).
It follows that there is an isomorphism between
H"F=D(NF NF\ AR(N); Rx Ty x -+ x I'y)
and
HD (N NFA ALV R),

and we can take such isomorphism sending the Thom class p of the bundle
& (N) onto the element U. O

Corollary 3.6. If k is odd, then H™*=D(N*k NF\ Ap(N); RxT% x -+ x ')
is isomorphic to H™*=D(N* N*¥\ A.(N); R).

Proof. Tt is an immediate consequence of Theorems 3.5 and 3.3. (]
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Let k,1 > 2 and let
e (NFHELNFHEINALL (V) = (NP, NF\ AL(N)) x (NL NP\ AY(N))
be the map defined by
e(@1,. .., wpp1-1) = (1, k), (@1, Tt 1, - -+ Thpi—1))-

Note that the local system

— —_—
(k—1) times (I—1) times

e*((RxF}“\, X xTN) X (Rx Ty x--- ><1"}"V)>
is isomorphic to the local system
RxTy x - xTYq
—_———
(k+1—2) times
over (NFH=1 NEHZIN Ay 1), We have the following result.
Proposition 3.7. If s, € H"*~D(NF N\ AR(N); RxT% x --- x ') is the
Thom class of &, (N) and py € HM=D(NLU N\ A(N); R x T x - x T'%)
is the Thom class of §(N), then

e*(ﬂk « Ml) c Hn(k+l—2) (Nk:-l-l—l,Nk-‘rl—l \Akqtlfl(N);R x 1—\7\] X l—vlkv)
is the Thom class of g+i1—1(N).

Proof. Let x1 € N be arbitrary. We need to show that the image of e* (g X ;)
in HPEH=2) (1) x (NFHZ2 NFEHZ2\ L) JPH=2) R T, x - x T) s dual
to zg4i—2. In order to show that, consider the homeomorphism between

T1 X (Nk+l—27Nk+l—2 \ {xl}kH*?)
and
(1‘1 % (Nk—17Nk—l \ {xl}k—l)) % (331 % (Nl—17Nl—1 \{xl}l—l))
given by
(1,22, Thog1—1) — ((xl, ces T, (21, Tt - - ,ka,l)).
Then, the result follows from the commutativity of the diagram

(NFHEE NI Ay ) ————— (NF,NF\ Ag) x (N, NP\ AY)

T T

(NF N {1 }9) ———— (NF2, NF2\ {21}2) x (N*8, N*8 \ {z1}"2)

where ky = k+1—2, ko =k —1 and k3 =1 — 1, and the vertical arrows are
the inclusions. O

Corollary 3.8. Let
e+ (NF, NP\ AR(N)) = (N2, N2\ Ay(N)) x -+ x (N2, N2\ Ay(N))

(k—1) times
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be defined by
e (z1,...,xx) = ((z1,32), (21, 23), . . ., (21, 73)).

If p € H*(N?,N?2\ A(N); R x I'y,) is the Thom class of &(N), then
e (ux---xp) € HYF=D(Nk N\ Ap(N); Rx T x --- xT') is the Thom
class of &(N).

4. The Lefschetz coincidence class
Let N be a closed connected manifold of dimension n. Let
p € HMF=D (NP NF\ AR(N); Rx Ty x -+ x I'y)

be the Thom class of & (N). Then, given k maps fi,...,fr : X — N from
a topological space X into the manifold N, the Lefschetz coincidence class
L(f1,..., fx) is defined by

L(f17"'7fk3) = (fl??fk)*(z*(:uk>)a

where i : N¥ — (N*¥ N¥\ A (N)) is the inclusion. Thus, L(fy,..., fx) is an
element of

HY D (X (fry oo fr) (R x Ty x - x Ty)).
Theorem 4.1. If L(f1,..., fr) # 0, then the set of coincidences
Coin(f1, fa,.- -, fr) ={z € X | fiz) = fa(x) = - -- = fi(2)}
18 nonempty.

Proof. 1f there is no z € X such that fi(z) = --- = fx(x), then we have the
factorization

Ut (Nk, N#\ AR(N))

| T

NF\AR(N) ——————— (NP \ Ag(N), NF\ Ap(N))

which implies L(f1,..., fx) =0. O

In Corollary 3.8 we proved that if
e (NF, NF\ Ap(N)) = (N2, N2\ Ag(N)) x --- x (N?,N?\ Ay(N))

(k—1) times

is the map defined by
e (z1,...,xp) = ((x1,22), (w1, 23), - .., (w1, 1))
and p € H"(N?, N2\ A(N); R x T'y) is the Thom class of &(N), then
e (ux - x )€ H"ED(NF NENAR(N); R x Ty x -+ x ')
is the Thom class of & (V).
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Now, denote by j : N? — (N2, N2\ Ay(N)) the inclusion and consider
the map

h:X — N?x-..x N2,
(k—1) times
where
h=((f1,f2); (f1,f3);- -, (f1, )
We have that
e oio(fi,...,fx)=(jx - xj)oh

(k—1) times

Thus

L(frs-oos o) = (fry- oo fi)" (" (ki)

=(f1, -, fr)" (z*(e’* S X )

= ((f1, f2), (f1, f3), .. flaflc) (5 x- ) (X - X )

= (f1, f2)" (5" () — (f1, f3)" (5" (w) — -~ (flafk)*(j*(ﬂ))
(

L(f1, f2) — L(f1, f3) — -~ — L(f1, fx)-
Theorem 4.2. L(f1,..., fx) = L(f1, fo) — L(f1, f3) — -+ — L(f1, fx)-

)
(J

Theorem 4.2 tells us that the Lefschetz class is almost symmetric, in
the following sense.

Corollary 4.3. For each permutation o € Sy, satisfying o(1) = 1,
L(f1, 2.+ fx) = sign ()" L(f1, fo(2)s- - -+ foti))-

Remark 4.4. The R-oriented case presents a stronger form of symmetricity.
Namely, for each permutation o € Sy,

L(f1,- s fi) = £L(fo)s -+ fotry)-
Indeed, analogously to [8, Lemma 5.16], if
to o (NF, NP\ A(N)) = (N*, N®\ Ay(N))
is the map defined by
to(x1,...,28) = (m0(1)7 . ,xg(k.)),

then for any orientation U of & (N), t*(U) = U if the permutation o is even,
and t*(U) = (—1)"U otherwise. Since

taoio(flu"'7fk):io(fd(1)7"'af0(k))7
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it follows that

L(f1,.-., fx) = {L(f0(1)7“wfa(k)) if o is even,

(71)"L(f0(1), ey fa(k)) if o is odd.

Remark 4.5. In [1] a Lefschetz class is defined as follows. First of all, it is re-
quested that the closed connected manifold N be R-orientable, i.e., orientable
over R. Then, denoting by U € H"(N?, N2\ A; R) the orientation class (also

called Thom class), the Lefschetz class of the given maps f1,...,fz: X = N
is defined by

‘C(fla .. 'afk)
= ((Fr, f2)s s (e, o))" (G (U) x -+ < j7(U))
= (f1. £GP (U)) = (o fo)* G (0)) = -+ = (fir )G (0)
= L(f1, f2) = L(fa, f3) = -+ = L(fr-1, fi) € H" "D (X R),
where j: N2 — (N2, N2\ A) is the inclusion.

We observe that the formula presented in Theorem 4.2 is slightly differ-
ent than the formula established in [1]. Despite such difference, we shall show,
by induction on the number of maps, that in R-oriented case our definition
coincides with the class defined in [1]. For two maps the result is obvious. Sup-
pose that the statement is true for k¥ maps. Then, applying Theorem 4.2, the

symmetricity of the Lefschetz class in the R-oriented case and the induction
hypothesis, we have

L(f1 fo ooy frmts oo o) = ()" L(fr, f5 - -+ fr—1, f1, frt1)

= (=U)"L(fr, for- - s fre—1, f1) = L(fx, frt1)
(f1, fas oo frm1, fi) = L(fxs fra1)
(fis for oo fr—1, fi) = L(frs frv1)
(frsfa oo fomty foo frvn)-

=L
=L
=L

5. Examples

Let us now consider the case where R is a field. Let y; € H*(N,R) and
y; € H*(N;Txn) be bases such that (y., D(y;)) = 1, where

D:H'(N;R) = H,_;(N;T'x)
denotes the Poincaré isomorphism. Then we have the following result.

Proposition 5.1. With the above notation, the image of the Thom class y of
& (N) is given by
5 () =Y (=)Wl <y,

where |y;| denotes the dimension of y;, i.e., y; € HYil(N; R).
Proof. The proof is analogous to that of [4, Proposition 30.18, p. 288]. O
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Example 5.2. Consider N = RP? the projective plane and R = Q. Then

H°(RP?Q) = Q,

HYRP?*Q)=0 forq>0,
H?(RP* Tgp2) = Hy(RP*Q) = Q,
HY(RP?*Tgp2) = Hy_ ((RP%;Q) =0 for q# 2.

Thus,
J*(k) =1xe,
where the element 1 € H°(RP?;Q) is the identity of the ring H*(RP?; Q)
and the element e € H?(RP?;Trp2) is a generator.
It follows that, given maps fi, fo : X — RPZ2 the Lefschetz class is
given by
L(f1, f2) = (f1, f2)" (I x e) = f1 (1) — f3(e) = f3(e).

This shows that, in general,
L(f1, f2;Trp2) # £L(f2, f1;Trp2)-

In view of Example 5.2, below we will discuss the general case where
the target space is the projective space RP", n even.

5.1. The Lefschetz class for the target space RP™, n even

Consider the projective space RP", where n is an even number. As in Exam-
ple 5.2,

H°(RP™Q) =Q,
HYRP™;Q)=0 forg>0,
H"(RP";Trpn) = Hy(RP";Q) = Q,

HYRP";,Trpr) = Ho—¢(RP™";Q) =0 for g #n.
Thus, the Thom class p of RP™ is given by

J*(k) =1xe,

where the element 1 € H°(RP"; Q) is the identity of the ring H*(RP"; Q)
and the element e € H"(RP™;I'gpn) is a generator. It follows that, given
maps f1,..., fx : X — RP", the Lefschetz class is given by

L(f1,---, fx) = L(f1, f2) — L(f1, f3) — -+ — L(f1, fx)
= f3(e) — - — file) (5.1)
=(fo,..., fu)" (ex - xe).
The above formula does not depend on f;. Consider the particular case
where X = RP", f; : RP™ — RP"™ is an arbitrary self-map and f5 is the

identity map. Then we obtain the well-known fact that RP™ has the fixed
point property if n is even, since L(f1,id) =id*(e) = e # 0.
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A map f: M — N between manifolds is called orientation true if each
a € 71 (M) preserves local orientation of M if and only if fa € 71 (N) pre-
serves local orientation of N. If dim M = dim NV, then the degree of f is de-
fined as being the natural number k satisfying f.(zp) =k - zn.

If X is a closed connected manifold of dimension n(k—1) and fa, ..., fx
are orientation true, it is well defined the degree of

(fas-vs fr) : X = (RP™)FT
From (5.1), L(f1,..., fx) # 0 if and only if deg(fa, ..., fx) # 0.

Theorem 5.3. Let X be a closed connected manifold of dimension n(k—1) and
fi,- [ : X = RP™ orientation true. If, for some 1 <1i <k, deg(fi) #0,
then there is x € X such that f1(z) = fo(x) = -+ = fu(z), where f; denotes
the map (fl, ceey fifl, fi+1, ceey fk) X = (RPn)kil

Proof. Suppose i € {1,...,k} such that deg(f;) # 0, where

fi= sy ficts fivnseoos fu) : X = (RPM*
From (5.1),

L(fiafl)f27'"7fi—17fi+1a"'afk) = (f17'"7fi—17fi+1;-~-7fk)*(e X X 6).

Since deg(fl) 7é 0, L(fi) f17 f27 ) fi—la fi+17 LR fk) 7é 0. Therefore, by The-
orem 4.1, there is x € X such that fi(z) = fi(z) =--- = fr(x). O

Lemma 5.4 (See [3, Lemma 4.11]). If p: M — M is a k-fold covering, then
deg(p) = k.

Example 5.5. Consider the maps ¢, f, g : S2x 5% — RP2, where cis a constant
map, f(l', y) = {LIJ, —JI} and g(.’l?, y) = {y7 _y} Thena

(f,g9):S* x S* = RP* x RP?
is a 4-fold covering. It follows from Lemma 5.4 that deg(f,g) = 4. Therefore,

by the above theorem, the Lefschetz class L(c, f, g) is nontrivial. On the other
hand, considering (co)-homology with coefficients in Zs we have

L(Ca f,gaZ2) = degg(f,g) =0.

Here, deg, denotes the degree that we obtain when we consider homology
with coefficients in Zs.
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