Journal of Fixed Point Theory and Applications

Lefschetz coincidence class for several maps

Thaís F. M. Monis and Stanisław Spież

To Professor Carlos Biasi

Abstract. The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps $f_1, \ldots, f_k : X \to N$ from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class

$$L(f_1,\ldots,f_k) \in H^{n(k-1)}(X;(f_1,\ldots,f_k)^*(R \times \Gamma_N^* \times \cdots \times \Gamma_N^*))$$

is defined in such a way that $L(f_1, \ldots, f_k) \neq 0$ implies that the set of coincidences

$$Coin(f_1, ..., f_k) = \{x \in X \mid f_1(x) = \cdots = f_k(x)\}$$

is nonempty.

Mathematics Subject Classification. Primary 55M20; Secondary 54H25.

Keywords. Coincidence point, Lefschetz coincidence number.

1. Introduction

In [1], a Lefschetz coincidence class is defined for continuous functions,

$$f_1,\ldots,f_k:X\to N,$$

from a topological space into a closed connected oriented n-manifold, where $k \geq 2$. Such class, $\mathcal{L}(f_1, \ldots, f_k)$, lives in $H^{n(k-1)}(X; \mathbb{Z})$ and if $\mathcal{L}(f_1, \ldots, f_k) \neq 0$, then there is $x \in X$ such that $f_1(x) = f_2(x) = \cdots = f_k(x)$. Accurately,

$$\mathcal{L}(f_1, \dots, f_k) = (f_1, f_2)^* (j^*(\mu)) \smile (f_2, f_3)^* (j^*(\mu)) \smile \cdots \smile (f_{k-1}, f_k)^* (j^*(\mu)),$$

where $\mu \in H^n(N \times N, N \times N \setminus \Delta; \mathbb{Z})$ is the Thom class of the oriented manifold N and $j: N \times N \hookrightarrow (N \times N, N \times N \setminus \Delta)$ is the inclusion. In [3], the authors considered a Lefschetz coincidence number for maps $f_1, f_2: M \to N$ between closed manifolds of the same dimension, not necessarily orientable, using twisted coefficients and assuming f_2 orientation true, that is, a loop α in M preserves local orientation if and only if the loop $f_2 \circ \alpha$ preserves local

orientation. In this work, using twisted coefficients, we present an extension of the definition of $\mathcal{L}(f_1,\ldots,f_k)$ given in [1] to the case where N is nonorientable. In order to construct our Lefschetz class, which we denote by $L(f_1,\ldots,f_k)$, we consider the composition

$$X \xrightarrow{(f_1, \dots, f_k)} N^k \xrightarrow{i} (N^k, N^k \setminus \Delta_k(N)),$$

where

$$\Delta_k(N) = \{(x, \dots, x) \in N^k \mid x \in N\}$$

is the diagonal in N^k and

$$i: N^k \to (N^k, N^k \setminus \Delta_k(N))$$

is the inclusion. Let $\xi_k(N)$ be the fiber bundle pair given by

$$(N^k, N^k \setminus \Delta_k(N)) \xrightarrow{\pi_1} N,$$

where π_1 is the projection onto the first factor of N^k . Thus, the fiber over $x \in N$ is

$$F_x = \{x\} \times (N^{k-1}, N^{k-1} \setminus \{x\}^{k-1}).$$

In [6] it was proved that $\xi_2(N)$ has a unique Thom class

$$\mu \in H^n(N \times N, N \times N \setminus \Delta(N); R \times \Gamma_N^*),$$

where R is a principal ideal domain and Γ_N is the orientation system (over R) of N. Similarly, one can prove that $\xi_k(N)$ has a unique Thom class

$$\mu_k \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$

for each $k \geq 2$. We define

$$L(f_1,\ldots,f_k) := (f_1,\ldots,f_k)^*(i^*(\mu_k))$$

which is an element of $H^{n(k-1)}(X; (f_1, \ldots, f_k)^*(R \times \Gamma_N^* \times \cdots \times \Gamma_N^*))$. In Section 4 we prove that the above class is given by the cup product

$$L(f_1,\ldots,f_k)=L(f_1,f_2)\smile L(f_1,f_3)\smile\cdots\smile L(f_1,f_k).$$

We also show that whenever N is R-oriented, our definition coincides with that found in [1]. In Section 5 we focus on the case where N is the real projective n-space, n even. We prove that, in such case, $L(f_1, f_2, \ldots, f_k)$ does not depend on f_1 .

For products in cohomology, we are following [5].

2. System of orientation

Throughout this paper, R denotes a principal ideal domain.

An *n*-manifold means a paracompact Hausdorff space having an open covering of coordinate neighborhoods each homeomorphic to \mathbb{R}^n .

For definitions of local system and of the homology and cohomology with coefficients in a local system see [6] or [9].

Given a local system Γ on a topological space X, we denote by Γ^* the local system $\operatorname{Hom}(\Gamma, R)$ on X. Given a local system Γ on X and a local system Γ' on Y, we denote by $\Gamma \times \Gamma'$ the local system on $X \times Y$ defined by

$$(\Gamma \times \Gamma')(x,y) = \Gamma(x) \otimes \Gamma(y)$$

for $(x, y) \in X \times Y$ and

$$(\Gamma \times \Gamma')(\omega_1, \omega_2) = \Gamma(\omega_1) \otimes \Gamma'(\omega_2)$$

for a path (ω_1, ω_2) in $X \times Y$.

Let N be an n-manifold. A small cell of N is defined to be a subset C having an open neighborhood V such that (V, C) is homeomorphic to (\mathbb{R}^n, E^n) , where $E^n = \{z \in \mathbb{R}^n \mid ||z|| \le 1\}$.

For our purposes, we will consider Γ_N the orientation system (over R) of N. In such system, for each $x \in N$, $\Gamma_N(x) = H^n(N, N \setminus x; R)$ and if ω is a path in N, the definition of $\Gamma_N(\omega)$ is given by the following: Let $\{C\}$ be a family of small cells of N whose interiors cover N and such that if $C, C' \in \{C\}$ and $C \cap C' \neq \emptyset$, then $C \cup C'$ is contained in some small cell of N. Given a path $\omega: I \to N$, let $0 = t_0 < t_1 < \cdots < t_m = 1$ be points of I such that for $1 \le i \le m$ there is some $C_i \in \{C\}$ with $\omega([t_{i-1}, t_i]) \subset C_i$. Then the composite isomorphism

$$H^{n}(N, N \setminus \omega(0); R) \xrightarrow{\approx} H^{n}(N, N \setminus C_{1}; R) \xleftarrow{\approx} H^{n}(N, N \setminus \omega(t_{1}); R)$$
$$\xrightarrow{\approx} \cdots \xrightarrow{\approx} H^{n}(N, N \setminus C_{m}; R) \xleftarrow{\approx} H^{n}(N, N \setminus \omega(1); R)$$

is independent of the choice of the points $\{t_i\}$ and the collection $\{C\}$ and is defined to be $\Gamma_N(\omega)$. When $R = \mathbb{Z}$ we will use the notation \mathcal{O}_N instead of Γ_N .

Another way to define $\Gamma_N(\omega)$ is the following.

Lemma 2.1. Let $\omega:[0,1]\to N$ be a path and $F:N\times I\to N$ an isotopy such that F(x,0)=x for all $x\in N$ and $F(\omega(0),t)=\omega(t)$ for all $t\in[0,1]$. Then $\Gamma_N(\omega)=(F(\cdot,1)^*)^{-1}$.

Proof. Let C be a small cell in N such that $\omega(0) \in \text{int } C$. We can find a partition

$$0 = s_0 < s_1 < \dots < s_K = 1$$

of [0,1] such that for all $k \in \{0,1,\ldots,K-1\}$ we have

- (a) $\omega([s_k, s_{k+1}]) \subset C_k := F(C, s_k),$
- (b) $\omega(s_{k+1}) \in F(C,t)$ for each $t \in [s_k, s_{k+1}]$.

For each $s \in [0,1],$ let $G^s: N \times [0,1] \to N$ be the isotopy defined by

$$G^{s}(x,t) = F(F_{s}^{-1}(x),t),$$

where $F_s: N \to N$ is the homeomorphism given by $F_s(x) = F(x, s)$. We have

- (c) $G^s(x,s) = x$ for all $x \in N$,
- (d) $G^{s}(F_{s}(x), t) = F(x, t)$ for all $(x, t) \in N \times [0, 1]$.

For each $k \in \{0, 1, ..., K - 1\}$, from (b) it follows that G^{s_k} defines a homotopy

$$(N, N \setminus C_k) \times [s_k, s_{k+1}] \to (N, N \setminus \omega(s_{k+1})).$$

Note that this homotopy connects the maps $i_{s_{k+1}}^k$ and $G^{s_k}(\,\cdot\,,s_{k+1})\circ i_{s_k}^k$, where

$$G^{s_k}(\cdot, s_{k+1}): (N, N \setminus \omega(s_k)) \to (N, N \setminus \omega(s_{k+1})),$$

and $i_{s_k}^k: (N, N \setminus C_k) \hookrightarrow (N, N \setminus \omega(s_k)), i_{s_{k+1}}^k: (N, N \setminus C_k) \hookrightarrow (N, N \setminus \omega(s_{k+1}))$ are the inclusions. Hence,

$$\left(G^{s_k}(\,\cdot\,,s_{k+1})^*\right)^{-1} = \left((i_{s_{k+1}}^k)^*\right)^{-1} \circ \left(i_{s_k}^k\right)^*.$$

Thus

$$\Gamma_{N}(\omega) = \left[\left(\left(i_{s_{K}}^{K-1} \right)^{*} \right)^{-1} \circ \left(i_{s_{K-1}}^{K-1} \right)^{*} \right] \circ \cdots \circ \left[\left(\left(i_{s_{1}}^{0} \right)^{*} \right)^{-1} \circ \left(i_{s_{0}}^{0} \right)^{*} \right]$$

$$= \left(G^{s_{K-1}}(\cdot, s_{K})^{*} \right)^{-1} \circ \cdots \circ \left(G^{s_{0}}(\cdot, s_{1})^{*} \right)^{-1}$$

$$= \left(G^{s_{0}}(\cdot, s_{1})^{*} \circ \cdots \circ G^{s_{K-1}}(\cdot, s_{K})^{*} \right)^{-1}$$

$$= \left(\left(G^{s_{K-1}}(\cdot, s_{K}) \circ \cdots \circ G^{s_{0}}(\cdot, s_{1}) \right)^{*} \right)^{-1}.$$

Now, note that

$$G^{s_{K-1}}(\cdot, s_K) \circ \cdots \circ G^{s_0}(\cdot, s_1) = F(\cdot, s_K) = F(\cdot, 1).$$

Therefore,

$$\Gamma_N(\omega) = (F(\cdot, 1)^*)^{-1}.$$

The next lemma shows the existence of an isotopy such that F(x,0) = x for all $x \in N$ and $F(\omega(0),t) = \omega(t)$. Its statement and proof are adaptations of [8, Lemma 6.4, p. 150].

Lemma 2.2. Let $\omega: I \to N$ be a path in N. Then, there is an isotopy $F: N \times I \to N$ such that F(x,0) = x for all $x \in N$ and $F(\omega(0),t) = \omega(t)$ for all $t \in I$.

Proof. First, consider the case where $\omega(I)$ is contained in a euclidean neighborhood U. Let $h: U \to E^n \backslash S^{n-1}$ be a homeomorphism. Let $g: E^n \backslash S^{n-1} \to \mathbb{R}^n$ be the homeomorphism given by

$$g(z) = \frac{z}{1 - |z|},$$

whose inverse map is given by

$$g^{-1}(y) = \frac{y}{1+|y|}.$$

Let $\beta:I\to\mathbb{R}^n$ be the path $\beta(t)=g(h(\omega(t)))$ between $g(h(\omega(0)))$ and $g(h(\omega(1)))$. Let $F:\mathbb{R}^n\times I\to\mathbb{R}^n$ be the homotopy given by

$$F(y,t) = f_t(y) := \beta(t) + y - g(h(\omega(0)))$$

Note that F is an isotopy between the identity map and the translation

$$y\mapsto y+(g(h(\omega(1)))-g(h(\omega(0)))).$$

П

Thus, for each $t \in I$ we have a homeomorphism

$$g^{-1} \circ f_t \circ g : E^n \setminus S^{n-1} \to E^n \setminus S^{n-1}$$

with $g^{-1} \circ f_0 \circ g = \text{id}$ and $g^{-1} \circ f_t \circ g(h(\omega(0))) = h(\omega(t))$. Note that, for each t, the homeomorphism $g^{-1} \circ f_t \circ g : E^n \setminus S^{n-1} \to E^n \setminus S^{n-1}$ can be extended to a homeomorphism from E^n over E^n defining such extension as being the identity map over the boundary. Now, define the isotopy $h_t : N \to N$ by

$$h_t(x) = \begin{cases} x & \text{if } x \in N \setminus U, \\ h^{-1} \circ g^{-1} \circ f_t \circ g(x) & \text{if } x \in U. \end{cases}$$

Such isotopy h_t satisfies the required conditions.

Now, consider $\omega(I)$ covered by the euclidean neighborhoods U_1, \ldots, U_k and let $0 = t_0 < t_1 < \cdots < t_k = 1$ be a partition of the interval I such that $\omega([t_{i-1}, t_i]) \subset U_i$ for $i = 1, \ldots, k$. Suppose, by induction, that it is defined an isotopy $F: N \times [0, t_{k-1}] \to N$ such that

$$\begin{split} F(x,0) &= x & \text{for all } x \in N, \\ F(\omega(0),t) &= \omega(t) & \text{for all } t \in [0,t_{k-1}], \\ F(x,t) &= x & \text{if } x \not\in U_1 \cup \dots \cup U_{k-1}. \end{split}$$

From the previous step, there is an isotopy $H: N \times [t_{k-1}, 1] \to N$ with

$$H(x, t_{k-1}) = x \qquad \text{for all } x \in N,$$

$$H(\omega(t_{k-1}), t) = \omega(t) \quad \text{for all } t \in [t_{k-1}, 1],$$

$$H(x, t) = x \qquad \text{if } x \notin U_k.$$

Define $G: N \times I \to N$ by

$$G(x,t) = \begin{cases} F(x,t) & \text{if } t \in [0, t_{k-1}], \\ H(F(x, t_{k-1}), t) & \text{if } t \in [t_{k-1}, 1]. \end{cases}$$

The map G is an isotopy such that

$$G(x,0) = x \qquad \text{for all } x \in N,$$

$$G(\omega(0),t) = \omega(t) \quad \text{for all } t \in I,$$

and if $x \notin U_1 \cup \cdots \cup U_{k-1} \cup U_k$, then G(x,t) = x.

For any $x \in N$ there is the canonical generator $z_{x,N}$ of $H_n(N, N \setminus x; \Gamma_N)$ (cf. [3, p. 5]) induced by the relative cycle $g_{\sigma}\sigma$ defined by

- (a) $\sigma: \Delta^n \to N$ is an embedding with $x = \sigma(p), p \in \operatorname{int} \Delta^n$,
- (b) $g_{\sigma} \in \Gamma_N(\sigma)$ is the section such that $g_{\sigma}(p)$ is the generator of

$$\Gamma_N(x) = H^n(N, N \setminus x; \mathbb{R})$$

induced by the relative singular cocycle dual to the relative singular cycle 1σ , where $1 \in R$.

(Here, we use the description of singular homology with local coefficients given in [7].) Note that $z_{x,N}$ does not depend on the choice of σ .

Lemma 2.3 (See [3, Lemma 3.1]). For any compact set $A \subset N$ there exists a unique element $z_{A,N} \in H_n(N, N \setminus A; \Gamma_N)$ such that for any $x \in A$ the natural homomorphism $H_n(N, N \setminus A; \Gamma_N) \to H_n(N, N \setminus x; \Gamma_N)$ sends $z_{A,N}$ to $z_{x,N}$.

Corollary 2.4 (Existence of fundamental class). If N is compact, then there is a unique element $z_N \in H_n(N; \Gamma_N)$, called fundamental class, such that for any $x \in N$ the natural homomorphism $H_n(N; \Gamma_N) \to H_n(N, N \setminus x; \Gamma_N)$ sends z_N to $z_{x,N}$.

Let R_N be an arbitrary local coefficient system over a closed n-manifold N with typical group R. Then the cap product with the fundamental class z_N give us the Poincar'e duality

$$H^{j}(N; R_{N}) \xrightarrow{\simeq} H_{n-j}(N; \mathcal{O}_{N} \otimes R_{N})$$
 (2.1)

(see [6, Theorem 6.1, p. 107] or [2, Theorem 9.3, p. 330]).

Let us consider the fiber bundle pair $\xi_k(N)$ given by

$$(N^k, N^k \setminus \Delta_k(N)) \xrightarrow{\pi_1} N,$$

where π_1 is the projection onto the first factor of N^k ,

$$\Delta_k(N) = \{(x_1, \dots, x_k) \in N^k \mid x_1 = \dots = x_k\}$$

is the kth diagonal of N^k and the fiber over $x \in N$ is

$$F_x = \{x\} \times (N^{k-1}, N^{k-1} \setminus \{x\}^{k-1}).$$

A Thom class of the bundle $\xi_k(N)$ is an element

$$\mu \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$

such that for all $x \in N$, the restriction

$$\mu|F_x \in H^{n(k-1)}(F_x; R \times \Gamma_N^* \times \dots \times \Gamma_N^*)$$

is dual to the generator $z_{x^{k-1},N^{k-1}} \in H_{n(k-1)}(N^{k-1},N^{k-1}\setminus\{x\}^{k-1};\Gamma_{N^{k-1}})$, that is,

$$\mu|F_x/(z_{x^{k-1},N^{k-1}})=1\in H^0(x;R)$$

for all $x \in N$, where / denotes the slant product.

In [6] it was proved that $\xi_2(N)$ has a unique Thom class. Similarly, one can prove that $\xi_k(N)$ has a unique Thom class for all $k \geq 2$.

3. Properties of the Thom class of $\xi_k(N)$

The fiber bundle pair $\xi_k(N)$ is said to be orientable over R if there exists an element

$$U \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R)$$

such that for all $x \in N$, the restriction

$$U|\{x\} \times (N^{k-1}, N^{k-1} \setminus \{x\}^{k-1})$$

is a generator of $H^{n(k-1)}(\{x\}\times(N^{k-1},N^{k-1}\setminus\{x\}^{k-1});R)$. Such a cohomology class U is called an orientation of $\xi_k(N)$ over R. For $R=\mathbb{Z}$ we simply say that $\xi_k(N)$ is orientable instead of orientable over \mathbb{Z} .

Let $\omega: I \to N$ be a path. For each $x \in N$, let

$$F_x = \{x\} \times (N^{k-1}, N^{k-1} \setminus \{x\}^{k-1})$$

be the fiber of $\xi_k(N)$ over x. There is a map

$$G: F_{\omega(0)} \times I \to (N^k, N^k - \Delta_k(N))$$

such that $\pi_1(G(x,t)) = \omega(t)$ and G(x,0) = x for $x \in \omega(0) \times N^{k-1}$ and $t \in I$. Indeed, we can consider an isotopy $F: N \times I \to N$ as in Lemma 2.2 and we define

$$G(\omega(0), x_2, \dots, x_k, t) = (F(\omega(0), t), F(x_2, t), \dots, F(x_k, t)).$$

Let us consider the map

$$g := G(\cdot, 1) : F_{\omega(0)} \to F_{\omega(1)}.$$

Let $[g] \in [F_{\omega(0)}, F_{\omega(1)}]$ be the homotopy class of g. The association of the path class $[\omega]$ with the homotopy class [g] is a well-defined correspondence (see [5, Theorem 12, p. 101]). Let $h^k[\omega] = [g]$ and let $h^k[\omega]^*$ denote the homomorphism g^* induced by g, from $H^{n(k-1)}(F_{\omega(1)}; R)$ into $H^{n(k-1)}(F_{\omega(0)}; R)$. From [5], we have the following theorem.

Theorem 3.1 (cf. [5, Theorem 19, p. 263]). The fiber bundle pair $\xi_k(N)$ is orientable over R if and only if

$$h^k[\omega]^*: H^{n(k-1)}(F_{\omega(0)}; R) \to H^{n(k-1)}(F_{\omega(0)}; R)$$

is the identity homomorphism for every closed path ω in N.

Remark 3.2. A connected n-manifold X is said to be orientable (over R) if there exists an element $U \in H^n(X \times X, X \times X \setminus \Delta(X); R)$ such that for all $x \in X$, $U|\{x\} \times (X, X \setminus x)$ is a generator of $H^n(\{x\} \times (X, X \setminus x))$. Such a cohomology class U is called an orientation of X (see [5, p. 294]). Thus, saying the manifold X is orientable (over R) is the same as saying the fiber bundle pair $\xi_2(X)$ is orientable (over R). Moreover, X is orientable (over R) if and only if the orientation system Γ_N (over R) is constant.

Now, we are able to prove the following theorem.

Theorem 3.3. The fiber bundle pair $\xi_k(N)$ satisfies the following conditions:

- (a) for k odd, $\xi_k(N)$ is orientable (over arbitrary R);
- (b) for k even, $\xi_k(N)$ is orientable (over R) if and only if N is orientable (over R).

Proof. Following Theorem 3.1, we need to analyze the homomorphisms

$$h^k[\omega]^*: H^{n(k-1)}(F_{\omega(0)}; R) \to H^{n(k-1)}(F_{\omega(0)}; R)$$

for every closed path $\omega: I \to N$.

For each $x \in N$, the fiber of $\xi_k(N)$ over x is given by

$$F_x = \{x\} \times \left(N^{k-1}, N^{k-1} \setminus \{x\}^{k-1}\right)$$
$$= \{x\} \times \underbrace{(N, N \setminus x) \times (N, N \setminus x) \times \cdots \times (N, N \setminus x)}_{(k-1) \text{ times}}.$$

By the Kunneth formula,

$$H^{n(k-1)}(F_x;R) = H^0(x;R) \otimes \underbrace{H^n(N,N \setminus x;R) \otimes \cdots \otimes H^n(N,N \setminus x;R)}_{(k-1) \text{ times}}.$$

With this, we can see that, for each path $\omega: I \to N$,

$$h^{k}[\omega]^{*} = \operatorname{id} \otimes \underbrace{F(\cdot, 1)^{*} \otimes \cdots \otimes F(\cdot, 1)^{*}}_{(k-1) \text{ times}}$$
$$= \operatorname{id} \otimes \underbrace{\Gamma_{N}(\omega)^{-1} \otimes \cdots \otimes \Gamma_{N}(\omega)^{-1}}_{(k-1) \text{ times}}.$$

Since

$$h^k[\omega]^* = \mathrm{id} \otimes \underbrace{\Gamma_N(\omega)^{-1} \otimes \cdots \otimes \Gamma_N(\omega)^{-1}}_{(k-1) \text{ times}}$$

and $\Gamma_N(\omega) = \pm id$, for k odd, $h^k[\omega]^*$ is always the identity homomorphism. Therefore, for k odd, $\xi_k(N)$ is orientable (over arbitrary R).

If N is orientable over R, then $\Gamma_N(\omega)$ is the identity homomorphism for every closed path ω in N. It follows that $h^k[\omega]^*$ is the identity homomorphism for every closed path ω in N. Therefore, if N is orientable over R, then $\xi_k(N)$ is orientable over R for arbitrary k.

If N is nonorientable over R, then there is a closed path ω in N such that $\Gamma_N(\omega) = -\operatorname{id}$. It follows that for k even, $h^k[\omega]^* = -\operatorname{id}$. Therefore, if N is nonorientable over R, then $\xi_k(N)$ is nonorientable over R for every k even.

Lemma 3.4. Let N be a compact manifold. Then there exists a neighborhood V of $\Delta_k(N)$ in N^k such that the projections $\pi_1|V,\ldots,\pi_k|V:V\to N$ are homotopic relatively to $\Delta_k(N)$.

Proof. The proof is analogous to that of [8, Lemma 6.15, p. 164]. \Box

Theorem 3.5. Let N be a closed n-manifold and suppose that $\xi_k(N)$ is orientable over R. Let

$$U \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R)$$

be an orientation. Then, there is an isomorphism between

$$H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R)$$

and

$$H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$

which maps U onto the Thom class

$$\mu \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$

of $\xi_k(N)$.

Proof. We will show that restriction of $\Gamma := R \times \Gamma_N^* \times \cdots \times \Gamma_N^*$ to a neighborhood of $\Delta_k(N)$ is a constant system. We can suppose N connected. Let V be a neighborhood (connected) of $\Delta_k(N)$ in N^k such that the projections $\pi_1|V,\ldots,\pi_k|V:V\to N$ are homotopic relatively to $\Delta_k(N)$. By excision, we have the isomorphism

$$H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); \Gamma) \xrightarrow{\approx} H^{n(k-1)}(V, V \setminus \Delta_k(N); \Gamma|_V).$$

In order to know the behavior of the local system Γ on V, we just need to know the action of the fundamental group $\pi_1(V;(x_1,\ldots,x_k))$ over R with respect to such local system for a point $(x_1,\ldots,x_k)\in V$ (see [9, Theorems 1.11 and 1.12, p. 263]. Thus, let us consider a point $(x,\ldots,x)\in \Delta_k(N)\subset V$. By Lemma 3.4, each closed path α in V with base point in $\Delta_k(N)$ is homotopic, relatively to the end points, to a closed path in $\Delta_k(N)$. Let $\alpha=(\beta,\ldots,\beta)$ be a closed path based on (x,\ldots,x) . Since $\xi_k(N)$ is orientable over R, by Theorem 3.1, $h^k[\beta]^*=\mathrm{id}$. Moreover, in the proof of Theorem 3.3, we saw that

$$h^k[\beta]^* = \operatorname{id} \otimes \underbrace{\Gamma_N(\beta)^{-1} \otimes \cdots \otimes \Gamma_N(\beta)^{-1}}_{(k-1) \text{ times}}.$$

On the other hand, by definition,

$$\Gamma(\alpha) = \mathrm{id} \otimes \underbrace{\Gamma_N^*(\beta) \otimes \cdots \otimes \Gamma_N^*(\beta)}_{(k-1) \text{ times}}.$$

Since $\Gamma_N(\beta) = \pm id$ and $\Gamma_N^*(\beta) = \text{Hom}(\Gamma_N(\beta), R)$, it follows that $\Gamma(\alpha)$ is the identity isomorphism.

We conclude that the action of the fundamental group $\pi_1(V;(x,\ldots,x))$ over R with respect to the local system Γ is trivial. Hence, there is an isomorphism between

$$H^{n(k-1)}(V, V \setminus \Delta_k(N); \Gamma|_V)$$

and

$$H^{n(k-1)}(V, V \setminus \Delta_k(N); R).$$

It follows that there is an isomorphism between

$$H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$

and

$$H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R),$$

and we can take such isomorphism sending the Thom class μ of the bundle $\xi_k(N)$ onto the element U.

Corollary 3.6. If k is odd, then $H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$ is isomorphic to $H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R)$.

Proof. It is an immediate consequence of Theorems 3.5 and 3.3. \Box

Let $k, l \ge 2$ and let

$$e: (N^{k+l-1}, N^{k+l-1} \setminus \Delta_{k+l-1}(N)) \to (N^k, N^k \setminus \Delta_k(N)) \times (N^l, N^l \setminus \Delta_l(N))$$
 be the map defined by

be the map defined by

$$e(x_1, \dots, x_{k+l-1}) = ((x_1, \dots, x_k), (x_1, x_{k+1}, \dots, x_{k+l-1})).$$

Note that the local system

$$e^* \left(\left(R \times \underbrace{\Gamma_N^* \times \dots \times \Gamma_N^*}_{(k-1) \text{ times}} \right) \times \left(R \times \underbrace{\Gamma_N^* \times \dots \times \Gamma_N^*}_{(l-1) \text{ times}} \right) \right)$$

is isomorphic to the local system

$$R \times \underbrace{\Gamma_N^* \times \cdots \times \Gamma_N^*}_{(k+l-2) \text{ times}}$$

over $(N^{k+l-1}, N^{k+l-1} \setminus \Delta_{k+l-1})$. We have the following result.

Proposition 3.7. If $\mu_k \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$ is the Thom class of $\xi_k(N)$ and $\mu_l \in H^{n(l-1)}(N^l, N^l \setminus \Delta_l(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$ is the Thom class of $\xi_l(N)$, then

$$e^*(\mu_k \times \mu_l) \in H^{n(k+l-2)}(N^{k+l-1}, N^{k+l-1} \setminus \Delta_{k+l-1}(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$
 is the Thom class of $\xi_{k+l-1}(N)$.

Proof. Let $x_1 \in N$ be arbitrary. We need to show that the image of $e^*(\mu_k \times \mu_l)$ in $H^{n(k+l-2)}(x_1 \times (N^{k+l-2}, N^{k+l-2} \setminus \{x_1\}^{k+l-2}); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$ is dual to z_{k+l-2} . In order to show that, consider the homeomorphism between

$$x_1 \times (N^{k+l-2}, N^{k+l-2} \setminus \{x_1\}^{k+l-2})$$

and

$$(x_1 \times (N^{k-1}, N^{k-1} \setminus \{x_1\}^{k-1})) \times (x_1 \times (N^{l-1}, N^{l-1} \setminus \{x_1\}^{l-1}))$$

given by

$$(x_1, x_2, \dots, x_{k+l-1}) \mapsto ((x_1, \dots, x_k), (x_1, x_{k+1}, \dots, x_{k+l-1})).$$

Then, the result follows from the commutativity of the diagram

$$(N^{k+l-1}, N^{k+l-1} \setminus \Delta_{k+l-1}) \xrightarrow{e} (N^k, N^k \setminus \Delta_k) \times (N^l, N^l \setminus \Delta_l)$$

$$(N^{k_1}, N^{k_1} \setminus \{x_1\}^{k_1}) \xrightarrow{e} (N^{k_2}, N^{k_2} \setminus \{x_1\}^{k_2}) \times (N^{k_3}, N^{k_3} \setminus \{x_1\}^{k_3})$$

where $k_1 = k + l - 2$, $k_2 = k - 1$ and $k_3 = l - 1$, and the vertical arrows are the inclusions.

Corollary 3.8. Let

$$e': \left(N^k, N^k \setminus \Delta_k(N)\right) \to \underbrace{\left(N^2, N^2 \setminus \Delta_2(N)\right) \times \cdots \times \left(N^2, N^2 \setminus \Delta_2(N)\right)}_{(k-1) \ times}$$

be defined by

$$e'(x_1,\ldots,x_k) = ((x_1,x_2),(x_1,x_3),\ldots,(x_1,x_k)).$$

If $\mu \in H^n(N^2, N^2 \setminus \Delta(N); R \times \Gamma_N^*)$ is the Thom class of $\xi_2(N)$, then $e'^*(\mu \times \cdots \times \mu) \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$ is the Thom class of $\xi_k(N)$.

4. The Lefschetz coincidence class

Let N be a closed connected manifold of dimension n. Let

$$\mu_k \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \cdots \times \Gamma_N^*)$$

be the Thom class of $\xi_k(N)$. Then, given k maps $f_1, \ldots, f_k : X \to N$ from a topological space X into the manifold N, the Lefschetz coincidence class $L(f_1, \ldots, f_k)$ is defined by

$$L(f_1,\ldots,f_k)=(f_1,\ldots,f_k)^*(i^*(\mu_k)),$$

where $i: N^k \to (N^k, N^k \setminus \Delta_k(N))$ is the inclusion. Thus, $L(f_1, \ldots, f_k)$ is an element of

$$H^{n(k-1)}(X;(f_1,\ldots,f_k)^*(R\times\Gamma_N^*\times\cdots\times\Gamma_N^*)).$$

Theorem 4.1. If $L(f_1, \ldots, f_k) \neq 0$, then the set of coincidences

$$Coin(f_1, f_2, \dots, f_k) = \{x \in X \mid f_1(x) = f_2(x) = \dots = f_k(x)\}\$$

is nonempty.

Proof. If there is no $x \in X$ such that $f_1(x) = \cdots = f_k(x)$, then we have the factorization

$$X \xrightarrow{(f_1, \dots, f_k)} N^k \xrightarrow{i} \left(N^k, \ N^k \setminus \Delta_k(N) \right)$$

$$\downarrow \qquad \qquad \uparrow$$

$$N^k \setminus \Delta_k(N) \xrightarrow{} \left(N^k \setminus \Delta_k(N), \ N^k \setminus \Delta_k(N) \right)$$

which implies $L(f_1,\ldots,f_k)=0$.

In Corollary 3.8 we proved that if

$$e': (N^k, N^k \setminus \Delta_k(N)) \to \underbrace{(N^2, N^2 \setminus \Delta_2(N)) \times \cdots \times (N^2, N^2 \setminus \Delta_2(N))}_{(k-1) \text{ times}}$$

is the map defined by

$$e'(x_1,\ldots,x_k) = ((x_1,x_2),(x_1,x_3),\ldots,(x_1,x_k))$$

and $\mu \in H^n(N^2, N^2 \setminus \Delta(N); R \times \Gamma_N^*)$ is the Thom class of $\xi_2(N)$, then

$$e'^*(\mu \times \dots \times \mu) \in H^{n(k-1)}(N^k, N^k \setminus \Delta_k(N); R \times \Gamma_N^* \times \dots \times \Gamma_N^*)$$

is the Thom class of $\xi_k(N)$.

Now, denote by $j:N^2\to (N^2,N^2\setminus \Delta_2(N))$ the inclusion and consider the map

$$h: X \to \underbrace{N^2 \times \cdots \times N^2}_{(k-1) \text{ times}},$$

where

$$h = ((f_1, f_2), (f_1, f_3), \dots, (f_1, f_k)).$$

We have that

$$e' \circ i \circ (f_1, \dots, f_k) = \underbrace{(j \times \dots \times j)}_{(k-1) \text{ times}} \circ h.$$

Thus

$$L(f_{1},...,f_{k}) = (f_{1},...,f_{k})^{*}(i^{*}(\mu_{k}))$$

$$= (f_{1},...,f_{k})^{*}(i^{*}(e^{\prime *}(\mu \times \cdots \times \mu)))$$

$$= ((f_{1},f_{2}),(f_{1},f_{3}),...,(f_{1},f_{k}))^{*}((j \times \cdots \times j)^{*}(\mu \times \cdots \times \mu))$$

$$= (f_{1},f_{2})^{*}(j^{*}(\mu)) \smile (f_{1},f_{3})^{*}(j^{*}(\mu)) \smile \cdots \smile (f_{1},f_{k})^{*}(j^{*}(\mu))$$

$$= L(f_{1},f_{2}) \smile L(f_{1},f_{3}) \smile \cdots \smile L(f_{1},f_{k}).$$

Theorem 4.2.
$$L(f_1, ..., f_k) = L(f_1, f_2) \smile L(f_1, f_3) \smile ... \smile L(f_1, f_k)$$
.

Theorem 4.2 tells us that the Lefschetz class is almost symmetric, in the following sense.

Corollary 4.3. For each permutation $\sigma \in S_k$ satisfying $\sigma(1) = 1$,

$$L(f_1, f_2, \dots, f_k) = \operatorname{sign}(\sigma)^n L(f_1, f_{\sigma(2)}, \dots, f_{\sigma(k)}).$$

Remark 4.4. The R-oriented case presents a stronger form of symmetricity. Namely, for each permutation $\sigma \in S_k$,

$$L(f_1,\ldots,f_k)=\pm L(f_{\sigma(1)},\ldots,f_{\sigma(k)}).$$

Indeed, analogously to [8, Lemma 5.16], if

$$t_{\sigma}: (N^k, N^k \setminus \Delta_k(N)) \to (N^k, N^k \setminus \Delta_k(N))$$

is the map defined by

$$t_{\sigma}(x_1,\ldots,x_k) = (x_{\sigma(1)},\ldots,x_{\sigma(k)}),$$

then for any orientation U of $\xi_k(N)$, $t^*(U) = U$ if the permutation σ is even, and $t^*(U) = (-1)^n U$ otherwise. Since

$$t_{\sigma} \circ i \circ (f_1, \dots, f_k) = i \circ (f_{\sigma(1)}, \dots, f_{\sigma(k)}),$$

it follows that

$$L(f_1, \dots, f_k) = \begin{cases} L(f_{\sigma(1)}, \dots, f_{\sigma(k)}) & \text{if } \sigma \text{ is even,} \\ (-1)^n L(f_{\sigma(1)}, \dots, f_{\sigma(k)}) & \text{if } \sigma \text{ is odd.} \end{cases}$$

Remark 4.5. In [1] a Lefschetz class is defined as follows. First of all, it is requested that the closed connected manifold N be R-orientable, i.e., orientable over R. Then, denoting by $U \in H^n(N^2, N^2 \setminus \Delta; R)$ the orientation class (also called Thom class), the Lefschetz class of the given maps $f_1, \ldots, f_k : X \to N$ is defined by

$$\mathcal{L}(f_1, \dots, f_k)$$
= $((f_1, f_2), \dots, (f_{k-1}, f_k))^* (j^*(U) \times \dots \times j^*(U))$
= $(f_1, f_2)^* (j^*(U)) \smile (f_2, f_3)^* (j^*(U)) \smile \dots \smile (f_{k-1}, f_k)^* (j^*(U))$
= $\mathcal{L}(f_1, f_2) \smile \mathcal{L}(f_2, f_3) \smile \dots \smile \mathcal{L}(f_{k-1}, f_k) \in H^{n \cdot (k-1)}(X; R),$

where $j: \mathbb{N}^2 \to (\mathbb{N}^2, \mathbb{N}^2 \setminus \Delta)$ is the inclusion.

We observe that the formula presented in Theorem 4.2 is slightly different than the formula established in [1]. Despite such difference, we shall show, by induction on the number of maps, that in R-oriented case our definition coincides with the class defined in [1]. For two maps the result is obvious. Suppose that the statement is true for k maps. Then, applying Theorem 4.2, the symmetricity of the Lefschetz class in the R-oriented case and the induction hypothesis, we have

$$L(f_1, f_2, \dots, f_{k-1}, f_k, f_{k+1}) = (-1)^n L(f_k, f_2, \dots, f_{k-1}, f_1, f_{k+1})$$

$$= (-1)^n L(f_k, f_2, \dots, f_{k-1}, f_1) \smile L(f_k, f_{k+1})$$

$$= L(f_1, f_2, \dots, f_{k-1}, f_k) \smile L(f_k, f_{k+1})$$

$$= \mathcal{L}(f_1, f_2, \dots, f_{k-1}, f_k) \smile \mathcal{L}(f_k, f_{k+1})$$

$$= \mathcal{L}(f_1, f_2, \dots, f_{k-1}, f_k, f_{k+1}).$$

5. Examples

Let us now consider the case where R is a field. Let $y_i \in H^*(N, R)$ and $y_i' \in H^*(N; \Gamma_N)$ be bases such that $\langle y_i', D(y_i) \rangle = 1$, where

$$D: H^j(N;R) \to H_{n-j}(N;\Gamma_N)$$

denotes the Poincaré isomorphism. Then we have the following result.

Proposition 5.1. With the above notation, the image of the Thom class μ of $\xi_2(N)$ is given by

$$j^*(\mu) = \sum_i (-1)^{|y_i|} y_i \times y_i',$$

where $|y_i|$ denotes the dimension of y_i , i.e., $y_i \in H^{|y_i|}(N;R)$.

Proof. The proof is analogous to that of [4, Proposition 30.18, p. 288]. \Box

Example 5.2. Consider $N = \mathbb{R}P^2$ the projective plane and $R = \mathbb{Q}$. Then

$$H^{0}(\mathbb{R}P^{2};\mathbb{Q}) = \mathbb{Q},$$

$$H^{q}(\mathbb{R}P^{2};\mathbb{Q}) = 0 \quad \text{for } q > 0,$$

$$H^{2}(\mathbb{R}P^{2};\Gamma_{\mathbb{R}P^{2}}) = H_{0}(\mathbb{R}P^{2};\mathbb{Q}) = \mathbb{Q},$$

$$H^{q}(\mathbb{R}P^{2};\Gamma_{\mathbb{R}P^{2}}) = H_{2-q}(\mathbb{R}P^{2};\mathbb{Q}) = 0 \quad \text{for } q \neq 2.$$

Thus,

$$j^*(\mu) = 1 \times e$$

where the element $1 \in H^0(\mathbb{R}P^2; \mathbb{Q})$ is the identity of the ring $H^*(\mathbb{R}P^2; \mathbb{Q})$ and the element $e \in H^2(\mathbb{R}P^2; \Gamma_{\mathbb{R}P^2})$ is a generator.

It follows that, given maps $f_1, f_2: X \to \mathbb{R}P^2$, the Lefschetz class is given by

$$L(f_1, f_2) = (f_1, f_2)^* (1 \times e) = f_1^* (1) \smile f_2^* (e) = f_2^* (e).$$

This shows that, in general,

$$L(f_1, f_2; \Gamma_{\mathbb{R}P^2}) \neq \pm L(f_2, f_1; \Gamma_{\mathbb{R}P^2}).$$

In view of Example 5.2, below we will discuss the general case where the target space is the projective space $\mathbb{R}P^n$, n even.

5.1. The Lefschetz class for the target space $\mathbb{R}P^n$, n even

Consider the projective space $\mathbb{R}P^n$, where n is an even number. As in Example 5.2,

$$H^{0}(\mathbb{R}P^{n};\mathbb{Q}) = \mathbb{Q},$$

$$H^{q}(\mathbb{R}P^{n};\mathbb{Q}) = 0 \quad \text{for } q > 0,$$

$$H^{n}(\mathbb{R}P^{n};\Gamma_{\mathbb{R}P^{n}}) = H_{0}(\mathbb{R}P^{n};\mathbb{Q}) = \mathbb{Q},$$

$$H^{q}(\mathbb{R}P^{n};\Gamma_{\mathbb{R}P^{n}}) = H_{n-q}(\mathbb{R}P^{n};\mathbb{Q}) = 0 \quad \text{for } q \neq n.$$

Thus, the Thom class μ of $\mathbb{R}P^n$ is given by

$$j^*(\mu) = 1 \times e$$
,

where the element $1 \in H^0(\mathbb{R}P^n; \mathbb{Q})$ is the identity of the ring $H^*(\mathbb{R}P^n; \mathbb{Q})$ and the element $e \in H^n(\mathbb{R}P^n; \Gamma_{\mathbb{R}P^n})$ is a generator. It follows that, given maps $f_1, \ldots, f_k : X \to \mathbb{R}P^n$, the Lefschetz class is given by

$$L(f_1, \dots, f_k) = L(f_1, f_2) \smile L(f_1, f_3) \smile \dots \smile L(f_1, f_k)$$

$$= f_2^*(e) \smile \dots \smile f_k^*(e)$$

$$= (f_2, \dots, f_k)^*(e \times \dots \times e).$$
(5.1)

The above formula does not depend on f_1 . Consider the particular case where $X = \mathbb{R}P^n$, $f_1 : \mathbb{R}P^n \to \mathbb{R}P^n$ is an arbitrary self-map and f_2 is the identity map. Then we obtain the well-known fact that $\mathbb{R}P^n$ has the fixed point property if n is even, since $L(f_1, \mathrm{id}) = \mathrm{id}^*(e) = e \neq 0$.

A map $f: M \to N$ between manifolds is called *orientation true* if each $\alpha \in \pi_1(M)$ preserves local orientation of M if and only if $f\alpha \in \pi_1(N)$ preserves local orientation of N. If dim $M = \dim N$, then the *degree* of f is defined as being the natural number k satisfying $f_*(z_M) = k \cdot z_N$.

If X is a closed connected manifold of dimension n(k-1) and f_2, \ldots, f_k are orientation true, it is well defined the degree of

$$(f_2,\ldots,f_k):X\to (\mathbb{R}P^n)^{k-1}.$$

From (5.1), $L(f_1, ..., f_k) \neq 0$ if and only if $\deg(f_2, ..., f_k) \neq 0$.

Theorem 5.3. Let X be a closed connected manifold of dimension n(k-1) and $f_1, \ldots, f_k : X \to \mathbb{R}P^n$ orientation true. If, for some $1 \le i \le k$, $\deg(\hat{f}_i) \ne 0$, then there is $x \in X$ such that $f_1(x) = f_2(x) = \cdots = f_k(x)$, where \hat{f}_i denotes the map $(f_1, \ldots, f_{i-1}, f_{i+1}, \ldots, f_k) : X \to (\mathbb{R}P^n)^{k-1}$.

Proof. Suppose $i \in \{1, ..., k\}$ such that $\deg(\hat{f}_i) \neq 0$, where

$$\hat{f}_i = (f_1, \dots, f_{i-1}, f_{i+1}, \dots, f_k) : X \to (\mathbb{R}P^n)^{k-1}$$

From (5.1),

$$L(f_i, f_1, f_2, \dots, f_{i-1}, f_{i+1}, \dots, f_k) = (f_1, \dots, f_{i-1}, f_{i+1}, \dots, f_k)^* (e \times \dots \times e).$$

Since $deg(\hat{f}_i) \neq 0$, $L(f_i, f_1, f_2, \dots, f_{i-1}, f_{i+1}, \dots, f_k) \neq 0$. Therefore, by Theorem 4.1, there is $x \in X$ such that $f_i(x) = f_1(x) = \dots = f_k(x)$.

Lemma 5.4 (See [3, Lemma 4.11]). If $p: \tilde{M} \to M$ is a k-fold covering, then $\deg(p) = k$.

Example 5.5. Consider the maps $c, f, g: S^2 \times S^2 \to \mathbb{R}P^2$, where c is a constant map, $f(x,y) = \{x, -x\}$ and $g(x,y) = \{y, -y\}$. Then,

$$(f,g): S^2 \times S^2 \to \mathbb{R}P^2 \times \mathbb{R}P^2$$

is a 4-fold covering. It follows from Lemma 5.4 that $\deg(f,g)=4$. Therefore, by the above theorem, the Lefschetz class L(c,f,g) is nontrivial. On the other hand, considering (co)-homology with coefficients in \mathbb{Z}_2 we have

$$L(c, f, g; \mathbb{Z}_2) = \deg_2(f, g) = 0.$$

Here, \deg_2 denotes the degree that we obtain when we consider homology with coefficients in \mathbb{Z}_2 .

Acknowledgments

The first author was supported by FAPESP of Brazil Grant no. 2013/07936-1 and 2012/03316-6.

We are grateful to the referee for helpful suggestions and comments.

References

- C. Biasi, A. K. M. Libardi and T. F. M. Monis, The Lefschetz coincidence class of p maps. Forum Math. 27 (2015), 1717–1728.
- [2] G. E. Bredon, Sheaf Theory. 2nd ed., Springer-Verlag, New York, 1997.
- [3] D. L. Gonçalves and J. Jezierski, Lefschetz coincidence formula on non-orientable manifolds. Fund. Math. 153 (1997), 1–23.
- [4] M. J. Greenberg and J. R. Harper, Algebraic Topology. A first Course. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1981.
- [5] E. Spanier, Algebraic Topology. McGraw-Hill, New York, 1966.
- [6] E. Spanier, *Duality in topological manifolds*. In: Colloque de Topologie Tenu à Bruxelles (Brussels, 1964), Librairie Universitaire, Louvain, 1966, 91–111.
- [7] E. Spanier, Singular homology and cohomology with local coefficients and duality for manifolds. Pacific J. Math. 160 (1993), 165–200.
- [8] J. W. Vick, Homology Theory. An Introduction to Algebraic Topology. 2nd ed., Springer-Verlag, New York, 1994.
- [9] G. Whitehead, Elements of Homotopy Theory. Springer-Verlag, New York, 1978.

Thaís F. M. Monis
Department of Mathematics
IGCE, UNESP - Universidade Estadual Paulista
Av. 24-A no. 1515
13506-900 Rio Claro/SP
Brazil
e-mail: tfmonis@rc.unesp.br

Stanisław Spież Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8 00-656 Warsaw Poland

e-mail: spiez@impan.pl