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Abstract. The aim of this paper is to define a Lefschetz coincidence
class for several maps. More specifically, for maps f1, . . . , fk : X → N
from a topological space X into a connected closed n-manifold (even
nonorientable) N , a cohomological class

L(f1, . . . , fk) ∈ Hn(k−1)(X; (f1, . . . , fk)
∗(R× Γ∗

N × · · · × Γ∗
N )

)

is defined in such a way that L(f1, . . . , fk) ̸= 0 implies that the set of
coincidences

Coin(f1, . . . , fk) = {x ∈ X | f1(x) = · · · = fk(x)}

is nonempty.
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1. Introduction

In [1], a Lefschetz coincidence class is defined for continuous functions,

f1, . . . , fk : X → N,

from a topological space into a closed connected oriented n-manifold, where
k ≥ 2. Such class, L(f1, . . . , fk), lives in Hn(k−1)(X;Z) and if L(f1, . . . , fk) ̸=
0, then there is x ∈ X such that f1(x) = f2(x) = · · · = fk(x). Accurately,

L(f1, . . . , fk)
= (f1, f2)

∗(j∗(µ)) ⌣ (f2, f3)
∗(j∗(µ)) ⌣ · · · ⌣ (fk−1, fk)

∗(j∗(µ)),

where µ ∈ Hn(N ×N,N ×N \∆;Z) is the Thom class of the oriented man-
ifold N and j : N × N �→ (N × N,N × N \ ∆) is the inclusion. In [3], the
authors considered a Lefschetz coincidence number for maps f1, f2 : M → N
between closed manifolds of the same dimension, not necessarily orientable,
using twisted coefficients and assuming f2 orientation true, that is, a loop α
in M preserves local orientation if and only if the loop f2 ◦ α preserves local
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orientation. In this work, using twisted coefficients, we present an exten-
sion of the definition of L(f1, . . . , fk) given in [1] to the case where N is
nonorientable. In order to construct our Lefschetz class, which we denote by
L(f1, . . . , fk), we consider the composition

X
(f1,...,fk)

�� Nk i �� (Nk, Nk \∆k(N)),

where

∆k(N) =
{
(x, . . . , x) ∈ Nk | x ∈ N

}

is the diagonal in Nk and

i : Nk → (Nk, Nk \∆k(N))

is the inclusion. Let ξk(N) be the fiber bundle pair given by

(Nk, Nk \∆k(N))
π1−−−→ N,

where π1 is the projection onto the first factor of Nk. Thus, the fiber over
x ∈ N is

Fx = {x} ×
(
Nk−1, Nk−1 \ {x}k−1

)
.

In [6] it was proved that ξ2(N) has a unique Thom class

µ ∈ Hn
(
N ×N,N ×N \∆(N);R× Γ∗

N

)
,

where R is a principal ideal domain and ΓN is the orientation system (over R)
of N . Similarly, one can prove that ξk(N) has a unique Thom class

µk ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

for each k ≥ 2. We define

L(f1, . . . , fk) := (f1, . . . , fk)
∗(i∗(µk))

which is an element of Hn(k−1)(X; (f1, . . . , fk)
∗(R × Γ∗

N × · · · × Γ∗
N )). In

Section 4 we prove that the above class is given by the cup product

L(f1, . . . , fk) = L(f1, f2) ⌣ L(f1, f3) ⌣ · · · ⌣ L(f1, fk).

We also show that whenever N is R-oriented, our definition coincides with
that found in [1]. In Section 5 we focus on the case where N is the real
projective n-space, n even. We prove that, in such case, L(f1, f2, . . . , fk) does
not depend on f1.

For products in cohomology, we are following [5].

2. System of orientation

Throughout this paper, R denotes a principal ideal domain.
An n-manifold means a paracompact Hausdorff space having an open

covering of coordinate neighborhoods each homeomorphic to Rn.
For definitions of local system and of the homology and cohomology

with coefficients in a local system see [6] or [9].
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Given a local system Γ on a topological space X, we denote by Γ∗ the
local system Hom(Γ, R) on X. Given a local system Γ on X and a local
system Γ′ on Y , we denote by Γ× Γ′ the local system on X × Y defined by

(Γ× Γ′)(x, y) = Γ(x)⊗ Γ(y)

for (x, y) ∈ X × Y and

(Γ× Γ′)(ω1, ω2) = Γ(ω1)⊗ Γ′(ω2)

for a path (ω1, ω2) in X × Y .

Let N be an n-manifold. A small cell of N is defined to be a sub-
set C having an open neighborhood V such that (V,C) is homeomorphic to
(Rn, En), where En = {z ∈ Rn | ∥z∥ ≤ 1}.

For our purposes, we will consider ΓN the orientation system (over R)
of N . In such system, for each x ∈ N , ΓN (x) = Hn(N,N \ x;R) and if ω
is a path in N , the definition of ΓN (ω) is given by the following: Let {C}
be a family of small cells of N whose interiors cover N and such that if
C,C ′ ∈ {C} and C ∩ C ′ ̸= ∅, then C ∪ C ′ is contained in some small cell
of N . Given a path ω : I → N , let 0 = t0 < t1 < · · · < tm = 1 be points of I
such that for 1 ≤ i ≤ m there is some Ci ∈ {C} with ω([ti−1, ti]) ⊂ Ci. Then
the composite isomorphism

Hn(N,N \ ω(0);R)
≈−→ Hn(N,N \ C1;R)

≈←− Hn(N,N \ ω(t1);R)

≈−→ · · · ≈−→ Hn(N,N \ Cm;R)
≈←− Hn(N,N \ ω(1);R)

is independent of the choice of the points {ti} and the collection {C} and
is defined to be ΓN (ω). When R = Z we will use the notation ON instead
of ΓN .

Another way to define ΓN (ω) is the following.

Lemma 2.1. Let ω : [0, 1] → N be a path and F : N × I → N an isotopy such
that F (x, 0) = x for all x ∈ N and F (ω(0), t) = ω(t) for all t ∈ [0, 1]. Then
ΓN (ω) = (F ( · , 1)∗)−1.

Proof. Let C be a small cell in N such that ω(0) ∈ intC. We can find a
partition

0 = s0 < s1 < · · · < sK = 1

of [0, 1] such that for all k ∈ {0, 1, . . . ,K − 1} we have

(a) ω([sk, sk+1]) ⊂ Ck := F (C, sk),
(b) ω(sk+1) ∈ F (C, t) for each t ∈ [sk, sk+1].

For each s ∈ [0, 1], let Gs : N × [0, 1] → N be the isotopy defined by

Gs(x, t) = F (F−1
s (x), t),

where Fs : N → N is the homeomorphism given by Fs(x) = F (x, s). We have

(c) Gs(x, s) = x for all x ∈ N ,
(d) Gs(Fs(x), t) = F (x, t) for all (x, t) ∈ N × [0, 1].
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For each k ∈ {0, 1, . . . ,K − 1}, from (b) it follows that Gsk defines a
homotopy

(N,N \ Ck)× [sk, sk+1] → (N,N \ ω(sk+1)).

Note that this homotopy connects the maps iksk+1
and Gsk( · , sk+1) ◦ iksk ,

where
Gsk( · , sk+1) : (N,N \ ω(sk)) → (N,N \ ω(sk+1)),

and iksk : (N,N \Ck) �→ (N,N \ω(sk)), iksk+1
: (N,N \Ck) �→ (N,N \ω(sk+1))

are the inclusions. Hence,
(
Gsk( · , sk+1)

∗)−1
=

(
(iksk+1

)∗
)−1 ◦

(
iksk

)∗
.

Thus

ΓN (ω) =

[((
iK−1
sK

)∗)−1

◦
(
iK−1
sK−1

)∗
]
◦ · · · ◦

[((
i0s1

)∗)−1

◦
(
i0s0

)∗]

=
(
GsK−1( · , sK)

∗)−1 ◦ · · · ◦
(
Gs0( · , s1)∗

)−1

=
(
Gs0( · , s1)∗ ◦ · · · ◦GsK−1( · , sK)

∗)−1

=
(
(GsK−1( · , sK) ◦ · · · ◦Gs0( · , s1))∗

)−1
.

Now, note that

GsK−1( · , sK) ◦ · · · ◦Gs0( · , s1) = F ( · , sK) = F ( · , 1).
Therefore,

ΓN (ω) = (F ( · , 1)∗)−1. �

The next lemma shows the existence of an isotopy such that F (x, 0) = x
for all x ∈ N and F (ω(0), t) = ω(t). Its statement and proof are adaptations
of [8, Lemma 6.4, p. 150].

Lemma 2.2. Let ω : I → N be a path in N . Then, there is an isotopy
F : N × I → N such that F (x, 0) = x for all x ∈ N and F (ω(0), t) = ω(t)
for all t ∈ I.

Proof. First, consider the case where ω(I) is contained in a euclidean neigh-
borhood U . Let h : U → En\Sn−1 be a homeomorphism. Let g : En\Sn−1 →
Rn be the homeomorphism given by

g(z) =
z

1− |z|
,

whose inverse map is given by

g−1(y) =
y

1 + |y|
.

Let β : I → Rn be the path β(t) = g(h(ω(t))) between g(h(ω(0))) and
g(h(ω(1))). Let F : Rn × I → Rn be the homotopy given by

F (y, t) = ft(y) := β(t) + y − g(h(ω(0)))

Note that F is an isotopy between the identity map and the translation

y �→ y + (g(h(ω(1)))− g(h(ω(0)))).
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Thus, for each t ∈ I we have a homeomorphism

g−1 ◦ ft ◦ g : En \ Sn−1 → En \ Sn−1

with g−1◦f0◦g = id and g−1◦ft◦g(h(ω(0))) = h(ω(t)). Note that, for each t,
the homeomorphism g−1 ◦ ft ◦ g : En \ Sn−1 → En \ Sn−1 can be extended
to a homeomorphism from En over En defining such extension as being the
identity map over the boundary. Now, define the isotopy ht : N → N by

ht(x) =

{
x if x ∈ N \ U,
h−1 ◦ g−1 ◦ ft ◦ g(x) if x ∈ U.

Such isotopy ht satisfies the required conditions.
Now, consider ω(I) covered by the euclidean neighborhoods U1, . . . , Uk

and let 0 = t0 < t1 < · · · < tk = 1 be a partition of the interval I such that
ω([ti−1, ti]) ⊂ Ui for i = 1, . . . , k. Suppose, by induction, that it is defined an
isotopy F : N × [0, tk−1] → N such that

F (x, 0) = x for all x ∈ N,

F (ω(0), t) = ω(t) for all t ∈ [0, tk−1],

F (x, t) = x if x ̸∈ U1 ∪ · · · ∪ Uk−1.

From the previous step, there is an isotopy H : N × [tk−1, 1] → N with

H(x, tk−1) = x for all x ∈ N,

H(ω(tk−1), t) = ω(t) for all t ∈ [tk−1, 1],

H(x, t) = x if x ̸∈ Uk.

Define G : N × I → N by

G(x, t) =

{
F (x, t) if t ∈ [0, tk−1],

H(F (x, tk−1), t) if t ∈ [tk−1, 1].

The map G is an isotopy such that

G(x, 0) = x for all x ∈ N,

G(ω(0), t) = ω(t) for all t ∈ I,

and if x ̸∈ U1 ∪ · · · ∪ Uk−1 ∪ Uk, then G(x, t) = x. �

For any x ∈ N there is the canonical generator zx,N of Hn(N,N \x; ΓN )
(cf. [3, p. 5]) induced by the relative cycle gσσ defined by

(a) σ : ∆n → N is an embedding with x = σ(p), p ∈ int∆n,
(b) gσ ∈ ΓN (σ) is the section such that gσ(p) is the generator of

ΓN (x) = Hn(N,N \ x;R)

induced by the relative singular cocycle dual to the relative singular
cycle 1σ, where 1 ∈ R.

(Here, we use the description of singular homology with local coefficients
given in [7].) Note that zx,N does not depend on the choice of σ.
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Lemma 2.3 (See [3, Lemma 3.1]). For any compact set A ⊂ N there exists a
unique element zA,N ∈ Hn(N,N \A; ΓN ) such that for any x ∈ A the natural
homomorphism Hn(N,N \A; ΓN ) → Hn(N,N \ x; ΓN ) sends zA,N to zx,N .

Corollary 2.4 (Existence of fundamental class). If N is compact, then there
is a unique element zN ∈ Hn(N ; ΓN ), called fundamental class, such that
for any x ∈ N the natural homomorphism Hn(N ; ΓN ) → Hn(N,N \ x; ΓN )
sends zN to zx,N .

Let RN be an arbitrary local coefficient system over a closed n-manifold
N with typical group R. Then the cap product with the fundamental class zN
give us the Poincaré duality

Hj(N ;RN )
≃−−→ Hn−j(N ;ON ⊗RN ) (2.1)

(see [6, Theorem 6.1, p. 107] or [2, Theorem 9.3, p. 330]).
Let us consider the fiber bundle pair ξk(N) given by

(Nk, Nk \∆k(N))
π1−−−→ N,

where π1 is the projection onto the first factor of Nk,

∆k(N) = {(x1, . . . , xk) ∈ Nk | x1 = · · · = xk}
is the kth diagonal of Nk and the fiber over x ∈ N is

Fx = {x} ×
(
Nk−1, Nk−1 \ {x}k−1

)
.

A Thom class of the bundle ξk(N) is an element

µ ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

such that for all x ∈ N , the restriction

µ|Fx ∈ Hn(k−1)
(
Fx;R× Γ∗

N × · · · × Γ∗
N

)

is dual to the generator zxk−1,Nk−1 ∈ Hn(k−1)(N
k−1, Nk−1 \ {x}k−1; ΓNk−1),

that is,
µ|Fx/ (zxk−1,Nk−1) = 1 ∈ H0(x;R)

for all x ∈ N , where / denotes the slant product.
In [6] it was proved that ξ2(N) has a unique Thom class. Similarly, one

can prove that ξk(N) has a unique Thom class for all k ≥ 2.

3. Properties of the Thom class of ξk(N)

The fiber bundle pair ξk(N) is said to be orientable over R if there exists an
element

U ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R

)
such that for all x ∈ N , the restriction

U |{x} ×
(
Nk−1, Nk−1 \ {x}k−1

)

is a generator ofHn(k−1)({x}×(Nk−1, Nk−1\{x}k−1);R). Such a cohomology
class U is called an orientation of ξk(N) over R. For R = Z we simply say
that ξk(N) is orientable instead of orientable over Z.
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Let ω : I → N be a path. For each x ∈ N , let

Fx = {x} ×
(
Nk−1, Nk−1 \ {x}k−1

)

be the fiber of ξk(N) over x. There is a map

G : Fω(0) × I → (Nk, Nk −∆k(N))

such that π1(G(x, t)) = ω(t) and G(x, 0) = x for x ∈ ω(0)×Nk−1 and t ∈ I.
Indeed, we can consider an isotopy F : N × I → N as in Lemma 2.2 and we
define

G
(
ω(0), x2, . . . , xk, t

)
=

(
F (ω(0), t), F (x2, t), . . . , F (xk, t)

)
.

Let us consider the map

g := G( · , 1) : Fω(0) → Fω(1).

Let [g] ∈ [Fω(0), Fω(1)] be the homotopy class of g. The association of the
path class [ω] with the homotopy class [g] is a well-defined correspondence
(see [5, Theorem 12, p. 101]). Let hk[ω] = [g] and let hk[ω]∗ denote the homo-
morphism g∗ induced by g, from Hn(k−1)(Fω(1);R) into Hn(k−1)(Fω(0);R).
From [5], we have the following theorem.

Theorem 3.1 (cf. [5, Theorem 19, p. 263]). The fiber bundle pair ξk(N) is
orientable over R if and only if

hk[ω]∗ : Hn(k−1)(Fω(0);R) → Hn(k−1)(Fω(0);R)

is the identity homomorphism for every closed path ω in N .

Remark 3.2. A connected n-manifold X is said to be orientable (over R) if
there exists an element U ∈ Hn(X ×X,X ×X \∆(X);R) such that for all
x ∈ X, U |{x} × (X,X \ x) is a generator of Hn({x} × (X,X \ x)). Such
a cohomology class U is called an orientation of X (see [5, p. 294]). Thus,
saying the manifold X is orientable (over R) is the same as saying the fiber
bundle pair ξ2(X) is orientable (over R). Moreover, X is orientable (over R)
if and only if the orientation system ΓN (over R) is constant.

Now, we are able to prove the following theorem.

Theorem 3.3. The fiber bundle pair ξk(N) satisfies the following conditions:

(a) for k odd, ξk(N) is orientable (over arbitrary R);
(b) for k even, ξk(N) is orientable (over R) if and only if N is orientable

(over R).

Proof. Following Theorem 3.1, we need to analyze the homomorphisms

hk[ω]∗ : Hn(k−1)(Fω(0);R) → Hn(k−1)(Fω(0);R)

for every closed path ω : I → N .
For each x ∈ N , the fiber of ξk(N) over x is given by

Fx = {x} ×
(
Nk−1, Nk−1 \ {x}k−1

)

= {x} × (N,N \ x)× (N,N \ x)× · · · × (N,N \ x)� �� �
(k − 1) times

.
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By the Kunneth formula,

Hn(k−1)(Fx;R) = H0(x;R)⊗Hn(N,N \ x;R)⊗ · · · ⊗Hn(N,N \ x;R)� �� �
(k−1) times

.

With this, we can see that, for each path ω : I → N ,

hk[ω]∗ = id⊗F ( · , 1)∗ ⊗ · · · ⊗ F ( · , 1)∗� �� �
(k−1) times

= id⊗ΓN (ω)−1 ⊗ · · · ⊗ ΓN (ω)−1

� �� �
(k−1) times

.

Since

hk[ω]∗ = id⊗ΓN (ω)−1 ⊗ · · · ⊗ ΓN (ω)−1

� �� �
(k−1) times

and ΓN (ω) = ± id, for k odd, hk[ω]∗ is always the identity homomorphism.
Therefore, for k odd, ξk(N) is orientable (over arbitrary R).

If N is orientable over R, then ΓN (ω) is the identity homomorphism for
every closed path ω in N . It follows that hk[ω]∗ is the identity homomorphism
for every closed path ω in N . Therefore, if N is orientable over R, then ξk(N)
is orientable over R for arbitrary k.

If N is nonorientable over R, then there is a closed path ω in N such
that ΓN (ω) = − id. It follows that for k even, hk[ω]∗ = − id. Therefore,
if N is nonorientable over R, then ξk(N) is nonorientable over R for every k
even. �

Lemma 3.4. Let N be a compact manifold. Then there exists a neighborhood V
of ∆k(N) in Nk such that the projections π1 |V, . . . , πk|V : V → N are
homotopic relatively to ∆k(N).

Proof. The proof is analogous to that of [8, Lemma 6.15, p. 164]. �

Theorem 3.5. Let N be a closed n-manifold and suppose that ξk(N) is ori-
entable over R. Let

U ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R

)

be an orientation. Then, there is an isomorphism between

Hn(k−1)
(
Nk, Nk \∆k(N);R

)

and

Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

which maps U onto the Thom class

µ ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

of ξk(N).
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Proof. We will show that restriction of Γ := R×Γ∗
N ×· · ·×Γ∗

N to a neighbor-
hood of ∆k(N) is a constant system. We can suppose N connected. Let V
be a neighborhood (connected) of ∆k(N) in Nk such that the projections
π1 |V, . . . , πk|V : V → N are homotopic relatively to ∆k(N). By excision, we
have the isomorphism

Hn(k−1)
(
Nk, Nk \∆k(N); Γ

) ≈−−→ Hn(k−1)
(
V, V \∆k(N); Γ|V

)
.

In order to know the behavior of the local system Γ on V , we just need to know
the action of the fundamental group π1(V ; (x1, . . . , xk)) over R with respect
to such local system for a point (x1, . . . , xk) ∈ V (see [9, Theorems 1.11 and
1.12, p. 263]. Thus, let us consider a point (x, . . . , x) ∈ ∆k(N) ⊂ V . By
Lemma 3.4, each closed path α in V with base point in ∆k(N) is homotopic,
relatively to the end points, to a closed path in ∆k(N). Let α = (β, . . . , β)
be a closed path based on (x, . . . , x). Since ξk(N) is orientable over R, by
Theorem 3.1, hk[β]∗ = id. Moreover, in the proof of Theorem 3.3, we saw
that

hk[β]∗ = id⊗ΓN (β)−1 ⊗ · · · ⊗ ΓN (β)−1

� �� �
(k−1) times

.

On the other hand, by definition,

Γ(α) = id⊗Γ∗
N (β)⊗ · · · ⊗ Γ∗

N (β)� �� �
(k−1) times

.

Since ΓN (β) = ± id and Γ∗
N (β) = Hom(ΓN (β), R), it follows that Γ(α) is the

identity isomorphism.

We conclude that the action of the fundamental group π1(V ; (x, . . . , x))
over R with respect to the local system Γ is trivial. Hence, there is an isomor-
phism between

Hn(k−1)(V, V \∆k(N); Γ|V )

and

Hn(k−1)(V, V \∆k(N);R).

It follows that there is an isomorphism between

Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

and

Hn(k−1)
(
Nk, Nk \∆k(N);R

)
,

and we can take such isomorphism sending the Thom class µ of the bundle
ξk(N) onto the element U . �

Corollary 3.6. If k is odd, then Hn(k−1)(Nk, Nk \∆k(N);R×Γ∗
N ×· · ·×Γ∗

N )

is isomorphic to Hn(k−1)(Nk, Nk \∆k(N);R).

Proof. It is an immediate consequence of Theorems 3.5 and 3.3. �
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Let k, l ≥ 2 and let

e :
(
Nk+l−1, Nk+l−1 \∆k+l−1(N)

)
→

(
Nk, Nk \∆k(N)

)
×
(
N l, N l \∆l(N)

)

be the map defined by

e(x1, . . . , xk+l−1) =
(
(x1, . . . , xk), (x1, xk+1, . . . , xk+l−1)

)
.

Note that the local system

e∗

(
(R× Γ∗

N × · · · × Γ∗
N� �� �

(k−1) times

)× (R× Γ∗
N × · · · × Γ∗

N� �� �
(l−1) times

)

)

is isomorphic to the local system

R× Γ∗
N × · · · × Γ∗

N� �� �
(k+l−2) times

over (Nk+l−1, Nk+l−1 \∆k+l−1). We have the following result.

Proposition 3.7. If µk ∈ Hn(k−1)(Nk, Nk \∆k(N);R×Γ∗
N × · · ·×Γ∗

N ) is the

Thom class of ξk(N) and µl ∈ Hn(l−1)(N l, N l \∆l(N);R × Γ∗
N × · · · × Γ∗

N )
is the Thom class of ξl(N), then

e∗(µk × µl) ∈ Hn(k+l−2)
(
Nk+l−1, Nk+l−1 \∆k+l−1(N);R× Γ∗

N × · · · × Γ∗
N

)

is the Thom class of ξk+l−1(N).

Proof. Let x1 ∈ N be arbitrary. We need to show that the image of e∗(µk×µl)
in Hn(k+l−2)(x1 × (Nk+l−2, Nk+l−2 \ {x1}k+l−2);R×Γ∗

N × · · · ×Γ∗
N ) is dual

to zk+l−2. In order to show that, consider the homeomorphism between

x1 ×
(
Nk+l−2, Nk+l−2 \ {x1}k+l−2

)

and (
x1 ×

(
Nk−1, Nk−1 \ {x1}k−1

))
×
(
x1 ×

(
N l−1, N l−1 \ {x1}l−1

))

given by

(x1, x2, . . . , xk+l−1) �→
(
(x1, . . . , xk), (x1, xk+1, . . . , xk+l−1)

)
.

Then, the result follows from the commutativity of the diagram
(
Nk+l−1, Nk+l−1 \∆k+l−1

) e ��
(
Nk, Nk \∆k

)
×

(
N l, N l \∆l

)

(
Nk1 , Nk1 \ {x1}k1

)

��

��
(
Nk2 , Nk2 \ {x1}k2

)
×

(
Nk3 , Nk3 \ {x1}k3

)

��

where k1 = k + l − 2, k2 = k − 1 and k3 = l − 1, and the vertical arrows are
the inclusions. �

Corollary 3.8. Let

e′ :
(
Nk, Nk \∆k(N)

)
→ (N2, N2 \∆2(N))× · · · × (N2, N2 \∆2(N))� �� �

(k−1) times
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be defined by

e′(x1, . . . , xk) =
(
(x1, x2), (x1, x3), . . . , (x1, xk)

)
.

If µ ∈ Hn(N2, N2 \ ∆(N);R × Γ∗
N ) is the Thom class of ξ2(N), then

e′∗(µ× · · · ×µ) ∈ Hn(k−1)(Nk, Nk \∆k(N);R×Γ∗
N × · · · ×Γ∗

N ) is the Thom
class of ξk(N).

4. The Lefschetz coincidence class

Let N be a closed connected manifold of dimension n. Let

µk ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

be the Thom class of ξk(N). Then, given k maps f1, . . . , fk : X → N from
a topological space X into the manifold N , the Lefschetz coincidence class
L(f1, . . . , fk) is defined by

L(f1, . . . , fk) = (f1, . . . , fk)
∗(i∗(µk)),

where i : Nk → (Nk, Nk \∆k(N)) is the inclusion. Thus, L(f1, . . . , fk) is an
element of

Hn(k−1)
(
X; (f1, . . . , fk)

∗(R× Γ∗
N × · · · × Γ∗

N )
)
.

Theorem 4.1. If L(f1, . . . , fk) ̸= 0, then the set of coincidences

Coin(f1, f2, . . . , fk) = {x ∈ X | f1(x) = f2(x) = · · · = fk(x)}
is nonempty.

Proof. If there is no x ∈ X such that f1(x) = · · · = fk(x), then we have the
factorization

X

��

(f1,...,fk)
�� Nk i ��

(
Nk, Nk \∆k(N)

)

Nk \∆k(N) ��
(
Nk \∆k(N), Nk \∆k(N)

)

��

which implies L(f1, . . . , fk) = 0. �

In Corollary 3.8 we proved that if

e′ : (Nk, Nk \∆k(N)) → (N2, N2 \∆2(N))× · · · × (N2, N2 \∆2(N))� �� �
(k−1) times

is the map defined by

e′(x1, . . . , xk) =
(
(x1, x2), (x1, x3), . . . , (x1, xk)

)

and µ ∈ Hn(N2, N2 \∆(N);R× Γ∗
N ) is the Thom class of ξ2(N), then

e′∗(µ× · · · × µ) ∈ Hn(k−1)
(
Nk, Nk \∆k(N);R× Γ∗

N × · · · × Γ∗
N

)

is the Thom class of ξk(N).
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Now, denote by j : N2 → (N2, N2 \∆2(N)) the inclusion and consider
the map

h : X → N2 × · · · ×N2

� �� �
(k−1) times

,

where

h =
(
(f1, f2), (f1, f3), . . . , (f1, fk)

)
.

We have that

e′ ◦ i ◦ (f1, . . . , fk) = (j × · · · × j� �� �
(k−1) times

) ◦ h.

Thus

L(f1, . . . , fk) = (f1, . . . , fk)
∗(i∗(µk))

= (f1, . . . , fk)
∗(i∗(e′∗(µ× · · · × µ)

))

=
(
(f1, f2), (f1, f3), . . . , (f1, fk)

)∗(
(j × · · · × j)∗(µ× · · · × µ)

)

= (f1, f2)
∗(j∗(µ)) ⌣ (f1, f3)

∗(j∗(µ)) ⌣ · · · ⌣ (f1, fk)
∗(j∗(µ))

= L(f1, f2) ⌣ L(f1, f3) ⌣ · · · ⌣ L(f1, fk).

Theorem 4.2. L(f1, . . . , fk) = L(f1, f2) ⌣ L(f1, f3) ⌣ · · · ⌣ L(f1, fk).

Theorem 4.2 tells us that the Lefschetz class is almost symmetric, in
the following sense.

Corollary 4.3. For each permutation σ ∈ Sk satisfying σ(1) = 1,

L(f1, f2, . . . , fk) = sign(σ)nL
(
f1, fσ(2), . . . , fσ(k)

)
.

Remark 4.4. The R-oriented case presents a stronger form of symmetricity.
Namely, for each permutation σ ∈ Sk,

L(f1, . . . , fk) = ±L
(
fσ(1), . . . , fσ(k)

)
.

Indeed, analogously to [8, Lemma 5.16], if

tσ : (Nk, Nk \∆k(N)) → (Nk, Nk \∆k(N))

is the map defined by

tσ(x1, . . . , xk) =
(
xσ(1), . . . , xσ(k)

)
,

then for any orientation U of ξk(N), t∗(U) = U if the permutation σ is even,
and t∗(U) = (−1)nU otherwise. Since

tσ ◦ i ◦ (f1, . . . , fk) = i ◦
(
fσ(1), . . . , fσ(k)

)
,
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it follows that

L(f1, . . . , fk) =

{
L(fσ(1), . . . , fσ(k)) if σ is even,

(−1)nL(fσ(1), . . . , fσ(k)) if σ is odd.

Remark 4.5. In [1] a Lefschetz class is defined as follows. First of all, it is re-
quested that the closed connected manifold N be R-orientable, i.e., orientable
over R. Then, denoting by U ∈ Hn(N2, N2 \∆;R) the orientation class (also
called Thom class), the Lefschetz class of the given maps f1, . . . , fk : X → N
is defined by

L(f1, . . . , fk)
= ((f1, f2), . . . , (fk−1, fk))

∗(j∗(U)× · · · × j∗(U))

= (f1, f2)
∗(j∗(U)) ⌣ (f2, f3)

∗(j∗(U)) ⌣ · · · ⌣ (fk−1, fk)
∗(j∗(U))

= L(f1, f2) ⌣ L(f2, f3) ⌣ · · · ⌣ L(fk−1, fk) ∈ Hn·(k−1)(X;R),

where j : N2 → (N2, N2 \∆) is the inclusion.
We observe that the formula presented in Theorem 4.2 is slightly differ-

ent than the formula established in [1]. Despite such difference, we shall show,
by induction on the number of maps, that in R-oriented case our definition
coincides with the class defined in [1]. For two maps the result is obvious. Sup-
pose that the statement is true for k maps. Then, applying Theorem 4.2, the
symmetricity of the Lefschetz class in the R-oriented case and the induction
hypothesis, we have

L(f1, f2 . . . , fk−1, fk, fk+1) = (−1)nL(fk, f2, . . . , fk−1, f1, fk+1)

= (−1)nL(fk, f2, . . . , fk−1, f1) ⌣ L(fk, fk+1)

= L(f1, f2, . . . , fk−1, fk) ⌣ L(fk, fk+1)

= L(f1, f2, . . . , fk−1, fk) ⌣ L(fk, fk+1)

= L(f1, f2 . . . , fk−1, fk, fk+1).

5. Examples

Let us now consider the case where R is a field. Let yi ∈ H∗(N,R) and
y′i ∈ H∗(N ; ΓN ) be bases such that ⟨y′i, D(yi)⟩ = 1, where

D : Hj(N ;R) → Hn−j(N ; ΓN )

denotes the Poincaré isomorphism. Then we have the following result.

Proposition 5.1. With the above notation, the image of the Thom class µ of
ξ2(N) is given by

j∗(µ) =
∑
i

(−1)|yi| yi × y′i,

where |yi| denotes the dimension of yi, i.e., yi ∈ H |yi|(N ;R).

Proof. The proof is analogous to that of [4, Proposition 30.18, p. 288]. �
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Example 5.2. Consider N = RP 2 the projective plane and R = Q. Then

H0(RP 2;Q) = Q,

Hq(RP 2;Q) = 0 for q > 0,

H2(RP 2; ΓRP 2) = H0(RP 2;Q) = Q,

Hq(RP 2; ΓRP 2) = H2−q(RP 2;Q) = 0 for q ̸= 2.

Thus,

j∗(µ) = 1× e,

where the element 1 ∈ H0(RP 2;Q) is the identity of the ring H∗(RP 2;Q)
and the element e ∈ H2(RP 2; ΓRP 2) is a generator.

It follows that, given maps f1, f2 : X → RP 2, the Lefschetz class is
given by

L(f1, f2) = (f1, f2)
∗(1× e) = f∗

1 (1) ⌣ f∗
2 (e) = f∗

2 (e).

This shows that, in general,

L(f1, f2; ΓRP 2) ̸= ±L(f2, f1; ΓRP 2).

In view of Example 5.2, below we will discuss the general case where
the target space is the projective space RPn, n even.

5.1. The Lefschetz class for the target space RPn, n even

Consider the projective space RPn, where n is an even number. As in Exam-
ple 5.2,

H0(RPn;Q) = Q,

Hq(RPn;Q) = 0 for q > 0,

Hn(RPn; ΓRPn) = H0(RPn;Q) = Q,

Hq(RPn; ΓRPn) = Hn−q(RPn;Q) = 0 for q ̸= n.

Thus, the Thom class µ of RPn is given by

j∗(µ) = 1× e,

where the element 1 ∈ H0(RPn;Q) is the identity of the ring H∗(RPn;Q)
and the element e ∈ Hn(RPn; ΓRPn) is a generator. It follows that, given
maps f1, . . . , fk : X → RPn, the Lefschetz class is given by

L(f1, . . . , fk) = L(f1, f2) ⌣ L(f1, f3) ⌣ · · · ⌣ L(f1, fk)

= f∗
2 (e) ⌣ · · · ⌣ f∗

k (e)

= (f2, . . . , fk)
∗(e× · · · × e).

(5.1)

The above formula does not depend on f1. Consider the particular case
where X = RPn, f1 : RPn → RPn is an arbitrary self-map and f2 is the
identity map. Then we obtain the well-known fact that RPn has the fixed
point property if n is even, since L(f1, id) = id∗(e) = e ̸= 0.
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A map f : M → N between manifolds is called orientation true if each
α ∈ π1(M) preserves local orientation of M if and only if fα ∈ π1(N) pre-
serves local orientation of N . If dimM = dimN , then the degree of f is de-
fined as being the natural number k satisfying f∗(zM ) = k · zN .

If X is a closed connected manifold of dimension n(k−1) and f2, . . . , fk
are orientation true, it is well defined the degree of

(f2, . . . , fk) : X → (RPn)
k−1

.

From (5.1), L(f1, . . . , fk) ̸= 0 if and only if deg(f2, . . . , fk) ̸= 0.

Theorem 5.3. Let X be a closed connected manifold of dimension n(k−1) and

f1, . . . , fk : X → RPn orientation true. If, for some 1 ≤ i ≤ k, deg(f̂i) ̸= 0,

then there is x ∈ X such that f1(x) = f2(x) = · · · = fk(x), where f̂i denotes

the map (f1, . . . , fi−1, fi+1, . . . , fk) : X → (RPn)
k−1

.

Proof. Suppose i ∈ {1, . . . , k} such that deg(f̂i) ̸= 0, where

f̂i = (f1, . . . , fi−1, fi+1, . . . , fk) : X → (RPn)
k−1

.

From (5.1),

L(fi, f1, f2, . . . , fi−1, fi+1, . . . , fk) = (f1, . . . , fi−1, fi+1, . . . , fk)
∗(e× · · · × e).

Since deg(f̂i) ̸= 0, L(fi, f1, f2, . . . , fi−1, fi+1, . . . , fk) ̸= 0. Therefore, by The-
orem 4.1, there is x ∈ X such that fi(x) = f1(x) = · · · = fk(x). �

Lemma 5.4 (See [3, Lemma 4.11]). If p : M̃ → M is a k-fold covering, then
deg(p) = k.

Example 5.5. Consider the maps c, f, g : S2×S2 → RP 2, where c is a constant
map, f(x, y) = {x,−x} and g(x, y) = {y,−y}. Then,

(f, g) : S2 × S2 → RP 2 × RP 2

is a 4-fold covering. It follows from Lemma 5.4 that deg(f, g) = 4. Therefore,
by the above theorem, the Lefschetz class L(c, f, g) is nontrivial. On the other
hand, considering (co)-homology with coefficients in Z2 we have

L(c, f, g;Z2) = deg2(f, g) = 0.

Here, deg2 denotes the degree that we obtain when we consider homology
with coefficients in Z2.
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