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A GENOMIC ASSOCIATION AND PREDICTION OF PRINCIPAL COMPONENTS 

OF GROWTH TRAITS AND VISUAL SCORES IN NELLORE CATTLE 

ABSTRACT – Principal component analysis (PCA) is a multivariate statistical 

technique that allows evaluating relationships among different traits in order to 

eliminate the redundancy resulting from their correlations. In animal breeding, PCA 

has been used to explore possible biological interpretations associated with the 

principal components (PCs) that can lead to the characterization of distinguished 

animal’s biotype. The objectives of the present study were: i) to evaluate 

relationships among growth, visual scores, and reproductive traits by performing a 

PCA; ii) to identify genomic regions associated with PCs by performing a genome-

wide association study (GWAS) on the main PCs; and iii) to evaluate the prediction 

ability of genomic breeding values (GEBVs) obtained for the PCs. Phenotypic data 

from 355,524 Nellore animals provided by the Alliance Nellore database, were used 

in this investigation. A total of 3,382 Nellore animals were genotyped using the 

lllumina® BovineHD chip (HD, ~777,000 SNPs) and 137 animals were genotyped 

using the GeneSeek Genomic Profiler Bovine HD chip (~76,000 SNPs). The GGP-

HD genotypes were imputed to the HD genotypes. After genomic data quality control, 

471,880 SNPs from 3,519 animals were available. The PCA was applied on the 

additive genetic (co)variance matrix (AT) obtained using multi-trait analysis. For 

GWAS, SNP effects were estimated using the weighted single-step GBLUP and the 

BayesC methods. The genes identified within the top-10 ranking windows that 

explained the highest proportion of variance were used for further functional 

analyses. For the genomic prediction study, the GEBVs were predicted using three 

distinguish response variables: EBV of the original traits, EBV of the PCs, and EBV 

of a selection index used by some Nellore cattle commercial breeding programs. The 

genomic predictive ability was calculated by correlation between GEBVs and 

response variables. The first three PCs explained 87.11% of the total additive genetic 

variance for the traits. The first component contrasted the animals according to the 

growth rate, the second component contrasted the animals with early or late biotype, 

while the third component differentiate weaning and yearling traits. GWAS detected 

potential genomic regions associated with growth, carcass traits, conformation, and 

fatty acid composition traits that may be affecting the PCs. These findings are of 

relevance to the biological understanding of the PCs and their associated biotypes in 

Nellore cattle. Genomic predictions with moderate accuracies were obtained for the 

nine original traits, PCs and selection index, indicating the possibility of using PCA for 

implementing genomic selection for Nellore cattle. 
Keywords: beef cattle, GEBV, SNP effects, wssGBLUP 
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ASSOCIAÇÃO E PREDIÇÃO GENÔMICA DE COMPONENTES PRINCIPAIS DE 

CARACTERÍSTICAS DE CRESCIMENTO E ESCORES VISUAIS EM BOVINOS DA 

RAÇA NELORE 

 

RESUMO – A análise de componentes principais (ACP) é uma técnica da 

estatística multivariada usada para avaliar as relações entre diferentes 

características a fim de eliminar a redundância resultante de suas correlações. No 

melhoramento genético animal, a ACP tem sido usada para explorar possíveis 

interpretações biológicas associadas aos componentes principais (CPs) que podem 

levar a caracterização de diferentes biotipos de animais. Os objetivos do presente 

estudo foram: i) avaliar as relações entre características de crescimento, escore 

visual e reprodutiva, por meio de ACP; ii) identificar, por meio de estudo de 

associação genômica ampla (GWAS), regiões genômicas que diferenciam os 

animais quanto aos diferentes componentes; e iii) avaliar a habilidade de predição 

de valores genéticos genômicos (GEBVs) obtidos para os CPs. Foram utilizados 

dados fenotípicos de 355.524 animais da raça Nelore provenientes da base de 

dados Aliança Nelore. Destes, foram genotipados 3.382 animais em painel lllumina® 

BovineHD (HD, ~777.000 SNPs) e 137 animais em painel GeneSeek Genomic 

Profiler Bovine HD (~76.000 SNPs). Os animais genotipados com o painel GGP-HD 

tiveram seus genótipos imputados para o painel mais denso (HD). Após o controle 

de qualidade, 3.519 animais com informações genotípicas de 471.880 SNPs 

permaneceram nas análises. A ACP foi realizada utilizando-se a matriz de 

(co)variância genética aditiva (AT) obtida a partir de análise multi-característica. As 

estimativas dos efeitos dos SNPs foram obtidas utilizando-se as metodologias 

weighted single-step GBLUP e BayesC. Os genes identificados para as top 10 

janelas que explicaram a maior proporção da variância foram usados para realizar 

as análises funcionais. Os GEBVs foram preditos utilizando como variáveis 

respostas: EBV das características originais, EBV dos CPs e EBV de um índice de 

seleção utilizado por programas de melhoramento da raça Nelore. A habilidade de 

predição da seleção genômica foi calculada pela correlação entre os GEBVs e as 

variáveis respostas. Os três primeiros CPs explicaram 87,11% da variância genética 

aditiva total das características. O primeiro CP contrastou animais de acordo com a 

taxa de crescimento, o segundo CP diferenciou os animais em biotipos tardios e 

precoces, e o terceiro CP contrastou características mensuradas ao desmame e ao 

sobreano. Foram identificadas possíveis regiões genômicas associadas a 

características de crescimento, carcaça, conformação e ácidos graxos, que sugerem 

possível associação com os CPs. As regiões identificadas ajudam na interpretação 

biológica dos CPs e seus respectivos biotipos em bovinos Nelore. No estudo de 

predição genômica, acurácias de magnitude moderada foram obtidas para as nove 

características estudadas, para os CPs e índice de seleção, indicando que a ACP 

poderia ser utilizada para a seleção de bovinos Nelore.  

Palavras-chave: bovinos de corte, efeitos dos SNPs, GEBV, wssGBLUP 
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CHAPTER 1 – General considerations 

 

 

1.1 INTRODUCTION 

 

 

Brazil ranks as the top beef exporter and the second commercial beef 

producer in the world (USDA, 2018). The majority of the Brazilian herds is composed 

of Zebu cattle (Bos taurus indicus), especially the Nellore breed (ABCZ, 

www.abcz.com.br). This is primarily the result of adaptation of these animals to harsh 

environments and tropical pasture conditions. The main raising system of beef cattle 

occurs on pasture and sometimes animals are finished at feedlots to accelerate 

weight gain and carcass finishing. Due to the satisfactory economic performance of 

Nellore cattle as a result of genetic selection processes on increasing the production 

efficiency, this breed is of great importance to Brazilian agribusiness and the beef 

cattle industry.  

In beef cattle, growth trait measurements at different ages have been 

commonly used by breeding programs as selection criteria in an attempt to improve 

general animal growth (Boligon et al., 2010; Araújo et al., 2014). Considering that 

animal weight or weight gain are associated with skeletal size, body shape and fat 

content, visual scores have been included as selection criteria in Zebu beef cattle 

breeding programs to select animals that meet industry requirements (Bertipaglia et 

al., 2012; Everling et al., 2014). The use of visual scores is an advantageous 

alternative of measurement without either stressing out the animals or increasing the 

recording costs for performing genetic evaluation (Barrozo et al., 2015). In addition, 

the inclusion of visual scores in selection programs is a suitable alternative to 

improve carcass quality, muscle mass distribution and finishing precocity. 

In Brazil, visual score evaluation systems are mainly based on recording 

animals for conformation, finishing precocity and muscling traits at weaning and 

yearling. Conformation score estimate the amount of meat produced in the animal 

carcass and the general body’s growth (Weber et al., 2009). Finishing precocity 

score estimate the animal’s capacity to accumulate fat deposition without reaching 
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high body weight, while muscling score represents the degree of muscle mass 

present in the carcass. Over the recent years, several studies have reported 

moderate to high heritability estimates and favorable genetic correlations between 

body weight and weight gain at different ages and visual scores (Toral et al., 2011; 

Barrozo et al., 2015; de Lacerda et al., 2017), suggesting that there is sufficient 

additive genetic variation for selection and genetic progress in these traits. According 

to Cardoso et al. (2004), high genetic correlations between visual scores of 

conformation, finishing precocity and muscularity are expected, because 

conformation comprises aspects of muscle mass, size, and finishing precocity. 

When working with multiple traits, joint analysis may not be feasible to large 

data sets, resulting in increased computational demand. In addition, traits that are 

highly correlated may be redundant and therefore, will not contribute to genetic 

evaluation (Roso and Fries, 1995). Principal component analysis (PCA) has been 

used in animal breeding attempting to elucidate the structural relationships among 

different traits, eliminate redundant information and reduce the size of the direct 

additive genetic (co)variance matrix of multiple trait models (Savegnago et al., 2011; 

Buzanskas et al., 2013; Boligon et al., 2016). 

The PCA allows unraveling potential biological associations that are usually 

not observed in the original data. Roso and Fries (1995) showed the possibility of 

selecting Polled Hereford animals for distinct size or body volumes based on the first 

principal component (PC). Boligon et al. (2016) used PCA for genetic evaluation of 

growth and reproductive traits in Nellore cattle based on the (co)variance matrix 

among estimated breeding values (EBV) and concluded that the first three PCs 

contrasted animals into different biotypes (set of desirable phenotypes), allowing 

particular biological interpretation of each PC. 

Predicting selection response is a key step for planning optimum genetic 

improvement strategies. Selection methods capable to explore efficiently the 

available genetic material for identification of superior genotypes is fundamental to 

maximize the genetic gain of economically important traits. The definition of an 

aggregate genotype, commonly called the breeding objective on which selection is 

practiced, is a result of the combination of certain traits, in which the selection 

process will be applied simultaneously, allowing identify superior genotypes. In this 
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sense, when the PCs with favorable biological meaning are in agreement to desired 

breeding objectives, they would represent the aggregate genotype of individuals, 

which could be used directly in selection processes.  According to Smith (1936) and 

Hazel (1943) the aggregate genotype can be specified as: 

H = a' g 

where H (total merit) is the aggregate genotype, a is a vector of economic values and 

g is a vector of additive genetic effects. The vector a provides the importance of 

changes in the genetic levels of traits and is defined as the net economic effects of 

changes in each trait in the vector g for a unit change in the additive genetic effects 

of the trait. The H can be used directly in selection process when estimates of the 

EBVs are available for all traits in the breeding objective, and those estimates 

account for genetic correlations among traits. 

 Traditionally, animals were selected for breeding purpose using information on 

phenotypes and pedigrees. However, the increasing availability of genome-wide 

dense molecular markers [e.g., single nucleotide polymorphisms (SNPs)] have 

permitted livestock breeding programs explore new pathways for obtaining additional 

genetic gain of individuals based on linkage disequilibrium (LD) between markers 

and genes (Meuwissen et al., 2001). Several genome-wide association studies 

(GWAS) in livestock have led to the conclusion that the effect of individual 

quantitative trait loci (QTL) on economic important traits are likely small and, 

therefore, a large number of QTL are needed to explain their genetic variation. For 

instance, the identification of genetic variants for growth, reproductive and carcass 

traits in beef cattle (Martínez et al., 2017; Silva et al., 2017; Hay and Roberts, 2018) 

allowed breeders to investigate the genetic basis affecting these traits.  

Genomic prediction by means of dense markers molecular panels were firstly 

applied to animal breeding, especially in dairy cattle (Hayes et al., 2009), and later 

tested on plants (Jannink et al., 2010). Genomic prediction is focused on modeling 

the association between genome-wide SNP markers and phenotypes to predict 

breeding values of selection candidates. Genomic prediction relies on the 

expectation that all QTL are likely to be in LD with at least one marker. The success 

of genomic prediction is measured by its accuracy, i.e. how reliable a future 

phenotype of target individuals can be predicted, and depends on several 
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parameters, such as sample size of the reference population, accuracy of the 

pseudo-phenotypes, level of LD, and the degree of relationship between training and 

validation populations (Bolormaa et al., 2013; Boddhireddy et al., 2014). 

  

 

1.2 OBJECTIVES 

 

 

1.2 .1 General objectives 

 

 

To perform a principal component analysis (PCA) using an eigen-

decomposition of the additive genetic (co)variance matrix for growth, visual score and 

reproductive traits, to perform a genome-wide association study on the main principal 

components (PC) and to investigate the feasibility of genomic predictions of the PCs.  

 

 

1.2.2 Specific objectives 

 

 

 To compare different approaches applied to PCA using: an eigen-

decomposition of either the additive genetic (co)variance matrix (AT) or the 

(co)variance matrix of the EBVs; 

 To perform GWAS using EBVs from PCs as pseudo-phenotypes aiming to 

identify genomic regions associated with the main PCs; 

 To compare the genetic progress achieved from selection based on PCs 

and from current selection indexes used by Nellore breeding programs; 

 To evaluate the accuracy of genomic predictions for the original traits, the 

three main PCs and a selection index used by some Nellore breeding 

programs. 
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1.3 LITERATURE REVIEW 

 

 

1.3 .1 Principal Component Analysis (PCA) 

 

 

Principal component analysis (PCA) introduced by Pearson (1901) and 

developed independently by Hotelling (1933), is one of the most traditional 

techniques used in multivariate data analysis.  In animal breeding, PCA has assisted 

quantitative geneticists by using orthogonal transformation to reduce the 

dimensionality of originally correlated variables into a smaller set of non-correlated 

and independent variables named principal components (PCs) explaining as much 

as possible of the variability in the original variables (Hair et al., 2009). The PCs are 

obtained by diagonalization of positive semi-definite symmetric matrices and 

represents linear combinations of a set of the original variables that reflect trends and 

patterns of covariation in the data.  

Considering that the original variables X1, X2, …, Xp leads to a data matrix X 

(n x p) in which: 

X= [

x11 … x1p

⋮ ⋱ ⋮
xn1 … xnp

] 

with means μ
1
, μ

2
, …, μ

p
 and variances σ1

2, σ2
2, …, σp

2, respectively, these variables 

are not independent and, therefore, have (co)variance between the ith and kth variable 

defined by σik, for i ≠ k = 1, 2, …, p. Thus, p variables can be expressed in vector 

form as: X = [X1, X2, …, Xp]', with vector of means μ = [μ
1
, μ

2
, … μ

p
]' and 

(co)variance matrix Σ: 

Σ= [
σ11

2 … σ1p
2

⋮ ⋱ ⋮
σn1

2 … σnn
2

] 

From Σ, the eigenvalue and eigenvector pairs can be calculated (λ1, e1), (λ2, 

e2), … (λp, ep), where λ1 ≥ λ2 ≥ … ≥ λp are associated to Σ and, therefore, the ith PC is 

defined as: 

Zi = ei
'X = ei1X1 + ei2X2 + … + eipXp 
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where Zi is a latent variable, i.e. is not measured from the experiment or sample 

survey. The aim is to determine Zi from the p variables contained in X. The main idea 

is to project the original coordinate points in a plane by maximizing the distance 

between them. This is the equivalent to maximize the variability of Zi. The variance of 

Zi can be obtained as: 

Var(Zi) = Var(ei
'X) = ei

'Var(X)ei = ei
'Σei 

where i = 1, …, p. 

Using the spectral decomposition of Σ, given by Σ = PΛP', where P is the 

matrix composed of eigenvectors and Λ is the diagonal matrix of eigenvalues, then, 

tr(Σ) = tr(PΛP
') = tr(ΛP

'
P) = tr(ΛI) = tr(Λ) = ∑ λi

p
i=1  and 

Λ = [

λ1 0 … 0

0 λ2 … 0
⋮
0

⋮
0

⋱ ⋮
… λk

] 

The tr(Σ) is given by the sum of the elements of the diagonal: 

tr(Σ) = ∑ σii

p

i=1

 = ∑ λi

p

i=1

 

Thus, the total variability contained in the original variables is equal to total 

variability contained in the PCs. The contribution of each PC (Zi) is expressed in 

percentage, and the proportion of the variance explained by the kth PC can be 

explained as:   

PCk = 
Var(Zi)

∑ Var(Zi)
p

i=1

 * 100 

By the proportion of variance explained by the PCs it is possible to determine 

the number of components to be considered. According to Meyer (2007), when the 

original variables are highly correlated the first few PCs are responsible for explaining 

the greatest original data variation and those with smallest contribution on the 

variance can be excluded without notably altering the accuracy of the estimates.  

The PCA technique has been incorporated into genetic evaluations in poultry 

(Savegnago et al., 2011; Venturini et al., 2013), beef cattle (Buzanskas et al., 2013; 

Boligon et al., 2016) and buffaloes (Agudelo-Gómez et al., 2015) in an attempt to 

reduce the size of the direct additive genetic (co)variance matrix in multiple trait 

models, as well as to explore the genetic relationship between estimated breeding 
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values (EBVs) for important economic traits. When applied on the (co)variance matrix 

of the EBVs, PCA may reveal biological interpretation of the main PCs that was not 

previously identified in the original data. Boligon et al. (2016) showed the possibility 

of selecting Nellore cattle on the bases of the first three PCs obtained from EBVs 

predicted for 9 different traits using single-trait analyses. According to the authors, 

these components could represent 3 different potential selection criteria for improving 

desirable biotypes. 

Despite being widely applied on the (co)variance matrix of the EBVs, PCA can 

also be applied on the additive genetic (co)variance matrix (AT). In this type of 

analysis, the PCs are obtained by performing an eigen-decomposition of the AT 

matrix. The use of AT matrix allows access the additive genetic variation within traits 

and the corresponding (co)variance among traits, which is not possible when 

performing PCA based on the (co)variance matrix of the EBVs obtained from single 

trait analysis. When performing the eigen-decomposition of the AT matrix, it is 

possible to contrast the individuals in relation to the additive genetic effect of the 

studied set of traits (Roso and Fries, 1995). 

 

 

1.3.2 Genome-wide association study 

 

 

Genotypic information coupled with measurements for traits of interest allow 

the conduction of genome-wide association studies (GWAS) to uncover genomic 

regions potentially associated with economically important traits. By performing 

GWAS, the knowledge on biological expression of the traits can be achieved. For this 

purpose, several statistical methods have been used. Differently from the traditional 

method based on testing one marker at a time and only using genotyped animals 

with known phenotype (or pseudo-phenotypes), the single-step GBLUP (ssGBLUP) 

proposed by Legarra et al. (2009) combines all pedigree, phenotypic and genotypic 

information, including phenotypic information on non-genotyped individuals, in a 

single step.  
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Usually when performing ssGBLUP, SNP effects are assumed to follow a 

normal distribution with a common variance and the same weight for SNP variance. 

However, alternative genomic evaluation methods have been proposed to allow 

differences between variance of SNP effects. For instance, Bayesian methods, such 

as BayesA, BayesB, and BayesC (Meuwissen et al., 2001; Kizilkaya et al., 2010; 

Habier et al., 2011), are used to assign to SNP effect  a prior distribution, and then 

sample from the posterior distribution via Markov Chain Monte Carlo (MCMC) 

(Meuwissen et al., 2001; Habier et al., 2011; Gianola et al., 2013). The main 

difference between these methods is in the definition of a priori distribution of the 

SNP effects included in the genomic model. Previous studies have shown that the 

application of Bayesian methods was better than GBLUP approaches in simulation 

studies using few QTL with large effects and many QTL with small effects 

(Meuwissen and Mike, 2004; Lund et al., 2009; Guo et al., 2010). However, for traits 

presenting polygenic nature, which is the majority of the traits of interest in livestock, 

GBLUP approaches has been proven to be better than Bayesian methods (Cole et 

al., 2009; Su et al., 2010; Forni et al., 2011; Wang et al., 2014). In addition, because 

the application of Bayesian methods requires that animals must be phenotyped and 

genotyped, phenotypes from non-genotyped animals cannot be included in the 

analysis.  

In an attempt to modify the ssGBLUP to obtain SNP weights, Wang et al. 

(2012) proposed the weighted single-step GBLUP (wssGBLUP). Over the years, 

many studies have performed GWAS using the wssGBLUP as alternative method to 

identify genes and genomic regions associated with traits of interest (Magalhães et 

al., 2016; Melo et al., 2017; Vargas et al., 2018). Melo et al. (2016), in a simulation 

study using the wssGBLUP method, reported that the inclusion of all available 

phenotypic records even from non-genotyped animals can contribute to improve QTL 

detection for complex traits. 

When performing GWAS, many studies have used different strategies for 

defining the window size that has led to identify genomic regions associated with 

important traits. These strategies include non-overlapping fixed length genomic 

windows [e.g., Irano et al., 2016; Melo et al., 2016] and sliding windows [e.g., Dikmen 

et al., 2013; Fernandes Júnior et al., 2016b; Valente et al., 2016; Saowaphak et al., 
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2017]. However, the use of arbitrarily window sizes in GWAS analyses, either by a 

fixed number of SNP markers or by fixed physical length in terms of base pairs, could 

lead to splitting LD blocks into separate windows as well as significant haplotype 

blocks affecting the traits of interest. Therefore, the use of haplotype blocks as 

windows in such analyses could be a better alternative to identify genetic variants 

and biological mechanisms underlying these traits. For this purpose, after performing 

GWAS and estimating SNP effects, the proportion of variance explained by each 

haplotype block is estimated by the sum of the variance explained by all SNPs within 

haplotype block. In this way, alleles linked along the chromosomes and that would 

likely be transmitted together across generations would not be split when estimating 

variance explaining by certain genomic regions. 

Principal component analysis has been incorporated into GWAS by extracting 

PCs from related traits, thus, allowing obtain essential and non-redundant information 

to identify potentially candidate variants. Lee et al. (2014) using records of Duroc pig 

breed, identified genomic regions associated with the main PCs from 14 meat quality 

traits that contributed to improve the knowledge on their biological expression. 

Macciota et al. (2017) reported the possibility of identifying some putative candidate 

genes associated with PCs from indicator variables of tolerance to heat stress from 

milk production data in dairy cattle. In animal breeding field, these findings are of 

great relevance, as they suggest that PCA could contribute to GWAS to detect 

important genomic regions potentially associated with PCs from a set of targeted 

traits and thus, improve the knowledge on their genetic expression. 

 

 

1.3.3 Genomic prediction 

 

 

Genomic prediction has been widely used to estimate the genetic merit of all 

genotyped individuals based on dense markers across the entire genome 

(Meuwissen et al., 2001). The principle of genomic prediction is the use of both 

genotypic and phenotypic data available in reference population to obtain predictive 

equation to calculate genomic estimated breeding values (GEBVs). This information 
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is then applied to a second population, consisting of selection candidates, for which 

genotype information is available but not necessarily phenotype information. 

An important advantage of genomic prediction compared to traditional 

selection process, is that the prediction accuracy on selection candidates is higher 

(Hayes et al., 2009). In addition, the inclusion of genomic information allows a 

substantial reduction of generation interval, especially for species with long 

generation interval, making it possible to anticipate selection decisions (Meuwissen 

et al., 2001; Schaeffer, 2006).  

The accuracy of genomic predictions is important to the application of genomic 

selection in animal breeding and depends on several parameters, such as the size of 

the reference population (Andonov et al., 2017), the heritability estimate of the trait 

(Viana et al., 2017), the density of the SNP panel and level of LD, the degree of 

relationship between training and validation populations (Meuwissen et al., 2001), 

and the statistical methods implemented (Bolormaa et al., 2013; Neves et al., 2014). 

For instance, several studies have shown that genomic predictions are more 

accurate if the genomic relationship between the reference and validation population 

is higher (Lee et al., 2008; Legarra et al., 2008; Clark et al., 2012). According to 

Habier et al. (2013), the co-segregation of QTL predicted from markers genotypes 

with a pedigree is a different source of information important to understand when 

designing reference populations for breeding programs, as may influence the 

accuracy of genomic predictions. 

In general, studies have reported accuracies of genomic predictions in beef 

cattle lower than in dairy cattle. For instance, the accuracy of genomic prediction in 

dairy cattle exceeds 0.7 for production, fertility, somatic cell count, and other traits 

(Wiggans et al., 2011; Lund et al., 2011), while accuracies in the range 0.2 to 0.7 are 

reported for growth, visual score, reproductive and carcass traits in beef cattle 

(Neves et al., 2014, Fernandes Júnior et al., 2016b). This may be explained by the 

fact that in dairy cattle reference populations are of higher quality and target 

populations may be more closely related to the reference populations than in beef 

cattle. 
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CHAPTER 2 - UNRAVELLING BIOLOGICAL BIOTYPES FOR GROWTH, VISUAL       

SCORE AND REPRODUCTIVE TRAITS IN NELLORE CATTLE VIA 

PRINCIPAL COMPONENT ANALYSIS1 

 

 

ABSTRACT – Principal component analysis (PCA) is used to summarize 

important information from multivariate data in sets of new variables named principal 

components (PCs). In animal breeding, these new composite variables can be used 

to study the associations among multiple traits using the magnitude and direction of 

the PCA coefficients (in the eigenvectors) for each trait. Phenotypic data from 

355,524 Nellore animals were used to estimate genetic parameters and explore the 

relationship among growth (weaning and post-weaning weight gain), visual score 

(weaning and yearling conformation, finishing precocity and muscling) and 

reproductive (scrotal circumference) traits using PCA. Genetic parameters were 

estimated by multi-trait analysis using a mixed linear animal model. The eigen-

decomposition of the additive genetic (co)variance matrix (AT matrix) obtained using 

multi-trait analysis were used to calculate the PCs. In addition, PCA using the 

(co)variance matrix of the breeding values (EBVs) from single- and multi-trait 

analyses were investigated for comparison purposes. The direct heritability estimates 

for the weaning and yearling traits ranged from 0.17 (birth-to-weaning weight gain 

and conformation) to 0.21 (finishing precocity) and from 0.18 (weaning-to-yearling 

weight gain) to 0.46 (scrotal circumference), respectively. Genetic correlations 

estimated among all analyzed traits were positive (favorable) ranging from 0.15 

(conformation at weaning and scrotal circumference) to 0.96 (finishing precocity and 

muscling at weaning). The first three PCs from multi-trait analysis using the eigen-

decomposition of the AT matrix, explained 87.11% of the total additive genetic 

variance for the traits. The first PC (PC1) had negative and relatively similar 

coefficients for all traits, the second PC (PC2) contrasted the animals with early or 

late biotype, and the third PC (PC3) characterized a contrast between weaning and 

yearling traits. Our findings suggest that the PCA could be explored in breeding 

programs to select Nellore cattle to tailor selection towards specific PC, targeting, for 

instance, faster growth and precocious biotype. 

 

Keywords: beef cattle, Bos taurus indicus, eigen-decomposition, genetic correlation, 

principal components 
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2.1 INTRODUCTION 

 

 

Currently, Brazil has the second largest commercial beef cattle herd and is 

among the top beef exporters in the world (Brazilian Association of Meat Exporters, 

ABIEC, 2017). This is partially due to the prevalence of the Nellore breed (Bos taurus 

indicus, ∼80% of the total beef cattle herd), which is well adapted to harsh 

environments and performs well under tropical conditions. Compared to taurine cattle 

breeds, Nellore is heat tolerant and parasite resistant, and has good maternal ability 

and high metabolic and reproductive efficiency under tropical pasture conditions 

(Silva et al., 2010). Well-structured breeding schemes and large genetic variability 

(Magnabosco et al., 2014; Buzanskas et al., 2017) have contributed substantially to 

the increase of production efficiency of the Nellore breed through genetic selection. 

Successful livestock breeding programs start with the definition of breeding 

objectives, which requires a balance between indicator traits of economic efficiency, 

animal health and welfare and final product quality to meet the consumers’ needs. 

Breeding objectives are a combination of economically important traits recorded in 

the production system and that will constitute the selection criteria (Smith, 1983). 

Thus, the genetic variation and relationship among these various traits are of great 

importance, as highly genetic correlated traits will add little extra information to the 

analyses. For instance, in Nellore cattle, there is remarkable variability in breeding 

objectives and different biotypes (set of desirable traits/phenotypes) are observed 

(Cardoso et al., 2003; Carvalheiro and Cavalcanti, 2008). 

When working with a set of correlated traits, principal component analysis 

(PCA) is one of the most popular multivariate techniques to perform dimension 

reduction for these traits and therefore, facilitate simultaneous genetic selection for 

all traits of interest. In brief, PCA aims to summarize a set of originally-correlated 

variables into a smaller set of uncorrelated variables (principal components, PCs), 

but still retaining most of the original variability (Hair et al., 2009). This set of 
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uncorrelated variables is expected to contain most of the genetic variation for the 

traits of interest and is often associated with just the first two or three PCs, allowing a 

better description of the studied population with a relatively small number of 

parameters (Kirkpatrick and Meyer, 2004). An alternative PCA approach introduced 

by Meyer and Kirkpatrick (2005) has been used to estimate genetic PCs directly 

through a reparameterisation of the usual linear mixed model. These authors showed 

that reduced rank estimation can substantially reduce computational demand of 

multivariate analyses and improve convergence rates. In animal breeding, PCA have 

been used to investigate genetic relationships among traits and to unravel potential 

biological associations among traits, usually not observed in the original data 

(Savegnago et al., 2011; Vohra et al., 2015; Boligon et al., 2016). 

Usually, when performing PCA, PCs are calculated based on the (co)variance 

matrix of the estimated breeding values (EBVs) obtained for each trait (e.g., 

Savegnago et al., 2011; Buzanskas et al., 2013). For instance, Boligon et al. (2016) 

used PCA to investigate the variability and the relationship among EBVs for growth 

and reproductive traits in Nellore cattle from single-trait analyses and showed that the 

first three PCs were sufficient to explain the majority of the variability among the 

EBVs. The authors observed that the first PC contrasted mainly animals with high or 

low growth. The second PC differentiate the animals according to their maturation 

rate (weaning versus yearling performance), while the third PC contrasted the 

animals with early or late biotype. Nonetheless, when performing PCA applied on the 

(co)variance matrix of the EBVs obtained using single-trait analyses, the covariance 

among traits are not considered and, therefore, the EBVs are estimated not taking 

into account the genetic relationships between traits. In an effort to overcome this 

limitation, an alternative would be to estimate the PCs from the eigen-decomposition 

of the additive genetic (co)variance matrix (AT). The reason to use the AT matrix 

instead of the (co)variance matrix of the EBVs is because the latter is an expedite 

approximation of AT. The AT matrix corresponds to the additive genetic relationship 

matrix among traits and summarizes the additive genetic variation within the set of 

traits and the (co)variance among them. The eigen-decomposition of the AT matrix 

can be used to capture the distribution (orientation) for different genetic effects in 
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multivariate space, contrasting the individuals according to the additive genetic effect 

of the studied traits (Roso and Fries, 1995). 

The objectives of the present study were: (1) to estimate genetic parameters 

for growth (weaning and post-weaning weight gain), visual score (weaning and 

yearling conformation, precocity and muscling) and reproductive (scrotal 

circumference) traits in Nellore cattle; (2) to compare three different approaches 

applied to PCA using: an eigen-decomposition of either the AT matrix or the 

(co)variance matrix of the EBVs and unravel potential biological interpretation for 

principal components; and (3) to investigate the feasibility of using the PCs to 

genetically select for a specific breeding objective based on desirable biotypes for 

Nellore cattle. 

 

 

2.2 MATERIAL AND METHODS 

 

 

2.2.1 Dataset description 

 

 

Phenotypic and pedigree information from 355,524 Nellore animals born 

between 1990 and 2010 were obtained from Alliance Nellore database 

(www.gensys.com.br). These animals were raised in pasture production systems 

under tropical conditions in 246 farms located in Brazil and Paraguay. The number of 

observations, mean or median (for score traits), standard deviation (SD) and number 

of sires, dams, and contemporary groups (CG) for each trait are presented in Table 

1. In this study we analyzed the following traits: birth-to-weaning weight gain (BWG), 

and visual scores of conformation (WC), finishing precocity (WP) and muscling (WM) 

at weaning (about 205 days of age), weaning-to-yearling weight gain (WYG), and 

visual scores of conformation (YC), finishing precocity (YP) and, muscling (YM) at 

yearling and, scrotal circumference (SC) at yearling (about 550 days of age). 
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Table 1. Description of the dataset used in the analyses, including number of 
observations (N), mean or median, standard deviation (SD) and number of 
sires, dams, and contemporary group (CG) in Nellore cattle 

Traitsa N Mean SD Sires Dams CG 

BWG 334,123 147.20 29.86 3773 178,295 5127 

WC 334,123 3b - 3773 178,295 5127 

WP 334,123 3b - 3773 178,295 5127 

WM 334,123 3b - 3773 178,295 5127 

WYG 141,131 92.92 34.84 2802 94,090 2639 

YC 165,287 3b - 3033 111,341 2203 

YP 165,287 3b - 3033 111,341 2203 

YM 165,287 3b - 3033 111,341 2203 

SC 58,912 26.42 3.55 2298 47,668 1133 

aBWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference. 
bMedian. 

 

Conformation, finishing precocity and muscling were evaluated based on the 

CPMU (conformation, precocity, muscling and navel) method, which was developed 

by Gensys (gensys.com.br) and has been used by several beef cattle breeding 

programs in Brazil. According to this method, scores are assigned for each animal by 

trained technicians on the basis of the variation within the CG. Visual scores ranged 

from one to five, in which five represents the best expression of the trait and one 

represents the worst. The evaluation of conformation score is based on the amount 

of meat on the animal carcass, mainly influenced by size and muscularity. Finishing 

precocity score is related to the capacity of the animal to store subcutaneous fat 

precociously. For this trait, the evaluation of the proportion between ribs and legs is 

also performed. The muscling score is a measure that reflects muscle development 

of the animal body. Scrotal circumference was measured (in centimeters) at yearling 

and is a sexual precocity indicator in Nellore breeding programs. This set of traits is 
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used in selection indexes of some Nellore breeding programs. For instance, a 

selection index that is used to select animals at weaning is composed of the following 

traits (relative importance in %): days to reach 160 kg from birth to weaning (60%), 

conformation (8%), finishing precocity (16%) and muscling (16%) at weaning. 

Another selection index used to rank yearling animals is composed by of the 

following traits (relative importance in %): days to reach 160 kg from birth to weaning 

(23%), conformation (4%), finishing precocity (8%) and muscling (8%) at weaning, 

days to reach 240 kg post-weaning (23%), conformation (4%), finishing precocity 

(8%) and muscling (8%) at yearling, and scrotal circunference (14%). 

 

 

2.2.2 Definition of contemporary groups and covariates 

 

 

 The fixed effects considered in the formation of the contemporary groups (CG) 

for each trait are presented in Table 2. Birth seasons were defined as (1) January to 

March, (2) April to June, (3) July to September, and (4) October to December. 

Records of weight gains and scrotal circumference exceeding 3.5 standard 

deviations (SD) from the overall mean of the CG were removed. For all traits, CGs 

with fewer than 10 records were also removed. The model included the covariate 

‘age of animal at recording’ as linear effect for all traits and ‘age of dam at calving’ as 

linear and quadratic effects for the weaning traits. 

 

Table 2. Fixed effects included in the definition of contemporary groups for birth to 
weaning weight gain (BWG), conformation, precocity, and muscling at 
weaning (WC, WP, and WM, respectively), weaning to yearling weight gain 
(WYG), conformation, precocity, and muscling at yearling (YC, YP, and YM, 
respectively) and scrotal circumference (SC) in Nellore cattle. 

Fixed effect 
Traits 

BWG WC WP WM WYG YC YP YM SC 

Farm at birth x x x x x x x x x 

Birth year x x x x x x x x x 

Birth season x x x x x x x x x 



24 
 

 

Sex x x x x x x x x  

Weaning management group x x x x x    x 

Weaning date x x x x x    x 

Yearling management group     x x x x x 

Yearling date     x x x x x 

 

 

2.2.3 Estimates of genetic parameters 

 

 

 Both single- and multiple-trait model were fitted using Wombat software 

(Meyer, 2007) to estimate variance components and EBVs. For weaning traits, the 

statistical model included the fixed effect of CG and covariates previously described 

as well as random direct additive genetic, maternal genetic, maternal permanent 

environmental and residual effects. In matrix notation the equation model for each 

weaning trait was:  

y = Xβ + Zaa + Zmm + Wp + e 

where: y is the vector of observations for each trait, β is a vector of systematic effects 

(CG and covariates), a is a vector of random direct additive genetic effects, m is a 

vector of random maternal genetic effects, p is a vector of random maternal 

permanent environmental effects, and e is a vector of random residual effects. X, Za, 

Zm, and W are the incidence matrices relating elements in β, a, m, and p to y, 

respectively. For yearling traits the model did not include the effects m and p. The 

assumptions of the multi-trait model were: 

 

Var (

a

m
p
e

) = (

Ga⊗A Gam⊗A 0 0

Gma⊗A Gm⊗A 0 0

0
0

0
0

Gp⊗Ic

0

0

R⊗In

) 

 

E (

a
m
p
e

) = (

0
0
0
0

) 
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and AT= (
Ga Gam

Gma Gm
) 

 

where: Ga is a variance-covariance matrix of random direct genetic effects within and 

across traits, Gm is a variance-covariance matrix of random maternal genetic effects 

within and across traits, Gam and Gma are matrices of genetic (co)variances between 

direct and maternal effects within and across traits, Gp is a variance-(co)variance 

matrix of random maternal permanent environmental effects within and across traits, 

R is a variance-covariance matrix of random residual effects within and across traits, 

A is the additive genetic relationship matrix, Ic is an identity matrix of order equal to 

the number of dams, In is an identity matrix of order equal to the number of animals 

with phenotypic records, ⊗ is the Kronecker product operator, and 0 is a vector of 

zeros. 

 Principal components were calculated from the eigen-decomposition of the AT 

matrix using the eigen function implemented in the R software (R Development Core 

Team, 2017). The PC eigenvalue is associated with the variance of all nine traits 

included in the PC. Each eigenvalue has a corresponding unitary vector (weight) 

named eigenvector (Rencher, 2002), which represent the strength and direction of 

the variance of each variable within the PC. Thus, in practice, PCs are a combination 

of traits that potentially have a biological meaning. We used the Kaiser criterion 

(Kaiser, 1960) to identify the PCs that explained the largest proportion of the total 

genetic variation of the traits. According to the Kaiser criterion, only the PCs with 

eigenvalues above the unit should be considered. The first PC (PC1) explains the 

largest percentage of the genetic variation of genetic variance of the traits, while the 

second one (PC2) explains the second largest percentage, and so on. 

In order to compare the PC approach used in this study to the method used by 

Boligon et al. (2016), in which genetic parameters and breeding values from single-

trait analyses were obtained using a model including the same effects as considered 

in the present study, PCA was also applied to the (co)variance matrix of the EBVs 

obtained from single- and multi-trait analyses. The PCA were carried out using the 

prcomp function implemented in the R software (R Development Core Team, 2017). 

The EBVs were standardized to zero mean and variance equal to one to avoid scale 
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effects and to facilitate comparison between traits. In addition, in order to compare 

the relative ranking of animals based on EBVs, Spearman rank correlation 

coefficients between the EBVs obtained using the PC approaches were calculated 

for the first three PCs. 

 

 

2.3 RESULTS 

 

 

2.3.1 Estimation of genetic parameters 

 

 

We have observed direct heritability estimates for weaning traits (BWG, WC, 

WP and WM) ranging from 0.17 (BWG and WC) to 0.21 (WP) and for yearling traits 

(WYG, YC, YP, YM and SC) from 0.18 (WYG) to 0.46 (SC), indicating that all these 

traits are under moderate genetic control (Table 3). The contribution of maternal 

effects to the phenotypic variance for BWG (0.15) was higher compared to the 

estimates for conformation, precocity and muscling (range: 0.07 to 0.08). The 

proportion of phenotypic variance due to maternal permanent environmental effects 

was almost the same for BWG and all visual scores at weaning (range: 0.12 to 0.13). 

 

Table 3. Variance estimates, heritability and proportion of phenotypic variance due to 
maternal permanent environmental effects from multi-trait analysis for 
growth, visual score and reproductive traits in Nellore cattle. 

Traitsa 

 Variance componentsb  Heritabilityb   

σa
2 σm

2  σam σpe
2  σe

2  ha
2
 hm

2
  c2 

BWG 57.70 50.21 9.67 44.18 181.62  0.17 (0.01) 0.15 (0.01)  0.13 

WC 0.17 0.08 0.01 0.13 0.62  0.17 (0.01) 0.08 (0.01)  0.13 

WP 0.25 0.08 0.01 0.14 0.69  0.21 (0.01) 0.07 (0.01)  0.12 

WM 0.24 0.09 0.01 0.16 0.71  0.20 (0.01) 0.07 (0.01)  0.13 

WYG 57.71 - - - 252.56  0.18 (0.01) -  - 

YC 0.33 - - - 0.65  0.34 (0.01) -  - 

YP 0.39 - - - 0.74  0.34 (0.01) -  - 
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YM 0.38 - - - 0.75  0.34 (0.01) -  - 

SC 3.23 - - - 3.83  0.46 (0.02) -  - 

aBWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference 
bσa

2: direct additive genetic variance, σm
2 : maternal genetic variance,  

σam: covariance between direct and maternal effects, σpe
2 : maternal permanent 

environmental variance, σe
2: residual variance, ha

2
: direct genetic heritability and standard 

error, hm
2

: maternal genetic heritability and standard error, c2: proportion of phenotypic 
variance due to maternal permanent environmental effects 

 

Genetic correlations ranged from 0.39 (WC and WP) to 0.96 (WP and WM) 

and from 0.25 (YC and YP, YC and YM) to 0.94 (YP and YM) for weaning and 

yearling traits, respectively (Table 4). The genetic correlations between weaning and 

yearling traits were of low to high magnitude (0.15 to 0.86). Phenotypic correlations 

ranged from 0.60 (WC and WP) to 0.82 (WP and WM) and from 0.23 (WYG and SC) 

to 0.78 (YP and YM) for weaning traits and yearling traits, respectively. The 

phenotypic correlation between weaning and yearling traits were of null to moderate 

magnitude (−0.009 to 0.56). 
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Table 4. Estimates of genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal) between the 
studied traits of Nellore cattle. 

Traitsa BWG WC WP WM WYG YC YP YM SC 

BWG  0.88 (0.01) 0.52 (0.02) 0.56 (0.02) 0.25 (0.03) 0.85 (0.009) 0.43 (0.02) 0.46 (0.02) 0.39 (0.03) 

WC 0.76 (0.01)  0.39 (0.02) 0.42 (0.02) 0.19 (0.03) 0.85 (0.01) 0.21 (0.03) 0.22 (0.03) 0.15 (0.03) 

WP 0.66 (0.01) 0.60 (0.01)  0.96 (0.01) 0.22 (0.03) 0.42 (0.02) 0.86 (0.01) 0.83 (0.01) 0.46 (0.03) 

WM 0.67 (0.01) 0.63 (0.01) 0.82 (0.01)  0.18 (0.03) 0.45 (0.02) 0.79 (0.01) 0.84(0.01) 0.42 (0.03) 

WYG -0.07 (0.01) -0.009 (0.01) -0.04 (0.01) -0.05 (0.01)  0.57 (0.02) 0.53 (0.02) 0.49 (0.02) 0.29 (0.03) 

YC 0.56 (0.01) 0.49 (0.01) 0.31 (0.01) 0.31 (0.01) 0.43 (0.01)  0.25 (0.02) 0.25 (0.02) 0.29 (0.02) 

YP 0.30 (0.01) 0.19 (0.01) 0.43 (0.01) 0.39 (0.01) 0.43 (0.01) 0.45 (0.01)  0.94 (0.01) 0.43 (0.02) 

YM 0.31 (0.01) 0.21 (0.01) 0.41 (0.01) 0.42 (0.01) 0.42 (0.01) 0.47 (0.01) 0.78 (0.01)  0.43 (0.02) 

SC 0.33 (0.01) 0.22 (0.01) 0.26 (0.01) 0.25 (0.01) 0.23 (0.01) 0.31 (0.01) 0.30 (0.01) 0.29 (0.01)  

aBWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at weaning, WM: muscling at weaning, WYG: weaning-
to-yearling weight gain, YC: conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal circumference 
Standard errors of estimated correlations are presented within brackets 
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2.3.2 Principal component analysis 

 

 

 Table 5 presents the eigenvalues, proportion and cumulative sum of the 

explained variance over the nine components for the three PC approaches. The first 

three PCs were chosen using the eigen-decomposition of the AT matrix (which 

explained 87.11% of the total additive genetic variance for the traits) and using the 

PCA applied on the (co)variance matrix of the EBVs obtained using single-trait 

analysis (which explained 79.33% of the total variance of the EBVs). For the PC 

approach applied on the (co) variance matrix of the EBVs obtained using multi-trait 

analysis, the first two PCs would be chosen according to the Kaiser's criterion 

(explaining 79.67% of the total variance of the EBVs). However the third component 

was also included for purposes of comparison.  

Table 6 shows the eigenvector coefficients for the first three PCs. From the 

nine original dimensions using the eigen-decomposition of the AT matrix, PC1 

explained 55.11% of the total variation and had negative and moderate coefficients 

for all traits. The PC2 accounted for 20.78% of the total genetic variation and had 

contrasting coefficients for weight gain and conformation to finishing precocity and 

muscling, both at weaning and yearling, and scrotal circumference at yearling. The 

third PC explained 11.22% of the total genetic variation, suggesting that this PC 

differentiates the animals according to their maturation rate (weaning versus yearling 

performance). 
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Table 5. Principal components (PC), eigenvalues (λi), proportion and cumulative sum of the explained variance over the nine      
components for three approaches for principal component analysis (PCA). 

  
PCA applied to the AT matrix 

obtained using multi-trait analysis 

 

  

PCA applied to the (co)variance 

matrix of the EBVs from single-trait 

analyses 

PCA applied to the (co)variance 

matrix of the EBVs from multi-trait 

analysis 

PCa  𝜆𝑖 
Proportion 

(%) 

Cumulative 

sum (%) 

 
  𝜆𝑖 

Proportion 

(%) 

Cumulative 

sum (%) 
𝜆𝑖 

Proportion 

(%) 

Cumulative 

sum (%) 

PC1  4.96 55.11 55.11    4.56 50.67 50.67 5.45 60.56 60.56 

PC2  1.87 20.78 75.89    1.55 17.22 67.89 1.72 19.11 79.67 

PC3  1.01 11.22 87.11    1.03 11.44 79.33 0.73 8.11 87.78 

PC4  0.76 8.44 95.55    0.76 8.44 87.77 0.52 5.78 93.56 

PC5  0.17 1.89 97.44    0.50 5.55 93.32 0.38 4.22 97.78 

PC6  0.15 1.67 99.11    0.22 2.44 95.76 0.09 1.00 98.78 

PC7  0.05 0.56 99.67    0.16 1.78 97.54 0.06 0.67 99.45 

PC8  0.03 0.33 100    0.14 1.56 99.1 0.03 0.33 99.78 

PC9  0.00 0.00 100    0.08 0.90 100 0.02 0.22 100 

aPCn: nth principal component 

 

 
 



31 
 

 

Table 6. Eigenvectors for the first three principal components (PCs) obtained using three approaches for principal component 
analysis (PCA). 

 
PCA applied to the AT matrix 

obtained using multi-trait analysis 
 

PCA applied to the (co)variance 

matrix of the EBVs from single-trait 

analyses 

PCA applied to the (co)variance 

matrix of the EBVs from multi-trait 

analysis 

PCa PC1 PC2 PC3  PC1 PC2 PC3 PC1 PC2 PC3 

BWGb -0.36 0.39 -0.13  0.35 -0.42 0.13 0.32 -0.42 0.07 

WC -0.29 0.51 -0.19  0.32 -0.46 0.29 0.19 -0.50 0.51 

WP -0.39 -0.26 -0.26  0.39 -0.17 -0.36 0.38 0.26 0.22 

WM -0.39 -0.22 -0.33  0.39 -0.23 -0.34 0.39 0.20 0.32 

WYG -0.22 0.01 0.84  0.24 0.39 0.43 0.29 -0.11 -0.72 

YC -0.30 0.52 0.15  0.31 0.10 0.59 0.26 -0.56 -0.19 

YP -0.37 -0.32 0.12  0.36 0.38 -0.13 0.39 0.25 -0.05 

YM -0.38 -0.30 0.06  0.37 0.36 -0.14 0.39 0.24 0.01 

SC -0.24 -0.10 0.13  0.21 0.29 -0.26 0.31 0.11 -0.13 

aPCn: nth principal component 
bBWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at weaning, WM: muscling at weaning, WYG: weaning-
to-yearling weight gain, YC: conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal circumference 
Standard errors of estimated correlations are presented within brackets 
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For the PCA applied on the (co)variance matrix of the EBVs using single-trait 

analyses, PC1 explained 50.67% of the total variation and had positive and moderate 

coefficients for all traits. The PC2 explained 17.22% of total genetic variation and had 

the same direction of the coefficients obtained for PC3 using the eigen 

decomposition of the AT matrix, allowing to contrast weaning and yearling traits. The 

third PC explained 11.44% of the total genetic variation, presented similar direction 

obtained for PC2 using the AT matrix and, in general, differentiate the animals for 

weight gain and conformation in contrast to finishing precocity and muscling, at both 

at ages (weaning and yearling), and scrotal circumference at yearling. For the PCA 

applied on the (co)variance matrix of the EBVs using multi-trait analyses, PC1 

explained 60.56% of the total variation and had positive and moderate coefficients for 

all traits. The PC2 and PC3 explained 19.11% and 8.11% of the total variation, 

respectively, and had similar direction for the coefficients obtained from the PC 

approach using the AT matrix.  

Spearman rank correlations for the first three PCs ranged from 0.61 to 0.99 

and the largest correlations were obtained for PC1 (0.93 to 0.99). For PC2 and PC3, 

the correlations were calculated considering the correspondence between these PCs 

obtained from the different approaches. In other words, the PC2 obtained based on 

the eigen-decomposition of the AT matrix and from multi-trait analysis corresponds to 

the PC3 obtained from single-trait analyses and vice-versa. For PC2, Spearman rank 

correlation obtained between the EBVs using the AT matrix and from multi-trait 

analyses was higher (0.98) compared to the correlation obtained between the EBVs 

from single-trait analyses and the AT matrix (0.71) and from single- and multi-trait 

analysis (0.76). Similar results were observed for the correlations obtained for PC3, 

where the highest correlation were obtained between EBVs using the AT matrix and 

from multi-trait analyses (0.90), versus the correlations obtained between EBVs from 

single-trait analyses and the AT matrix (0.61) and from single- and multi-trait analysis 

(0.62).  
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2.4 DISCUSSION 

 

 

 The direct heritability estimates obtained for visual scores at both ages 

(weaning and yearling) were close to those described in the literature for tropical beef 

cattle, with estimates ranging from 0.19 to 0.54 (Regatieri et al., 2011; Boligon et al., 

2016; Gordo et al., 2016). Overall, as expected, the direct heritability estimates for 

growth traits and visual scores suggest that these traits are under moderate genetic 

control and should respond to selection. Furthermore, the response for traits 

measured at yearling is expected to be higher compared to that for traits measured at 

weaning. For weaning visual scores, the contribution of the maternal genetic effect to 

phenotypic variance ranged from 7 to 8%. These findings are in agreement with 

Boligon et al. (2011b and 2016) and Koury Filho et al. (2010), who reported 

heritability estimates ranging from 0.04 to 0.07 in Nellore cattle. The maternal 

influence is related to any contribution on offspring phenotypes that is attributed to its 

mother (Willham, 1972), and models that do not account for maternal 

effects could yield higher estimates of additive direct genetic variance (Meyer, 1992). 

From this study, significant genetic changes for weaning visual scores are not 

expected from the maternal genetic effect, since most of the total additive genetic 

variance is due to direct genetic effects. 

 Genetic correlations estimated between the nine traits were positive 

(favorable) and ranged from 0.15 (WC and SC) to 0.96 (WP and WM). The genetic 

correlations between WYG and visual scores at yearling were of moderate 

magnitude (0.49 to 0.57) and followed the same trend as the correlations between 

BWG and visual scores at weaning (0.52 to 0.88). The genetic correlations estimated 

between visual scores at different ages were of moderate to high magnitude, 

suggesting that genetic gains in visual scores from weaning to yearling might be 

obtained by the correlated responses of these traits. According to Koury Filho et al. 

(2010), both stages (weaning and yearling) are of interest for genetically evaluating 

the animals since the evaluation at weaning does not involve pre-selection and, at 

yearling, the morphological traits can better express the direct genetic merit of an 

animal, since there is greater trait variability among individuals. 
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The genetic correlations between the same trait evaluated in both periods 

were higher for finishing precocity and muscling, indicating that these scores are 

mainly controlled by a similar group of genes. Similar results were also reported by 

Cardoso et al. (2004), Bertipaglia et al. (2012) and Boligon et al. (2016), who 

estimated genetic correlation between the two periods ranging from 0.71 to 0.95 for 

finishing precocity and muscling in Angus, Brahman, and Nellore cattle, respectively. 

This finding was expected since precocious animals present faster and greater 

muscle mass development (Koury Filho et al., 2009). Thus, the identification of the 

best genotypes for muscularity is also associated with the best genetic make-up for 

finishing precocity. The genetic correlations between conformation and finishing 

precocity were higher at weaning (0.39) than at yearling (0.25), indicating that 

selection for body size does not necessarily result in precocious animals. Some 

Nellore animals present considerable height and length, without a high depth of ribs, 

resulting in higher conformation scores and lower finishing precocity scores. Thus, 

larger animals tend to reach the finishing stage at an older age. The same was 

observed for the genetic correlation between conformation and muscling, which was 

0.42 at weaning and 0.25 at yearling, indicating that selection for larger animals at 

yearling does not result to substantial changes in muscle mass development.  

In general, the genetic relationship among traits is related to the number of 

PCs that explain most of the total variance in the data. In the present study, three 

PCs explained a large proportion of the total additive genetic variance for growth and 

visual score traits at weaning and yearling. Buzanskas et al. (2013) performed a PCA 

using standardized genetic values predicted for weight at 420 days of age, age at 

first and second calving, and calving interval in Canchim beef cattle and reported that 

only PC1 met the Kaiser criterion (> 1) and explained 48.51% of the total variance. 

Boligon et al. (2016) reported that the first three PCs comprised 79.06% of the total 

estimated breeding value variation of growth and reproductive traits in Nellore cattle. 

The additive genetic variance explained by the first three PCs using the AT 

matrix was higher than that explained using the (co)variance matrix of the EBVs from 

single-trait analyses (87.11% vs 79.33%, respectively). However, the proportion of 

variance explained by the first three PCs in using AT matrix was smaller when 

compared with the PCA applied on the (co)variance matrix of the EBVs from multi-
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trait analysis (87.11% vs 87.78%, respectively). The PCA applied to the (co) variance 

matrix of the EBVs from single-trait analyses presented the smallest additive genetic 

variance explained by the first three PCs. For the three PC approaches, the 

magnitude between the coefficients (in the eigenvectors) obtained for the first PC 

was similar. However, the differences between the coefficients for the other PCs 

were more substantial.  

The magnitude of the eigenvector (either positive or negative) indicates the 

importance of the corresponding trait on the PC, thus, the larger coefficient would 

indicate greater discriminatory power. For the three PC approaches evaluated, the 

first PC showed a moderate coefficient for the nine original traits, suggesting a 

weighted average of the original traits. The common sign (either negative or positive) 

for all coefficients indicates that these variables have the same direction of variation. 

Thus, it would follow that animals with high PC estimates would tend to have, on 

average, higher performance compared to animals with low values for the same 

variables, especially contrasting high or low growth rate animals. These findings are 

in agreement with Boligon et al. (2016), who reported positive and similar coefficients 

for the first PC. Similar results were found by Roso and Fries (1995), who performed 

a PCA to investigate the relationships between adjusted weight and visual score 

traits in Polled Hereford. The authors observed that the first PC presented positive 

and similar coefficients for all traits, contrasting animals of distinct size or body 

volumes.  

The second PC obtained using the AT matrix and the (co)variance matrix of 

the EBVs from multi-trait analysis, and the third PC obtained using the (co)variance 

matrix of the EBVs from single-trait analyses, show contrasting animals with early 

(better for finishing precocity, muscling and scrotal circumference) and late (better for 

weight gain and conformation) maturity biotypes at weaning and yearling. 

Conformation scores are attributed to each animal according to the visual 

assessment of carcass weight, by evaluating the length and body depth as well as 

muscle development. Finishing precocity and muscling are related to the capacity of 

an animal to achieve a minimum degree of carcass finishing at a relatively low weight 

and muscle mass development as a whole, respectively. Tall and thin animals, with a 

shallow rib depth are considered to be late, thus receiving low scores for finishing
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precocity. While animals with deeper ribs, a better degree of finishing and fat 

deposition, mainly at the base of the tail and groin are earlier maturity animals 

(Boligon et al., 2011b). Biologically, larger animals (higher conformation scores) tend 

to present delayed muscle mass development and carcass finishing. This might be 

explained by considering the growth curve definition, in which the skeleton develops 

first, followed by the muscle mass and, finally, adipose tissue (Boggs and Merkel, 

1993). Thus, larger animals require more time to complete skeletal development and, 

therefore, will reach the finishing precocity at an older age. Ideally, a combination of 

growth precocity (conformation and weight gain) with finishing precocity is desirable 

to yield animals with a balanced biotype in a short time period, which would be more 

profitable to beef cattle producers. The difference between the order of the PCs 

probably is due to the fact the (co)variance of EBVs from univariate analyses did not 

take into account the genetic correlation between traits (when calculating the EBVs) 

contrarily to when using AT or (co)variance matrix of the EBVs from multi-trait 

analysis. 

The third PC obtained using the AT matrix and the (co)variance matrix of the 

EBVs from multi-trait analysis, and the second PC obtained using the (co)variance 

matrix of the EBVs from single-trait analyses, differentiate weaning traits and yearling 

traits, contrasting animals according to their maturation rate (weaning versus yearling 

performance), being possibly associated with genetic potential of the animals to 

growth at different ages. In beef cattle, the growth during the pre-weaning period is 

important, because is the highest growth rate of the animal's life and factors such as 

maternal influence (mainly regarding the milk production and maternal ability), year of 

birth and age of dam (Teixeira and Albuquerque, 2003) are considered essential to 

the expression of the animal's genetic potential. In contrast, the post-weaning period 

represents the environment condition in which the animals are raised without direct 

influence of maternal effects (Cardoso et al., 2004).  

In general, the rank correlations between EBVs for the PC1 were high using 

the different PC approaches (0.93 to 0.99), indicating that practically the same 

animals would be selected based on EBVs for PC1 predicted based on AT matrix or 

the (co)variance matrix of the EBVs. Rank correlations between the PCs obtained 

using the AT matrix and the (co)variance matrix of the EBVs from multi-trait analysis 
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(0.99) were higher when compared to the other pair of correlations (0.93 and 0.94). 

However, the correlations based on the PC2 and PC3 obtained using the 

(co)variance matrix of the EBVs from single-trait analysis and from the AT matrix or 

the (co)variance matrix of the EBVs from multi-trait analysis were smaller (0.61 to 

0.76), indicating substantial re-ranking between animals derived from multi-trait PC 

analyses and from single-trait analysis. 

Our findings suggest that PCA can be used in Nellore commercial breeding 

programs aiming to select for specific biotypes (breeding objectives). For selection 

purposes, we recommend the use of the first three PCs from the eigen-

decomposition of the additive genetic (co) variance matrix to identify the top genetic 

merit individuals out of the pool of breeding candidates. 

 

 

2.5 CONCLUSIONS 

 

 

 The growth and visual score traits measured at weaning and yearling in 

Nellore cattle are under moderate genetic control. Principal component analysis 

showed that the first three principal components are sufficient to explain most of the 

genetic variance among weaning and yearling growth and score traits, and scrotal 

circumference in Nellore cattle. For the principal component approaches 

investigated, the eigen-decomposition of the additive genetic (co)variance matrix and 

of the (co)variance matrix of the estimated breeding values, allowed for similar 

biological interpretation of the genetic PCs. Our results suggest that the principal 

component analysis could be explored in breeding programs to select Nellore cattle 

to tailor selection towards specific PC, targeting, for instance, faster growth and 

precocious biotype. 
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CHAPTER 3 - GENOMIC REGIONS ASSOCIATED WITH PRINCIPAL 

COMPONENTS FOR GROWTH, VISUAL SCORE AND 

REPRODUCTIVE TRAITS IN NELLORE CATTLE1 

 

ABSTRACT – The use of principal component (PC) analysis allows exploring 

the most relevant relationships using a reduced number of variables that explain the 

majority of the data variation. The search for candidate genes underlying the 

expression of PCs for different traits is a useful tool to better understand biological 

mechanisms associated with the traits of interest. The aim of this study was to 

identify genomic regions associated with PCs for growth (weaning and post-weaning 

weight gains), visual score (conformation, finishing precocity and muscling) and 

reproductive (indicated by scrotal circumference) traits in Nellore cattle by performing 

a genome-wide association study (GWAS) on the main PCs. Phenotypic and 

pedigree data from 355,524 animals and genotypes from 3,519 animals were used in 

this investigation. The estimated breeding values (EBV) were obtained from a multi-

trait analysis using a mixed linear animal model. The eigen-decomposition of the 

additive genetic (co)variance matrix among traits (AT) was used to calculate the 

EBVs for the main PCs, which explained 87% of the variation in AT. The PCs were 

used as pseudo-phenotypes in the GWAS analyses. The SNP effects were estimated 

using the weighted single-step GBLUP and the BayesC method. The top-10 ranking 

windows that explained the highest proportion of variance were identified for further 

functional analyses. The most important genomic regions were identified on BTA7 

and BTA24 for PC1, BTA8 for PC2, and BTA3 and BTA10 for PC3. The functional 

analyses contributed to unravel biological interpretation of PCs by identifying genes 

potentially associated with growth, carcass traits, conformation, and fatty acid 

composition traits. These findings are of relevance to the biological understanding of 

the PCs and their associated biotypes in Nellore cattle, potentially allowing for 

genetic selection for more specific breeding goals, such as animals with faster growth 

and precocious biotype. 

 

Keywords: BayesC; eigen-decomposition, haplotype block window; QTL; weighted 

single step GBLUP 
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3.1 INTRODUCTION 

 

 

 The identification and selection of superior animals for breeding is 

accomplished through the recording of several economically important traits. The 

knowledge of the importance and contribution of these traits to the breeding goals, as 

well as their genetic relationships, is of relevance for livestock industry, as it will 

determine the adequate choice of selection criteria to guarantee the success of 

breeding programs. When working with several correlated traits, principal component 

analysis (PCA) is a multivariate technique that can be used for dimension reduction, 

keeping most of the original trait information. By performing PCA on (co)variance 

matrix of economically important traits, important biological interpretations could be 

revealed by evaluating the magnitude and direction of the coefficients in the 

eigenvectors of each principal components (PC) (Roso and Fries, 1995).  

Vargas et al. (2018) used PCA to investigate the additive genetic (co)variance 

matrix (AT) among growth, visual score and reproductive traits in Nellore cattle and 

showed that the first three components contrasted animals into different biotypes with 

discernible biological meaning. Moreover, PCA has also been used in GWAS for 

further investigate the genetic background of the few leading PCs. Macciotta et al. 

(2017) used PCA to describe the overall level and the slope of response of milk 

production traits across increasing levels of temperature-humidity index and were 

able to identify some putative candidate genes associated with the main PCs. For 

livestock breeding programs, these findings are of great relevance, as they suggest 

that GWAS could uncover genomic regions potentially associated with PCs from a 

set of targeted traits and improve the knowledge on their biological expression.  

The objectives of the present study were: 1) to perform GWAS using 

estimated breeding values (EBVs) from PCs for growth, visual score, and yearling 

reproductive traits as pseudo-phenotypes aiming to identify genomic regions 

associated with main PCs; and 2) to detect potential candidate genes, and the 

biological mechanisms underlying these components. 
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3.2 MATERIALS AND METHODS 

 

 

3.2.1 Phenotypic and pedigree data 

 

 

 Data for growth, visual score and yearling reproductive traits from 355,524 

Nellore animals from Alliance Nellore database (www.gensys.com.br) were recorded 

between 1990 and 2010 and used for this study. The animals were raised under 

tropical pasture systems in 246 farms located in Brazil and in Paraguay. The number 

of observations, mean and standard deviation, coefficient of variation, number of 

sires, dam and contemporary groups for each trait are presented in Table 1. The 

following traits were analyzed: birth-to-weaning weight gain (BWG) and visual scores 

of conformation (WC), finishing precocity (WP) and muscling (WM) at weaning (about 

205 days of age), weaning-to-yearling weight gain (WYG) and visual scores of 

conformation (YC), finishing precocity (YP) and muscling (YM), and scrotal 

circumference (SC) at yearling (about 550 days of age). Conformation, precocity, and 

muscling traits were evaluated by trained technicians, who assigned scores (from 1 

to 5) on the basis of the variation within the contemporary groups. The higher the 

score, the more notable is the expression of the trait.  

 
Table 1. Number of observations (N), mean and standard deviation (SD), coefficient 

of variation (CV), number of sires, dam and contemporary groups (CG) for 
birth-to-weaning weight gain (BWG), conformation, precocity, and muscling 
at weaning (WC, WP, and WM, respectively), weaning to yearling weight 
gain (WYG), conformation, precocity, and muscling at yearling (YC, YP, 
and YM, respectively) and scrotal circumference (SC) in Nellore cattle. 

Traits N Mean±SD CV (%) Sires Dams CG 

BWG (Kg) 334,123 147.20±29.86 20.28 3,773 178,295 5,127 

WC (1 to 5) 334,123 3.07±1.07 34.85 3,773 178,295 5,127 

WP (1 to 5) 334,123 3.17±1.11 35.01 3,773 178,295 5,127 

WM (1 to 5) 334,123 3.03±1.13 37.29 3,773 178,295 5,127 

WYG (Kg) 141,131 92.92±34.84 37.49 2,802 94,090 2,639 

YC (1 to 5) 165,287 3.11±1.05 33.76 3,033 111,341 2,203 
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YP (1 to 5) 165,287 3.16±1.11 35.13 3,033 111,341 2,203 

YM (1 to 5) 165,287 2.96±1.12 37.84 3,033 111,341 2,203 

SC (cm) 58,912 26.42±3.55 13.43 2,298 47,668 1,133 

 

 

The contemporary group (CG) for all traits included farm, year and season of 

birth, and sex (except for SC). The following effects were also added to CG: 

management group at weaning and weaning date for BWG, WC, WP, and WM; 

management group at yearling and yearling recording date for YC, YP, and YM; 

weaning and yearling management group, and weaning and yearling date for WYG 

and SC. Birth season was defined as 1= January to March, 2= April to June, 3= July 

to September, and 4= October to December. Records of the weight gains and SC 

exceeding 3.5 standard deviations (SD) from the overall mean of the CG were 

removed. For all traits, CG with fewer than 10 records were also removed from 

further analyses. The model included the covariate ‘age of animal at recording’ as 

linear effect for all traits and ‘age of dam at calving’ as linear and quadratic effects for 

the weaning traits. 

 

 

3.2.2 Genotypic data and quality control 

 

 

A total of 3,382 Nellore animals were genotyped using the lllumina® BovineHD 

chip (HD; ~777,000 SNPs; Illumina, Inc., San Diego, CA, USA) and 137 animals 

were genotyped using the GeneSeek Genomic Profiler Bovine HD chip (GGP-HD; 

~76,000 SNPs; GeneSeek, Lincoln, NE, USA). The FImpute v2.2 software 

(Sargolzaei et al., 2014) was used for imputation of genotypes from the GGP-HD 

chip to the HD chip. The genotyping quality control (QC) filtered out markers located 

on non-autosomal regions that mapped to the same position, deviated from Hardy-

Weinberg equilibrium (HWE) test (P<10-5), with GenCall (GC) score lower than 0.15, 

SNP call rate lower than 0.95 and minor allele frequency (MAF) less than 0.02. All 



46 
 

 

samples presented call rate higher than 0.90 and were used in the GWAS. The 

remaining number of SNPs and samples after QC were 471,880 and 3,519, 

respectively. 

 

 

3.2.3 Principal component analysis 

 

 

A single multi-trait animal model, for the nine traits, was applied to estimate 

(co)variance components and EBVs using Wombat software (Meyer, 2007). For 

weaning traits, the statistical model included the fixed effects of CG and covariates 

(age of animal at recording and age of dam at calving), random direct additive 

genetic, maternal genetic, maternal permanent environmental and residual effects. In 

matrix notation the equation model for each weaning trait was: 

y = Xβ + Zaa + Zmm + Wp + e 

where: y is the vector of observations for each trait, β is a vector of systematic effects 

(CG and covariates), a is a vector of random direct additive genetic effects, m is a 

vector of random maternal genetic effects, p is a vector of random maternal 

permanent environmental effects, and e is a vector of random residual effects. X, Za, 

Zm, and W are the incidence matrices relating elements in β, a, m, and p to y, 

respectively. For yearling traits the model did not include maternal genetic and 

permanent environmental effects.  

The PCs were calculated from the eigen-decomposition of the additive genetic 

(co)variance matrix among traits (AT) using the eigen function implemented in the R 

software (R Development Core Team, 2017). The Kaiser criterion (1960) was used to 

select the PCs that explained the largest proportion of the total genetic variation of 

the traits. This criterion takes into account only PCs with eigenvalue above the unit. 

The EBVs of the corresponding PCs (EBVPCi
) previously selected according to 

Kaiser’s criterion were obtained as: EBVPCij
 = ei1*EBVj1 + ei2*EBVj2 + … + ei9*EBVj9, 

where ei1 is the coefficient of the eigenvector of the ith PC for the first trait (BWG), 

and EBVj1 is the EBV for the jth animal for the first trait (BWG), ei2 is the coefficient of 
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the eigenvector of the ith PC for the second trait (WC), and EBVj2 is the EBV for the jth 

animal for the second trait (WC), and so on. 

 

 

3.2.4 Genome-wide association analyses 

 

 

The following statistical methods were used to estimate SNP effects: (i) the 

weighted single-step method (wssGBLUP) proposed by Wang et al. (2012) and (ii) 

the BayesC method (Habier et al., 2011). The wssGBLUP model can be described 

as: 

y* = μ + Zaa + e  

where y* is the vector of pseudo-phenotypes (EBVs of the PCs in this study); μ is a 

vector of the overall mean; Za is an incidence matrix that relates animals to pseudo-

phenotypes; a is the vector of direct additive genetic effects and e is the vector of 

random residuals. It was assumed that a~N(0,Hσa
2) and e~N(0,Rσe

2
), where H is the 

relationship matrix based on genomic and pedigree information, σa
2 is the additive 

genetic variance, R is an diagonal matrix, whose elements account for the 

differences in the reliabilities  of the observations in y due to differences in the 

amount of available information on offspring to estimate EBVs, and σe
2 is the residual 

variance. A proxy for the reliabilities of the pseudo-observations (EBVPCij
) was 

obtained as SE(EBVPCij
)=√ei1

2 *SEj1
2

+ei2
2 *SEj2

2
+…+ei9

2 *SEj9
2

, where SE(EBVPCij
) is the 

approximated SE of the EBVPCij
 for the ith PC of the jth animal, ei1

2 is the square of the 

coefficient of the eigenvector for the ith PC for the first trait (BWG), and SEj1
2

 is the 

square of the standard error of the EBV of the jth animal for the first trait (BWG), ei2
2  is 

the square of the coefficient of the eigenvector for the ith PC for the second trait 

(WC), and SEj2
2

 is the square of the standard error of the EBV of the jth animal for the 

second trait (WC), and so on. The inverse of SE(EBVPCij
) was used in the diagonal of 

the R matrix. This proxy for the reliability of the pseudo-observations assumed no 

estimation error covariance between EBVs and that the coefficients of the 
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eigenvector for each PC were constants. The inverse of H matrix can be defined as 

(Aguilar et al., 2010): 

H
-1

=A
-1

+ [
0 0

0 G
-1

-A22
-1 ] 

where A is the numerator relationship matrix based on pedigree for all animals; A22 is 

the numerator relationship matrix based on pedigree for genotyped animals only; and 

G is the genomic relationship matrix for genotyped animals. 

The solutions of SNP effect estimates (û) were obtained as a function of the 

breeding values using the formula: û = DZ
'
[ZDZ']

-1
âg, where: D is a diagonal matrix 

with weights for SNPs, Z is an incidence matrix of genotypes for each locus, Z’ is the 

transpose of Z matrix, and âg is the vector of predicted breeding values (EBVs of 

PCs) of genotyped animals. The û vector and the D matrix were iteratively 

recomputed over two iterations using the following algorithm (Wang et al., 2012):  

1. In the first iteration t = 0 and Dt= I, where t is the iteration number, Dt is matrix D at 

iteration t, and I is an identity matrix. 

2. Calculate the SNP effects at iteration t(û(t)). 

3. Recalculate the diagonal elements of D as: di(t+1)
*

=ûi(t)
2

2p
i
(1-p

i
) for all SNPs, where 

p
i
 is the allele frequency of the reference allele of the ith marker and i is the ith SNP. 

4. Normalize D(t+1)= (tr(D(0))/tr(D(t+1)
*

))D(t+1)
*

. 

5. t = t +1. 

6. Exit, or loop to step 2. 

The wssGBLUP analyses were performed using the BLUPF90 family 

programs (Misztal, 2017).  

The BayesC method consisted of fitting a mixture model for SNP effects using 

the following model: 

y* = 1μ + ∑ (g
i
biδi)

n

i=1

 + e 

where y*, μ and e are the same as described above, 1 is a vector of ones, g
i
 is the 

vector containing the genotypes of the animals for the ith SNP, bi is the allele 

substitution effect of the ith SNP, and δi is an indicator variable (0, 1) sampled from a 

binomial distribution with parameters n and π, where n is the number of SNPs and π 
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is the fraction of SNPs not included in the model (equal to 1 if the ith SNP has a non-

zero effect on the trait and 0 otherwise). Prior beta distribution with parameters α=10
8
 

and β=10
10

 were assumed for π so that, in practice, π was almost fixed to be 0.99 

(Legarra et al., 2017). The BayesC was performed using the Markov Chain Monte 

Carlo (MCMC) algorithm implemented in the software GS3 (Legarra et al., 2017), 

running a single chain with 550,000 iterations, a burn-in period of 50,000 and a thin 

interval of 50. Compared to the Bayes Cπ, the BayesC method can achieve better 

results under specific situations, such as a trait with low heritability, low number of 

records and many QTLs affecting the trait of interest, leading to a not reliable 

estimation of π (Van den Berg et al., 2013). 

 

 

3.2.5 Defining QTL regions 

 

 

The results from the GWAS performed with wssGBLUP and BayesC were 

used to identify genomic windows associated with the main PCs. Quantitative trait 

loci regions of interest were defined based on haplotype block windows. Haploview 

v4.2 (Barrett et al., 2005) software, which uses by default the haplotype block 

definition proposed by Gabriel et al. (2002), was used to identify the haplotype blocks 

for the 29 autosomal chromosomes. The haplotype block definition was based on D’ 

and its 95% confidence interval, and each SNP-pair comparison was called "strong 

LD", "inconclusive" or "strong recombination". A haplotype block was then defined as 

follows: let C = 〈g1, …,gn〉 be a chromosome of n SNPs, S = 〈si , …, sj〉 a region of 

adjacent SNPs in C, l the number of strong LD SNP pairs in S, and r the number of 

strong evidence of historical recombination SNP pairs in S. Then, S is a haplotype 

block if (a) the two outermost SNPs, si and sj, are in strong LD, and (b) there is at 

least a proportion d of informative pairs that are in strong LD, i.e., l / (l + r) ≥ d.  

A total of 75,615 haplotype blocks were obtained (Figure 1). The largest 

haplotype block consisted of 109 SNPs, while the smallest one contained two SNPs. 

The average size of the blocks (± SD) was 4.82 SNPs (± 0.30). The distribution of 

haplotype blocks varied depending on the chromosome length. The largest and 
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smallest groups of haplotype blocks were observed on BTA1 and BTA25, 

respectively. A total of 102,915 SNPs did not cluster in haplotype blocks, but were 

still kept in the analyses. Interestingly, some of these markers were in the top-10 

ranking genomic regions that explained the highest proportion of variance estimated 

for the PCs. In order to verify if these markers were located at low confidence 

genomic regions, the findings were compared to the results obtained by Utsunomiya 

et al. (2016), who developed an approach to identify misassembled segments in the 

bovine reference genome assembly (UMD3.1.1).  

 

Figure 1. Number of haplotype windows per chromosome. 

 

For the PCs, the top-10 ranking windows that explained the highest proportion 

of genetic variance were identified. These regions were used to identify QTLs based 

on the starting and ending coordinates of each window by consulting the Animal 

QTLdb database (Hu et al., 2013).   

 

 

3.2.6 Functional annotation analyses 
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The NCBI Genome Data Viewer for the bovine genome was used for 

identification of the genes, using the UMD3.1.1 assembly as the reference map 

(https://www.ncbi.nlm.nih.gov/genome/gdv/?org=bos-taurus). Fasta sequences of the 

genes located within the top-10 windows were downloaded from the ENSEMBL 

Biomart Martview application (http://www.ensembl.org) and then uploaded into 

Blast2GO (Conesa et al., 2005). The BLAST results were then mapped to GO terms 

to obtain the GO annotation. All unique sequences were aligned against the 

reference sequences in the NCBI database using the BLASTp algorithm from 

Blast2GO software (Götz et al., 2008). Metabolic pathways associated with 

significant sequences were identified using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa and Goto, 2000; Kanehisa et al., 2016).  

 

 

 

3.3 RESULTS  

 

 

3.3.1 Principal component analysis 

 

 

According to Kaiser’s criterion (1960), the first three PCs were selected from 

multi-trait analysis. These three main PCs explained 87% of the total additive genetic 

variance of the traits included in this study (Table 2). From the nine original 

dimensions, PC1 showed negative and moderate coefficients for all traits. The 

common negative signal for all coefficients suggests that these traits present the 

same direction of variation in this PC. The PC2 had contrasting animals with early 

(better for finishing precocity, muscling and scrotal circumference) and late (better for 

weight gain and conformation) maturity biotype both at weaning and yearling. The 

PC3 differentiated weaning and yearling traits, contrasting animals according to their 

maturation rate (weaning versus yearling performance).  

 



52 
 

 

Table 2. Eigenvectors, eigenvalues (𝜆) and proportion (Prop) of the explained 
variance over the first three principal components (PC1 to PC3) for growth, 
visual score, and yearling reproductive traits in Nellore cattle. 

PCs BWG WC WP WM WYG YC YP YM SC 𝜆 Prop (%) 

PC1 -0.36 -0.29 -0.39 -0.39 -0.22 -0.30 -0.37 -0.38 -0.24 4.96 55.11 

PC2  0.39  0.51 -0.26 -0.22  0.01  0.52 -0.32 -0.30 -0.10 1.87 20.78 

PC3 -0.13 -0.19 -0.26 -0.33  0.84  0.15  0.12  0.06  0.13 1.01 11.22 

BWG: birth to weaning gain; WC: weaning conformation; WP: weaning precocity; WM: 
weaning muscling; WYG: weaning to yearling gain; YC: yearling conformation; YP: yearling 
precocity; YM: yearling muscling; SC: scrotal circumference. 
 

 

 

3.3.2 Genome-wide association studies  

 

 

The proportions of variance explained by the top-10 windows associated with 

the PCs are listed in Table 3. Some of the genomic regions obtained for the main 

PCs using wssGBLUP analyses were the same as obtained using BayesC analyses 

(highlighted in bold). For PC1, the common genomic region is located on BTA21 

(59,058,057 bp). For PC2, these genomic regions are located on BTA8 (59,138,856 

bp to 59,143,141 bp and 87,504,583 bp to 87,505,342 bp) and on BTA17 (1,180,289 

bp). For PC3, common genomic regions were identified on BTA10 (99,643,238 bp 

and 99,650,200 bp) and BTA20 (11,603,778 bp). The highest proportion of variance 

observed using wssGBLUP analyses were found on BTA7, BTA8 and BTA10 for 

PC1, PC2 and PC3, respectively, and on BTA24, BTA8 and BTA3 using BayesC 

analyses. The sum of the proportion of variances explained by the top-10 windows 

for these three PCs were 3.59%, 5.19% and 4.61%, respectively, using wssGBLUP 

analyses, and 5.81%, 11.11%, 6.39% using BayesC analyses. 
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Table 3. Top-10 windows explaining the highest proportion of genetic variance for 
the principal components (PC1 to PC3) obtained by wssGBLUP and 
BayesC analyses. 

PCs 
wssGBLUP  BayesC 

Chr Region (bp) Pvar  Chr Region (bp) Pvar 

PC1 7 99,833,568* 0.41  24 29,182,953-29,191,540 1.92 

 21 59,058,057* 0.40  9 10,562,531-10,569,900 0.81 

 2 44,257,626* 0.39  15 15,087,965* 0.66 

 24 29,204,164-29,209,985 0.38  26 3,803,966-3,821,201 0.48 

 26 9,009,427* 0.35  10 67,991,764-68,000,131 0.48 

 2 19,678,063-19,687,209 0.35  21 63,891,592-63,930,408 0.33 

 12 14,292,205* 0.34  3 
119,764,973-

119,775,433 
0.33 

 18 33,880,245* 0.34  2 19,275,577-19,283,611 0.28 

 4 36,147,273-36,155,792 0.32  19 43,023,638-43,042,919 0.27 

 4 96,646,598-96,653,736 0.31  21 59,058,057* 0.25 

PC2 8 59,138,856-59,143,141 0.89  8 59,138,856-59,143,141 5.86 

 17 1,180,289* 0.88  17 73,599,986* 0.92 

 12 23,593,713-23,594,586 0.66  11 74,478,406-74,487,412 0.72 

 3 58,098,646-58,110,679 0.60  20 39,648,515-39,665,731 0.59 

 11 75,813,087* 0.43  8 87,504,583-87,505,342 0.58 

 8 40,990,076-41,005,284 0.39  18 20,489,314-20,505,923 0.57 

 11 36,967,411-36,973,700 0.36  14 46,985,993-47,022,598 0.53 

 8 87,504,583-87,505,342 0.34  17 1,180,289* 0.46 

 18 16,266,983-16,267,862 0.33  8 102,445,910* 0.45 

 19 35,672,589-35,676,953 0.31  2 61,284,557-61,294,243 0.42 

PC3 10 99,643,238-99,650,200 0.89  3 14,369,634-14,405,644 1.89 

 20 11,603,778* 0.57  20 11,603,778* 1.05 

 18 3,844,284* 0.43  16 60,336,209-60,356,570 0.53 

 24 36,333,389* 0.43  11 2,048,759-2,057,847 0.50 

 2 
108,529,237-

108,546,737 
0.43  16 16,079,646-16,083,267 0.47 

 3 114,937,690- 0.40  14 19,933,581-19,943,530 0.41 
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114,944,278 

 2 53,059,581-53,060,713 0.39  24 59,846,358* 0.41 

 2 
131,580,148-

131,605,519 
0.37  10 99,643,238-99,650,200 0.39 

 19 52,665,363-52,691,522 0.36  18 27,366,008-27,412,578 0.39 

 8 4,830,615* 0.34  8 85,649,054* 0.35 

Chr: chromosome; Region (bp): starting and ending coordinates of the haplotype block; Pvar: 
% genetic variance explained by the SNPs within the window; *Single SNPs that did not 
cluster in haplotype blocks. The common genomic windows obtained for the main PCs using 
wssGBLUP and BayesC analyses are highlighted in bold. 

  

For the three PCs, several genomic regions were previously reported by 

different authors as containing QTLs for growth (Kim et al., 2003; Rolf et al., 2012), 

carcass (McClure et al., 2010; Baeza et al., 2011), conformation (Pryce et al., 2011; 

Berkowicz et al., 2012), and fatty acid composition (Peters et al., 2012; Cesar et al., 

2014) traits for beef and dairy cattle (Table 4).  
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Table 4. Previously published QTLs regions for growth, carcass, conformation and fatty acid composition traits for beef and 
dairy cattle which harbor the top-10 windows (haplotype blocks) explaining the highest proportion of genetic variance 
for the principal components (PC1 to PC3) obtained by wssGBLUP and BayesC analyses.   

PCs wssGBLUP  BayesC 

PC1 QTL Trait Chr Region (bp)  QTL Trait Chr Region (bp) 

 Body weight (birth) 2 18,250,280-

49,471,250 

 Body weight (birth) 2 18,250,280-

49,471,250 

 Body weight (weaning) 2 43,430,199-

49,295,365 

 Stature 2 17,953,475-

22,876,474 

 Stature 2 17,953,475-

22,876,474 

 Body weight (weaning and 

yearling) 

9 8,888,721- 

18,194,890 

 Longissimus muscle area 4 28,268,762-

38,039,020 

 Body weight (mature) 10 67,861,579-

72,420,258 

 Marbling score 4 28,268,762-

38,039,020 

 Carcass weight 10 65,419,585-

72,420,258 

 Fat thickness at the 12th rib 14 10,961,016-

14,785,148 

 Body weight (birth) 15 14,694,158-

18,600,230 

 Body weight (weaning) 18 22,926,481-

36,500,992 

 Body weight (weaning) 15 10,762,815-

18,600,230 

 Body weight (mature) 18 33,011,652-

36,500,992 

 Intramuscular fat 19 37,554,862-

46,978,329 

 Fat acid content 18 28,994,493-  Body weight (weaning) 24 27,303,121-
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46,084,260 29,303,627 

 Body weight (weaning) 24 27,303,121-

29,303,627 

 Carcass weight 24 26,571,082-

30,004,563 

PC2 Average daily gain 3 55,119,878-

68,212,933 

 Body weight (slaughter) 2 48,134,573-

62,205,631 

 Body weight (birth) 3 56,210,430-

58,174,550 

 Carcass weight 2 59,275,414-

65,118,834 

 Body weight (birth) 8 29,543,811-

42,343,887 

 Body weight (birth) 8 48,094,361-

64,725,844 

 Body weight (weaning) 8 58,434,111-

59,768,227 

 Body weight (weaning) 8 58,434,111-

59,768,227 

 Fatty acid content 11 75,039,655-

75,976,999 

 Body weight (weaning and 

mature) 

11 70,068,881-

80,930,488 

 Marbling score 11 62,118,964-

82,382,031 

 Marbling score 11 62,118,964-

82,382,031 

 Body weight (yearling), 

Height 

12 21,356,707-

36,550,507 

 Carcass weight 14 46,763,361-

47,157,787 

 Body weight (weaning)  19 21,579,122-

37,460,465 

 Body weight (weaning) 17 70,975,160-

74,702,234 

 Marbling score 19 31,254,823-

37,460,465 

 Marbling score 20 29,876,187-

45,415,528 
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PC3 Body weight (birth) 2 49,295,365-

85,095,065 

 Body weight (slaughter), Carcass 

weight 

3 14,298,989-

14,500,187 

 Marbling score 2 49,295,365-

62,205,631 

 Fat thickness at the 12th rib 3 14,300,994-

23,367,147 

 Fat thickness at the 12th rib 8 4,473,073-

17,294,027 

 Body weight 8 85,304,450-

86,538,180 

 Body weight (birth) 19 49,937,105-

59,464,484 

 Average daily gain, Body weight 14 19,715,680-

25,062,335 

 Marbling score 19 49,942,658-

59,447,271 

 Body weight (weaning) 16 12,204,152-

19,401,272 

 Body weight (yearling and 

mature) 

20 7,696,273-

15,713,179 

 Average daily gain 18 27,034,490-

29,073,969 

 Body weight (weaning) 24 30,004,563-

41,590,595 

 Body weight (yearling and 

mature) 

20 7,696,273-

15,713,179 

Chr = chromosome; Region (bp) = starting and ending coordinates for the QTL. 
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Table 5 presents the annotated genes within the top-10 windows associated 

with the first three PCs using wssGBLUP and BayesC analyses. For PC1, ten 

annotated genes were found within nine genomic windows identified in this study. 

The PC2 showed the lowest number of annotated genes, i.e. six, which were within 

five genomic windows. For PC3, a total of eleven genes were identified within nine 

genomic windows. 

 

Table 5. Annotated genes within the top 10 windows associated with the first three 
principal components (PC1 to PC3) obtained by wssGBLUP and BayesC 
analyses. 

PCs 
wssGBLUP  BayesC 

Chr Region (bp) Genes  Chr Region (bp) Genes 

PC1 2 44,257,626 CACNB4  3 
119,764,973-

119,775,433 
NDUFA10 

 2 
19,678,063-

19,687,209 

NFE2L2, 

LOC107133476 
 10 

67,991,764-

68,000,131 
FBXO34 

 4 
96,646,598-

96,653,736 
PLXNA4  19 

43,023,638-

43,042,919 
STAT5A 

 24 
29,204,164-

29,209,985 
CDH2  24 

29,182,953-

29,191,540 
CDH2 

 26 9,009,427 SGMS1  26 
3,803,966-

3,821,201 
LOC104976760 

PC2 8 
87,504,583-

87,505,342 
ROR2  8 

87,504,583-

87,505,342 
ROR2 

 11 75,813,087 LOC101907994  11 
74,478,406-

74,487,412 

PTRHD1, 

CENPO 

     14 
46,985,993-

47,022,598 
NOV 

     17 73,599,986 SPECC1L 

PC3 2 
131,580,148-

131,605,519 

HSPG2, 

LDLRAD2 
 3 

14,369,634-

14,405,644 

MEF2D, 

LOC100848553 

 8 4,830,615 GALNTL6  8 85,649,054 IPPK 

 19 52,665,363- NPTX1  11 2,048,759- KCNIP3 
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52,691,522 2,057,847 

 24 36,333,389 LOC786055  16 
16,079,646-

16,083,267 
BRINP3 

     16 
60,336,209-

60,356,570 
LOC104974482 

Chr: chromosome; Region (bp): starting and ending coordinates; Genes: ENSEMBL symbol 
of annotated genes using the Bos taurus UMD3.1 assembly. 

 

Gene Ontology enrichment analyses were performed for all candidate genes 

to investigate whether the loci associated with the three PCs corresponded to genes 

involved in known pathways. For PC1, most of the biological processes were 

involved in cellular (17.9%), metabolic (15.4%) and cellular component organization 

or biogenesis (10.3%) processes. For PC2, the genes were mainly enriched into 

cellular processes (28.6%), whereas for PC3, the biological processes were involved 

in cellular (28.6%), multicellular organismal (21.4%), metabolic (14.3%) and 

developmental processes (14.3%). For PC3, annotation using KEGG allowed the 

identification of genes involved in the “mucin type O-glycan biosynthesis” pathway. 

 

 

3.4 DISCUSSION 

 

 

In this study, the large number (75,615) of haplotypes blocks identified with an 

average size of about 5 SNPs confirms the feasibility of the Bovine HD chip to 

capture LD in the Nellore population. This finding suggests that the use of haplotype 

blocks to define the window size in association studies could be a better alternative 

to identify genetic variants and biological mechanisms underlying the traits of interest 

than using fixed length haplotypes.   

Overlapping windows were identified by the top-10 ranking genomic regions 

obtained using wssGBLUP and BayesC analyses. These windows are located on 

BTA21 for PC1, BTA8 and BTA17 for PC2 and on BTA10 and BTA20 for PC3. The 

identification of common genomic regions strengthens the potential of the candidate 

genes identified as possible associated with the PCs of the traits of interest. The 
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proportions of genetic variance explained by the top-10 ranking genomic regions 

indicate the polygenic nature of the PCs, i.e., a large number of genomic regions 

explained a relatively small proportion of the total additive genetic variance of each 

PC.  

For those windows harboring genomic regions previously described in the 

literature, it was observed a trend regarding the QTLs for each PC. For PC1, in 

general, the QTLs previously identified were associated with growth traits, such as 

body weight at birth, weaning, yearling and slaughter (Kim et al., 2003), fatty acid 

composition traits (Peters et al., 2012; Cesar et al., 2014) and carcass traits (McClure 

et al., 2010; Baeza et al., 2011). For PC2, most of the QTLs were associated with 

body weight at birth and weaning and carcass traits, including marbling score and 

subcutaneous fat (Kim et al., 2003; McClure et al., 2010; Baeza et al., 2011). For 

PC3, the QTLs previously identified were associated with the same traits described 

for PC1, but also for conformation traits, such as height at yearling and maturity, and 

rump width (McClure et al., 2010). The existence of previously reported QTL covering 

areas surrounding the windows detected in this study provides more support for the 

detected associations. 

For the first PC, two genomic windows located on BTA24 (29,204,164 bp - 

29,209,985 bp and 29,182,953 bp - 29,191,540 bp) have a common gene, named 

cadherin 2 gene (CDH2). Cadherins are single chain transmembrane glycoproteins 

that are essential for tissue development, regulation of cell proliferation, 

differentiation, and survival (Larue et al., 1996; Gumbiner, 2005). The CDH2 has 

been described as regulator of postnatal skeletal growth and bone mass 

maintenance in mice, developing several functions in the osteogenic lineage 

(Benedetto et al., 2010). The genetic ablation of this protein results in skeletal growth 

defects and impaired bone formation in humans and mice (Marie et al., 2014). The 

region found on BTA 2 (19,678,063 bp -19,687,209 bp) harbors the NFE2L2 gene 

also frequently referred as NRF2, which develop a critical role in adipocyte 

differentiation (Seo and Lee, 2013). Adipocyte cells are connective-tissue cells 

specialized in synthesis and contain large globules of fat and, therefore, are essential 

for maintaining the animal’s energy balance (Gregoire et al., 1998). Previous studies 

have reported that the NRF2 is involved in regulating whole body weight, obesity and 
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hepatic lipid homeostasis in mice (Shin et al., 2009; Huang et al., 2010; Yu et al., 

2011).  

Another gene found for PC1 was the STAT5A located on BTA19 (43,023,638 

bp – 43,042,919 bp). The STAT5A is a member of the universal transcription factors 

family (STAT) that plays important roles in the cellular response to several hormones 

and cytokines, and, therefore, is essential to cell proliferation and growth (Lin and 

Leonard, 2000; Rochman et al., 2009). Interestingly, the STAT5 gene is the main 

mediator of growth hormone (GH) action on target tissues, such as hepatocytes, 

where its role is related to modulating cellular metabolism and the production of IGF-

1, an important regulator of postnatal body growth (Hennighausen and Robinson, 

2008). Previous studies have demonstrated that disruption of both STAT5A and 

STAT5B resulted in a more pronounced reduction of body growth in mice and, 

therefore, both genes are necessary in the skeletal muscle for normal growth 

(Teglund et al., 1998; Klover and Hennighausen, 2007). Selvaggi et al. (2015), 

studying the STAT5A polymorphism and its influence on growth traits in cattle, 

observed that the most frequent genotype in the studied population showed an initial 

faster growth, resulting in higher body weight at 90 and 270 days of age, whereas the 

less frequent genotype exhibit a faster growth in the post-weaning period, which 

determined higher body weight at 450 days of age. 

The general functions described above for CDH2, NFE2L2 and STAT5A 

corroborate the biological interpretation for PC1, which showed a moderate 

coefficient for all the nine original traits, mainly discriminating high or low growth rate 

animals. Growth is related to an increase mass (weight) per unit time and involves 

changes in form and composition resulting from differential growth of the different 

parts of the body. In beef cattle, growth is evaluated in major tissues of the carcass, 

i.e., muscle, fat and bone, combined with adequate proportions of these three major 

tissues. Thus, it was expected that for PC1 the genomic regions obtained would be 

associated with growth and body composition traits.  

Regarding the PC2, the present study identified a genomic region on BTA20 

(39,648,515 bp - 39,665,731 bp) that had been previously associated with fatty acid 

composition traits in beef cattle (Saatchi et al., 2013). Some of the genes found for 

this PC have been mainly associated with bone and muscle formation and skeletal 



62 
 

 

development (ROR2 and NOV). The common genomic region identified among 

methods located on BTA8 (87,504,583 bp to 87,505,342 bp) harbors the receptor 

tyrosine kinase ROR2. In mammals, ROR2 plays major roles in skeletal development 

and mutations within this gene are responsible for short stature, limb bone 

shortening, and segmental defects of the spine (Afzal et al., 2000; van Bokhoven et 

al., 2000). The ROR2 is expressed in human’s osteoblasts, a group of cells 

responsible for the formation of new bone in the skeleton, being essential to promote 

differentiation at early and late stages of osteoblastogenesis (Liu et al., 2007).  

The NOV (nephroblastoma overexpressed) gene identified on BTA14 

(46,985,993 bp - 47,022,598 bp) belongs to the CNN family of proteins that are 

known for having growth-regulatory functions. This gene is expressed by osteoblasts 

in a variety of tissues, including bone, cartilage and muscle, and its transcription is 

regulated by transforming growth factor (TGF)-beta and bone morphogenetic 

proteins (BMP) (Canalis, 2007). A previous study has demonstrated that mutation of 

NOV gene results in abnormal skeletal development and muscle atrophy in mice 

(Heath et al., 2008). These findings contribute to better understand the biological 

interpretation of this second PC, which contrasts animals with early maturity biotype 

(animals with higher capacity to achieve a minimum degree of carcass finishing at 

moderate live weight and with adequate muscle mass development), and late 

maturity biotype (tall and thin animals with less fat deposition and higher live weight) 

both at weaning and yearling ages.  

The functions described for the candidate genes found for PC2 stand out by 

their associations with general tissue development. In livestock, during typical growth 

development, the animal’s body goes through a process of mass increase and body 

shape changes, which differs depending on the priorities of tissues development. The 

post-natal bone growth occurs early in animal’s life and remains constant during 

development, while the muscle tissue has its greatest development after birth and is 

the main component of the weight gain (Owens et al., 1995). At this moment, the 

genes related to muscle and skeletal formation, such as the annotated genes 

described for this PC, are essential for a normal growth development. Finally, the 

accumulation of adipose tissue occurs when the muscle development decrease. 

Thus, biologically, larger animals require more time to complete skeletal development 
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and, therefore, will present delayed muscle mass development and carcass finishing. 

For beef cattle producers, a desirable biotype is represented by an animal with 

precocious growth (weight gain) and finishing, resulting in a more profitable system. 

For PC3, a specific window on BTA3 (14,369,634 bp – 14,405,644 bp) was 

reported by Connor et al. (2017) in a genome-wide copy number variant analysis for 

production traits, including residual feed intake and dry matter intake in Holstein 

cattle. In another GWAS using Brahman cattle, Martínez et al. (2017) also detected 

suggestive SNPs on BTA16 (16,079,646 bp to 16,083,267 bp) associated with birth 

weight. The window found on BTA16 (60,336,209 bp – 60,356,570 bp) harbors a 

gene (LOC104974482) that was recently associated with significant copy number 

variation regions (CNVRs) for fatty acids in intramuscular fat of longissimus thoracis 

muscle of Nellore cattle (Lemos et al., 2018). 

The genomic window located on BTA2 (131,580,148 bp - 131,605,519 bp) 

harbors a member of the low-density lipoprotein receptor family, the LDLRAD2 gene, 

which has its ubiquitous expression in fat tissues (Hussain et al., 1999). The LDLR is 

the major cholesterol-carrying lipoprotein of plasma, developing important roles in the 

regulation of cholesterol homeostasis in mammalian cells (Defesche, 2004). 

Members of this family have been previously associated with regulating body weight 

and glucose metabolism in mice (Liu et al., 2012). The genomic window located on 

BTA24 (36,333,389 bp) contains a variant form of the second most abundant protein 

in the cell, the LOC786055 also known as EEF1A1 (Lee et al., 1992). Its major 

expression in specific tissues, such as skeletal muscle, occurs early in animal’s life 

and declines during development, such that in adult skeletal muscle, there is an 

almost complete loss of EEF1A1 expression (Khalyfa et al., 2001). The MEF2D gene 

found on BTA3 (14,369,634 bp – 14,405,644 bp) belongs to the MEF2 family of 

transcription factors (Estrella et al., 2015). Members of this family are involved in 

control of muscle and skeletal cell development through their effects on cell 

differentiation (Pon and Marra, 2016).  

The overlap of the identified genomic regions for production traits with 

previously reported QTL in the literature, as well as the general functions identified 

for the candidate genes, supports the biological interpretation for PC3, which 

discriminates weaning versus yearling traits, contrasting animals according to their 



64 
 

 

maturation rate (weaning versus yearling performance). This difference is possibly 

associated with the genetic potential of the animals to growth at different ages and 

environments: a) a pre-weaning environmental, where there is maternal influence 

(mainly due to the cow’s milk production and maternal ability), and b) a post-weaning 

environment, where the animals are raised without the direct influence of maternal 

effects, and usually under a challenging condition due the dry season which affects 

the quality of pasture.  

The GO enrichment analysis performed in this study for the three main PCs, 

revealed that different annotated genes are enriched in a large number of GO terms. 

For PC1, the GO terms identified are mainly involved in biological processes directly 

associated with the general organism development. For instance, the GO term 

“regulation of multicellular organism growth” (GO:0040014) is the process 

responsible to modulate the frequency, rate or extent of growth of the body. Another 

notable biological process for PC1 was GO:0006629 term “lipid metabolic process”, 

which is defined by any chemical reactions and pathways involving lipid in general, 

such as fatty acids, glycolipids and sterols (http://www.ensembl.org).  

In agreement with the general functions described for the annotated genes 

found for PC2, two GO terms - “skeletal system development” (GO:0001501) and 

“limb development” (GO:0060173) - were identified in this study. The GO term “BMP 

signaling pathway” (GO:0030509) is represented by part of the transforming growth 

factor-β (TGF-β) superfamily of proteins, the bone morphogenetic proteins (BMPs), 

which plays roles in bone and cartilage formation (Wang et al., 2014).  

Biological processes enriched for the gene list obtained for PC3 were 

associated with the development of muscle, skeletal and vital organs. The GO term 

“osteoblast differentiation” (GO:0001649) describes the process responsible for the 

formation of bone. For this component, annotation using KEEG allowed the 

identification of the “mucin type O-glycan biosynthesis” pathway. Previous studies 

reported that mutations in genes directly involved in this biological pathway are 

associated with growth retardation phenotypes and increased bone density in mouse 

(Ichikawa et al., 2009; Duncan et al., 2011). In general, the identified biological 

pathways allowed for specific interpretation across the three main PCs and are in 

agreement with the biological functions previous described for each component.  
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3.5 CONCLUSIONS  

 

 

The results from the genome-wide association studies showed that the genetic 

merit of the animals for each of the three main principal components for growth, 

visual score and reproductive traits in Nellore cattle is affected by many loci with 

small effects. Important chromosomal genomic regions associated with the main 

principal components were also identified. Some of these genomic regions overlap 

with previously reported regions associated with growth, carcass traits, conformation, 

and fatty acid composition traits in Nellore and other cattle breeds. Novel candidate 

regions for principal components were detected and some of them have suggestive 

important biological functions. The functional processes, pathways, and regulatory 

mechanisms identified in this study contributed to a better biological interpretation of 

the principal components and its associated biotypes, potentially allowing for genetic 

selection for more specific breeding goals, such as animals with faster growth and 

precocious biotype. 
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CHAPTER 4 - PREDICTION OF RESPONSE TO SELECTION AND GENOMIC 

ACCURACY OF PRINCIPAL COMPONENTS FOR GROWTH, 

VISUAL SCORE AND REPRODUCTIVE TRAITS IN NELLORE 

CATTLE 

 

ABSTRACT – Selection index is an efficient tool to combine various traits into 

a single value based on their biological and economic importance. Alternatively, an 

index derived from various traits can be calculated based on Principal Component 

Analysis (PCA) by using the eigenvalue of the Principal Component (PC) and the 

eigenvector of traits in each PC. This study was carried out to: 1) compare the 

genetic progress that would be achieved from selection based on PCs derived from 

nine growth, visual score and reproductive traits or using a current selection index 

(Final Index, FI) implemented in some Nellore cattle commercial breeding programs 

and a Harmonic Index (a selection index based on PCA); and, 2) investigate the 

performance of genomic predictions (accuracy and inflation) of these nine traits, the 

first three PCs, and the selection index. For this, phenotypes from 355,524 animals 

and genotypes from 3,519 animals (containing 471,880 Single Nucleotide 

Polymorphisms, SNPs) were used. The estimated breeding values (EBVs) were 

obtained from a multi-trait analysis using a mixed linear animal model. The eigen-

decomposition of the additive genetic (co)variance matrix (AT) was used to calculate 

the EBVs for the first three PCs. These EBVs were used as pseudo-phenotypes in 

the subsequent genomic analyses. Genomic predictions using the EBVs of all nine 

original traits and EBVs of selection indexes were also performed for comparison. 

Prediction accuracy was measured as the Pearson’s correlation between pseudo-

phenotypes and Genomic Estimated Breeding Values (GEBVs). The Harmonic Index 

(HI) yielded higher genetic gains for the studied traits when compared to PCs and FI 

and, therefore, could be used as alternative for increasing expected response to 

selection in Nellore cattle. Our findings indicated that genomic selection for growth, 

visual score and reproductive traits in Nellore cattle is feasible since moderate to high 

genomic predictions were obtained. 

Keywords: eigen-decomposition, selection index, single step GBLUP 
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4.1 INTRODUCTION 

 

 

Commercial breeding programs have focused on selecting animals for 

economically important traits that contribute to the production efficiency and long-

term sustainability of the beef production systems (Moreira et al., 2015; Lopes et al., 

2016; Fernandes et al., 2018). Over the years, selection has been applied to several 

traits simultaneously, as selection based on a single trait is not sufficient to improve 

the overall genetic merit of a population. When important traits differ in terms of 

variability, heritability, economic importance, and phenotype and genetic correlations, 

Selection Index has been proved to be an effective breeding approach for animal 

selection (Hazel, 1943; Falconer and Mackay, 1996).  

The theory of selection indexes is based on the fact that each individual has 

an overall genetic merit value that corresponds to the sum of breeding values 

associated with economically important traits weighted according to their relative 

economic importance (Smith, 1936; Hazel, 1943). Therefore, traits that have larger 

impact on profit or production goals consequently have greater economic weights 

associated with them. The strategy for properly designing selection indexes are: well-

estimated phenotypic and genetic (co)variance matrices and proper definition of the 

relative economic values of each trait part of the overall breeding goals. However, 

assessing the relative economic value for each trait can be challenging, which can 

considerably affect the selection index efficiency (Smith, 1983). 

The use of an alternative index that takes into account the correlation between 

the combined variables and the breeding value of the animal and the desired 

response to selection of each trait was proposed as an option to overcome the 

unavailability of accurate economic values for all important traits (Pesek and Baker, 

1969; Rouvier, 1969). Based on this approach, traits are weighted on the basis of the 

importance as determined by the researcher or breeder, in order to obtain a desired 

genetic gain without directly considering their relative economic importance (Pesek 

and Baker, 1969; Rouvier, 1969; Yamada et al., 1975). Alternatively, the index based 

on principal component analysis (PCA) has been proposed as an advantageous 

approach (Buzanskas et al., 2013; Boligon et al., 2016) that uses a well-known 
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methodology to construct linear combinations between traits by using the eigenvalue 

of the principal component (PC) and the eigenvector of traits in each PC. The index 

based on PCA does not take into account the economic importance of each trait, 

however, the PCs can show particular biological interpretations which could be used 

to select animals according to desirable breeding objectives. 

These potential biological associations between traits were previously 

demonstrated when PCA was applied on the (co)variance matrix among traits or the 

(co)variance matrix of the estimated breeding values (EBVs) obtained for each trait in 

beef cattle studies (Buzanskas et al., 2013; Boligon et al., 2016; Vargas et al., 2018). 

For instance, Roso and Fries (1995) demonstrated the possibility of selecting 

Hereford cattle for distinct size or body volumes based on the first PC.  

Alternatively to traditional methods of selection that use information on 

phenotypes and pedigrees to predict breeding values, genomic selection allows 

selecting candidates based on prediction of genomic estimated breeding values 

(GEBV) obtained from their estimated marker effects. The existence of linkage 

disequilibrium (LD) between single nucleotide polymorphisms (SNPs) and 

quantitative trait loci (QTL) is an essential assumption when using markers to 

accurately predict the genetic merit of animals (Meuwissen et al., 2001). However, 

additional sources of genetic information also have influence on prediction accuracy 

of genomic selection, such as co-segregation and relationships that are implicitly 

captured by SNP genotypes (Habier et al., 2007; 2013). In order to evaluate the 

application of genomic selection based on PCs, it is needed to assess the accuracy 

of GEBVs, which can determine the successful of implementing genomic selection 

for such traits or indexes and, therefore, optimize genetic response in breeding 

programs. 

The design of selection indexes based on PCs has been suggested to be a 

useful alternative for improving animal performance (Agudelo-Gómez et al., 2016; 

Boligon et al., 2016). However, to our knowledge, there are no studies investigating 

the efficiency of this approach compared to pre-existing selection indexes. Thus, the 

objectives of this study were: 1) to compare the genetic progress achieved by 

selecting breeding candidates based on PCs or on two current selection indexes 

used by some Nellore cattle commercial breeding programs; and 2) investigate the 
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performance of genomic predictions (accuracy and inflation) of these nine traits, the 

first three PCs, and the selection indexes. 

 

 

4.2 MATERIALS AND METHODS 

 

 

4.2.1 Phenotypic and contemporary groups 

 

 

Phenotypic records for growth, visual score and yearling reproductive (scrotal 

circumference) traits from 355,524 Nellore animals from the Alliance Nellore dataset 

(www.gensys.com.br), collected between 1990 and 2010, were used for this study. 

The animals were raised under tropical pasture systems in 246 farms located in 

Brazil and in Paraguay. The evaluated traits included birth-to-weaning weight gain 

(BWG) and visual scores of conformation (WC), finishing precocity (WP) and 

muscling (WM) at weaning (about 205 days of age), weaning-to-yearling weight gain 

(WYG) and visual scores of conformation (YC), finishing precocity (YP) and muscling 

(YM), and scrotal circumference (SC) at yearling (about 550 days of age) as an 

indicator of reproductive performance. Conformation, finishing precocity, and 

muscling traits were based on recorded visual scores assigned by well-trained 

technicians in a discrete ordered scale (from 1 to 5) on the basis of the variation 

within the contemporary groups. The higher the score, the more notable was the 

expression of the trait. Heritability estimates for the weaning and yearling traits range 

from 0.17 (BWG and WC) to 0.21 (WP) and from 0.18 (WYG) to 0.46 (SC), 

respectively (Vargas et al., 2018). 

Contemporary groups (CGs) for all traits included farm, year and season of 

birth, and sex. The following effects were also added to the CGs: management group 

at weaning and weaning date for BWG, WC, WP, and WM; management group at 

yearling and yearling date for YC, YP, and YM; weaning and yearling management 

group, and weaning and yearling date for WYG and SC. Birth season was defined as 

1 = January to March, 2 = April to June, 3 = July to September, and 4 = October to 
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December. Records of the weight gains and SC deviating 3.5 standard deviations 

(SD) from the overall mean of the CG were removed. For all traits, CG with less than 

10 records were also removed from further analyses. Furthermore, the models 

included the covariate ‘age of animal at recording’ as linear effect for all traits and 

‘age of dam at calving’ as linear and quadratic effects for the weaning traits. 

 

 

4.2.2 Genotypic data and quality control 

 

 

Genotypic data were available for 3,519 Nellore animals. Genotypes were 

generated with the lllumina® BovineHD SNP chip (HD; ~777,000 SNPs; Illumina, 

Inc., San Diego, CA, USA) and the GeneSeek Genomic Profiler Bovine HD SNP chip 

(GGP-HD; ~76,000 SNPs; GeneSeek, Lincoln, NE, USA). The FImpute v2.2 software 

(Sargolzaei et al., 2014) was used for imputation of genotypes from the GGP-HD 

chip to the HD chip. Samples with call rate lower than 90% were removed from the 

analysis. Non-autosomal and unmapped SNP were discarded. Markers deviating 

from Hardy-Weinberg equilibrium test (P-value<10-5), with GenCall (GC) score lower 

than 0.15, SNP call rate lower than 0.95 and minor allele frequency (MAF) less than 

0.02 were removed. The remaining number of SNPs and samples after QC were 

471,880 and 3,519, respectively. 

 

 

4.2.3 Principal component analysis 

 

 

Multi-trait analysis was performed using Wombat software (Meyer, 2007) to 

estimate (co)variance components and EBVs. For weaning traits, the animal model 

included the fixed effect of CG and covariates (age of animal at recording and age of 

dam at calving), random direct additive genetic, maternal genetic, maternal 

permanent environmental and residual effects. The statistical model for each 

weaning trait was as follows: 
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y = Xβ + Zaa + Zmm + Wp + e 

where: y is the vector of observations for each trait, β is a vector of systematic effects 

(CG and covariates), a is a vector of random direct additive genetic effects, m is a 

vector of random maternal genetic effects, p is a vector of random maternal 

permanent environmental effects, and e is a vector of random residual effects. X, Za, 

Zm, and W are the incidence matrices relating elements in β, a, m, and p to y, 

respectively. Maternal genetic and permanent environmental effects were not 

included in the models for yearling traits. 

The PCs were calculated from the eigen-decomposition of the additive genetic 

(co)variance matrix among traits (AT) using the eigen function implemented in the R 

software (R Development Core Team, 2018) as performed by Vargas et al. (2018). 

The Kaiser criterion (Kaiser, 1960) was used to select the PCs that explained the 

largest proportion of the total genetic variation of the traits. This criterion takes into 

account only PCs with eigenvalue above the unit. The PCs were used for calculating 

indexes to evaluate animals for the studied traits.  

The EBVs of the corresponding PCs (EBVPCi
) previously selected according to 

Kaiser’s criterion were obtained as: 

EBVPCij
 = evi1* EBVj1 + evi2* EBVj2 + … + evi9* EBVj9              (1) 

where evi1 is the coefficient of the eigenvector of the ith PC for the first trait (BWG), 

and EBVj1 is the EBV for the jth animal for the first trait (BWG), evi2 is the coefficient 

of the eigenvector of the ith PC for the second trait (WC), and EBVj2 is the EBV for the 

jth animal for the second trait (WC), and so on. 

 

 

4.2.4 Predictions of the genetic gain 

 

 

In practical terms, the equation defined in (1) can be compared to the 

aggregate genotype (H) of an individual, in which the economic weight for each trait 

is represented by the eigenvector’s coefficient obtained from PCA, as described 

above, and the genetic value (ai) is represented by the EBVs. Thus, the vector of 
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response to selection for each trait in H is directly obtained from the following 

equation: 

 

∆G = [∆G1+∆G2+…+∆Gq] = i
(b

'
G)

√b'P'b
 

 

where i is the selection intensity, b is the weighting factors column vector, G is the 

genetic (co)variance matrix and P is the phenotypic (co)variance matrix. The ∆G 

represents the amount of increase in performance that is expected to be achieved 

per generation of selection. In this study, estimates of ∆G were standardized in terms 

of genetic standard deviation of the corresponding trait.  

 Response to selection for a Harmonic Index (HI), an index based on PC1 and 

PC2, were also calculated: 

∆GHI=√1
´
GEijDijEij

´
G

´
 

where 1 is a (9x1) summing vector of ones, E is a matrix containing the eigenvectors 

as columns and D is a diagonal matrix with the ith and jth eigenvalues. 

In order to compare the genetic progress expected to be achieved with 

selecting breeding candidates based on PCs, estimates of genetic gains for a similar 

set of traits that compose a selection index (Final Index) currently used by some 

Nellore cattle breeding programs were also calculated (Table 1). 

 

Table 1. Weight factors (in %) for each trait used to compose the Final Index (FI) 
currently used for selection in Nellore cattle. 

Index 
Trait2 

BWG WC WP WM WYG YC YP YM SC 

FI 23 4 8 8 23 4 8 8 14 

1BWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference 
 
 
 

4.2.5 Genomic predictions 
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From the multi-trait analysis, three alternative response variables for genomic 

predictions were used, EBVs of the original traits (EBVT), EBVs of the PCs (EBVPC), 

and EBVs of the selection indexes for Nellore cattle (EBVIND). Genomic predictions 

were performed using single-step GBLUP method (ssGBLUP), under the following 

model:  

y* = μ + Waa + e  

where y* is the vector of pseudo-phenotypes (EBVT, EBVPC or EBVIND); μ is a vector 

of the overall mean; Wa is an incidence matrix that relates animals to pseudo-

phenotypes; a is the vector of direct additive genetic effects and e is the vector of 

random residuals. It was assumed that a~N(0,Hσa
2) and e~N(0,Rσe

2
), where H is the 

relationship matrix based on genomic and pedigree information, σa
2 is the additive 

genetic variance, R is an diagonal matrix, whose elements account for the 

differences in the reliabilities of the observations in y due to differences in the amount 

of available information on offspring to estimate EBVs, and σe
2 is the residual 

variance. A proxy for the reliabilities of the pseudo-observations (EBVPCij
or EBVIND) 

was obtained as SE(EBV
PCij

) = √evi1
2 *SEj1

2
 + evi2

2 *SEj2
2 

 + … + evi9
2 *SEj9

2
, where 

SE(EBV
PCij

) is the approximated SE of the EBVPCij
 for the ith PC of the ith animal, 

evi1
2 is the square of the coefficient of the eigenvector for the ith PC for the first trait 

(BWG), and SEJ1
2

 is the square of the standard error of the EBV of the jth animal for 

the first trait (BWG). Analyses were carried out using the BLUPF90 family programs 

(Misztal et al., 2016). The inverse of SE(EBV
PCij

) was used in the diagonal of the R 

matrix. This proxy for the reliability of the pseudo-observations assumed no 

estimation error covariance between EBVs and that the coefficients of the 

eigenvector for each PC were constant. 

  

 

4.2.6 Validation scheme 
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A forward prediction validation scheme was implemented to assess the 

feasibility of using genomic predictions for the PCs in Nellore cattle. The datasets 

were split into training and validation populations. The training population consisted 

of animals born between 1993 and 2008, whereas the validation set consisted of 

animals born in 2009 and 2010. This validation scheme ensured that information of 

own performance and/or progeny records of the validation animals did not contribute 

to the estimation of the training population EBVs, thus avoiding overlapping between 

training and validation sets (Amer and Banos, 2010). Prediction accuracy was 

measured as the Pearson’s correlation between pseudo-phenotypes and GEBVs. In 

order to measure the degree of inflation/deflation of GEBVs, the regression 

coefficient (b1) of EBVT (b1EBVT,GEBV), EBVPC (b1EBVPC,GEBV) and EBVFI (b1EBVFI,GEBV) 

was evaluated. 

 

 

4.3 RESULTS 

 

 

Estimates of genetic parameters based on the full phenotypic datasets as well 

as the results obtained from PCA were reported by Vargas et al. (2018). According to 

the authors, the first three PCs (PC1 to PC3) attained the Kaiser criterion (Kaiser, 

1960) and explained 87.11% of the total additive genetic variance for the traits. The 

first component (PC1) was characterized by similar coefficients (eigenvectors) for all 

traits, indicating that all of them are similarly important for the animal’s performance. 

The second component (PC2) distinguishes animals with contrasting performance for 

weight gain and conformation in relation to finishing precocity, muscling and scrotal 

circumference (both at weaning and yearling), mainly contrasting precocious versus 

late finishing animals. The third component (PC3) contrasted between weaning and 

yearling traits (Table 2).   
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Table 2. Eigenvectors of economically important traits in Nellore cattle, reduced to 
the first three principal components (PC1 to PC3). 

Trait1 PC1 PC2 PC3 

BWG 0.36 -0.39 -0.13 

WC 0.29 -0.51 -0.19 

WP 0.39 0.26 -0.26 

WM 0.39 0.22 -0.33 

WYG 0.22 -0.01 0.84 

YC 0.30 -0.52 0.15 

YP 0.37 0.32 0.12 

YM 0.38 0.30 0.06 

SC 0.24 0.10 0.13 

1BWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference 

 

It was observed in the two-dimensional graph of PC1 and PC2 (Figure 1) and 

the linear correlation between the original variables with PCs (Table 3) that the PC1 

was more closely associated with WP, WM, YC, and YP, with linear correlations 

ranging from 0.83 to 0.87. Considering the PC2, BWG, WC and YC presented 

greater discriminatory power when compared to the other traits, and they were 

negatively correlated with this component. For PC3, the largest linear correlation was 

obtained for WYG, with a correlation of 0.84. 
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Figure 1. Two-dimensional principal component’s plot of principal components 1 
(PC1) and 2 (PC2). 
 

Table 3. Correlation coefficients between original variables and the first three 
principal components (PC1 to PC3) 

Traits1 PC1 PC2 PC3 

BWG 0.79  -0.53  -0.14 

WC 0.63  -0.69  -0.20 

WP 0.87   0.36  -0.26 

WM 0.87   0.31  -0.32 

WYG 0.49  -0.02   0.84 

YC 0.83  -0.71              0.14 

YP 0.84   0.43   0.12 

YM 0.67   0.41   0.06 

SC 0.54   0.13   0.14 

¹BWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference 

 

Table 4 summarizes the structure of training and validation datasets as well as 

the average accuracy of EBVPC for each PC. The size of the training and validation 
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sets was the same for PCs, selection indexes and individual traits. Accuracy of 

EBVPC for the training set ranged from 0.43 (PC3) to 0.67 (PC2) and for the validation 

set ranged from 0.41 (PC3) to 0.66 (PC2). For WI and FI, accuracies of EBVIND for 

the training set were equal to 0.53 and 0.68, and for the validation set were equal to 

0.54 and 0.71, respectively. For the nine original traits, average accuracies of EBVs 

were equal to 0.60, 0.75, 0.57, 0.58, 0.43, 0.58, 0.57, 0.57 and 0.45 for BWG, WC, 

WP, WM, WYG, YC, YP, YM and SC, respectively. 

 

Table 4. Structure of training and validation datasets for the first three PCs (PC1 to 
PC3). 

PC1 

Training population  Validation population 

Birth year Phenotype 
Phenotype 

and genotype 
Acc2  Birth year N3 Acc2 

PC1 1990 - 2008 317,954 2,500 0.63  2009 - 2010 238 0.62 

PC2 1990 - 2008 317,954 2,500 0.67  2009 - 2010 238 0.66 

PC3 1990 - 2008 317,954 2,500 0.43  2009 - 2010 238 0.41 

1PCn: nth principal component 
2Acc: proxy of the accuracy for EBVPC in the training and validation population 
3N: sample size 

 

Genetic gains obtained per generation for the traits studied under different 

selection indexes are presented in Table 5. The genetic gains were assessed under 

a standardized scenario (i=1.76, which means that about 10% of individuals are kept 

for breeding after each selection round). For PC1, expected genetic gains ranged 

from 0.68 (WYG) to 1.21 (YP). For this PC, genetic gains obtained for weaning and 

yearling traits were slightly similar to those obtained for IAlliance. The PC2 showed 

negative gains for BWG (-0.65), WC (-0.82), WYG (-0.03), and YC (-0.85) and 

positive (favorable) genetic gains for the other traits. For PC3, expected genetic 

gains obtained for weaning traits were negative and ranged from -0.28 (WM) to -0.10 

(BWG), while positive genetic gains were obtained for yearling traits [range: 0.03 

(YM) to 0.81 (WYG)]. Positive genetic gains were obtained for all traits when using HI 

(range: 1.69 to 2.20). For this index the highest genetic gains were obtained for 

finishing precocity and muscling both at weaning and yearling. Genetic gains 

obtained for HI were higher when compared to the PC and FI indexes. 
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Table 5. Genetic gains obtained by generation for growth, visual score and scrotal 
circumference traits based on principal components (PCs) and current 
selection indexes considering 10% selection intensity (i=1.76). 

PC1 
Traits2 

BWG WC WP WM WYG YC YP YM SC 

PC1 1.09 0.87 1.21 1.20 0.68 0.99 1.12 1.14 0.73 

PC2 -0.65 -0.82 0.36 0.31 -0.03 -0.85 0.52 0.51 0.14 

PC3 -0.10 -0.17 -0.23 -0.28 0.81 0.09 0.08 0.03 0.13 

HI 1.91 1.71 2.20 2.16 1.88 1.82 2.15 2.11 1.69 

Selection 

Index3 

Traits2 

BWG WC WP WM WYG YC YP YM SC 

FI 1.07 1.04 1.10 0.98 1.12 1.39 1.43 1.45 1.43 

1PCn: nth principal component, HI: Harmonic Index  
2BWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference 
3FI: Final Index 

 

The genomic prediction accuracies for the PCs ranged from 0.48 (PC2) to 

0.62 (PC1), and for FI, accuracies was equal to 0.64 (Table 6). For the nine original 

traits, the predictive accuracies ranged from 0.49 (WC) to 0.70 (SC). The regression 

coefficients of EBVT on GEBV ranged from 0.67 (WYG) to 1.17 (WM) and were, in 

general, higher than those estimated for PC1 (0.74), PC2 (0.58), PC3 (0.51) and FI 

(0.83). 
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Table 6. Prediction accuracies measured by Pearson’s correlation between 
estimated breeding values and genomic breeding values [r(EBV,GEBV)] 
and estimates of regression coefficients (b1) for the nine traits. 

PC1 r(EBVPC,GEBV) b1 

PC1 0.62 0.74 

PC2 0.48 0.58 

PC3 0.60 0.51 

Selection Index2 r(EBVFI,GEBV) b1 

FI 0.64 0.83 

Trait3 r(EBVT,GEBV) b1 

BWG 0.66 1.28 

WC 0.49 1.01 

WP 0.69 1.05 

WM 0.67 1.17 

WYG 0.67 0.67 

YC 0.63 1.12 

YP 0.68 1.02 

YM 0.68 1.00 

SC 0.70 0.80 

1PCn: nth principal component  
2FI: Final Index 
3BWG: birth-to-weaning weight gain, WC: conformation at weaning, WP: precocity at 
weaning, WM: muscling at weaning, WYG: weaning-to-yearling weight gain, YC: 
conformation at yearling, YP: precocity at yearling, YM: muscling at yearling, SC: scrotal 
circumference 

 

 

 

4.4 DISCUSSION 

 

 

The PCA allowed visualizing genetic associations among the studied traits by 

summarizing the number of variables, using only the first three PCs instead of the 

nine traits, with a minimum loss of information. By definition, the correlation between 

PCs is zero, which means that the variation explained in PC1 is independent of that 

explained in PC2 and so on, implying that selection of individuals based on any PC 
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should not result in correlated response with other PC. Based on the results, PCA 

allows selecting animals according to general growth and distinguished maturity 

rates. In this sense, when the PCs with favorable biological meaning are in 

agreement to desired breeding objectives, they would represent selection indexes, 

which could be used directly in selection processes.  

Overall, the PC1 showed higher and balanced genetic progress for the studied 

traits when compared to PC2 and PC3. Thus, the selection to increase general 

growth in Nellore cattle should result in positive response when using PC1 as criteria 

for selection. This result could be explained by the favorable genetic correlations 

between the nine original traits (range: 0.15 to 0.86) and the moderate coefficients 

(eigenvectors) obtained for this PC. Similar genetic gains were obtained for the nine 

traits when using PC1 and FI, indicating that comparable response to selection could 

be achieved when using either one. Despite FI assigns higher weight factors for 

growth traits, such as BWG and WYG, when compared to visual scores and SC, the 

genetic correlations between these traits have influence on their genetic gain 

estimates.  

From the eigenvectors obtained for PC2 it is possible to select animals for 

early biotype (better for finishing precocity and muscling) at weaning and yearling, i.e. 

animals that are able to achieve a minimum degree of carcass finishing at a relatively 

low weight and suitable muscle mass development in a shorter time and, thus, are 

prepared for slaughtering earlier. The expected genetic gains estimated for this PC 

are in accordance with this finding, in which negative values were obtained for BWG 

(-0.65), WC (-0.82), WYG (-0.03), and YC (-0.85) and positive (favorable) genetic 

gains were obtained for finishing precocity and muscling at different ages, and scrotal 

circumference. The genetic gain obtained for WYG (-0.03) was probably due to the 

lower magnitude of the eigenvector obtained for this trait (0.01).  

For PC3, negative genetic gains were obtained for weaning traits (range: -0.28 

to -0.10) and positive (favorable) genetic gains were obtained for yearling traits 

(range: 0.03 to 0.81), indicating that this PC index could be used for selecting 

animals according to weaning and yearling performance. This finding was expected 

because PC3 is composed of negative eigenvectors for weaning traits and positive 

eigenvectors for yearling traits, differentiating the animals according to both ages. 
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This PC was responsible for presenting the lowest genetic gains for conformation, 

finishing precocity, and muscling at yearling when compared to the other PCs and 

indexes, which is possibly associated to the lower magnitude of the eigenvectors 

obtained for these traits.  

In this study, PC1 and PC2 were combined in order to create a Harmonic 

Index (HI) that could be used to select animals more profitable for particular 

production systems, focusing on select animals with adequate growth rate and 

precocious biotype. Including PC1 along with PC2 had a meaningful impact on the 

direction and amount of genetic gains. For this new index, genetic gains of higher 

magnitude were obtained when compared to the other indexes, indicating that 

superior response to selection would be expected when using HI as criteria for 

selection. For this index, no difference in terms of direction were observed between 

traits as showed by PC2, which contrasted weigh gain and conformation, and 

finishing precocity, muscling and scrotal circumference both at weaning and yearling. 

However, higher response to selection would be expected for finishing precocity and 

muscling when selecting animals based on this index.   

Previous studies have suggested using PCA as selection indexes attempting 

select superior individuals according to specific breeding objectives. For these 

purposes, the eigenvectors of each trait would represent the weights, i.e. the 

importance of changes in the genetic levels of traits and thus creating linear 

combinations of original traits that will lead to greater genetic progress in the desired 

direction. In this study, substantial increase in genetic gains would be achieved for 

the traits using HI when compared to FI, indicating that PCA approach could be 

implemented for selecting individuals. 

In this study, we compared the accuracies of GEBVs across nine important 

economic traits, three PCs, and a selection index indicated for Nellore cattle by using 

their respective EBVs as response variables. Based on the forward-prediction 

validation, the accuracies predicted for the original studied traits ranged from 0.49 

(WC) to 0.70 (SC) and were on average similar to the estimates obtained for PC1 

(0.62), PC2 (0.48), PC3 (0.60) and IAlliance (0.64). The perceived disadvantage 

associated with EBVPC accuracies when used as response variables can possibly be 

associated to the low reliabilities used as weighting factors in genomic analysis. 
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Once the EBVPC was calculated taking into account linear combinations of EBVs of 

each trait and their corresponding eigenvectors, the approximated standard errors 

represent an approximation of the reliabilities of EBVPC and, thus, was implemented 

as an alternative strategy of weighting in genomic analysis. 

The validation accuracies obtained for all nine traits were on average higher 

than those previously reported by Neves et al. (2014), when using a smaller training 

set. The authors reported accuracy estimates ranging from 0.38 (BWG) to 0.68 (YP). 

Several factors can lead to these differences, such as the size of the training 

population, accuracy of the pseudo-phenotypes, level of LD, and the degree of 

relationship between training and validation populations (Bolormaa et al., 2013; 

Boddhireddy et al., 2014).  

Regression coefficients close to 1 indicates that genomic predictions are on 

the same scale as the pseudo-phenotypes, i.e. neither inflated nor deflated. 

Regression coefficients lower than 1 indicate that GEBVs are overestimated and, 

thus, present higher variability than expected, while regression coefficients higher 

than 1 indicate that GEBVs present lower variability than expected (Wiggans et al., 

2011). Unbiased predictions allows accurately ranking the animals for a fair 

comparison across generations (Patry and Ducrocq, 2009; Aguilar et al., 2010). In 

general, the regression coefficients for the nine original traits were close to 1, 

indicating that predictions were not biased. The regression coefficients for FI were 

equal to 0.83 and the PCs regression coefficients ranged from 0.51 to 0.74. 

Differences in the scale of genomic predictions were also observed by Neves et al. 

(2014). According to the authors, predictions of genomic breeding values obtained for 

growth, visual score and reproductive traits using GBLUP method tended to be 

slightly inflated.  

 

 

4.5 CONCLUSIONS  

 

 

The first principal component and the Final Index (selection index for Nellore 

cattle) yielded to similar genetic gains for the nine original traits and, therefore, there 
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is no advantage in using principal component approach for increasing expected 

response to selection in Nellore cattle. However, the Harmonic Index (a selection 

index based on combining principal components) would lead to higher genetic gain 

for the studied traits when compared to the other indexes and, therefore, could be 

used as an alternative to select individuals. We demonstrated the possibility of 

improving growth, visual score and reproductive traits, principal components and 

selection index in Nellore cattle since moderate to high genomic predictions can be 

achieved. These results indicate the possibility of using PCA for implementing 

genomic selection for Nellore cattle. 
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CHAPTER 5 – FINAL CONSIDERATIONS 

 

 

In the present study results related to PCA for growth, visual scores, and 

reproductive traits in Nellore cattle, as well as its application in genomic association 

and prediction studies have been shown. Three PCA approaches were investigated 

for obtaining the PCs. From these analyses, genetic associations among the studied 

traits were unraveled, allowing the characterization of specific biotypes that were 

suggested to be used as breeding objectives for selection purposes. Although the 

PCA using the (co)variance matrix of EBVs obtained from multi-trait analysis resulted 

in less PCs explaining the greatest proportion of the variance of EBVs when 

compared to the eigen-decomposition of the additive genetic (co)variance matrix (AT) 

or the PCA using the (co)variance matrix of EBVs obtained from single-trait analysis, 

the use of the first three PCs from the eigen-decomposition of AT matrix seems to be 

the indicated approach to select Nellore cattle according to specific biotypes. 

Contrary to the (co)variance matrix of EBVs from single-trait analyses, the AT matrix 

accounts for the genetic relationship among traits, allowing to contrast the individuals 

according to the additive genetic effect of the studied traits. 

Our study showed important results from the genome-wide association studies 

(GWAS) using the main PCs for growth, visual score and reproductive traits in 

Nellore cattle. As most traits of interest in livestock, these PCs have presented a 

polygenic nature, which means that they are influenced by many loci with small 

effects. The identification of important chromosomal genomic regions associated with 

the PCs and their biological functions contributed to the further understanding of the 

genetic control acting on these components and their associated biotypes. These 

findings may contribute to the inclusion of these components on selection process 

and provide support for future functional genome studies. In addition, the observation 

of QTL previous reported in the literature covering areas surrounding the genes 

herein identified provides more evidence for these associations. Future studies 

targeting the genomic regions identified in this study could provide further knowledge 

to uncover the genetic architecture underlying the PCs. 
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The use of selection index based on PCs analysis was previously suggested 

as an attractive option because it simplifies the problem to a series of non-correlated 

new traits that can be useful as a simple selection strategy. The choice of selection 

criteria may vary according to the producer’s decision and profile. The PC1 and FI 

indexes lead to similar response to selection when compared to the other indexes. 

However, it is important to emphasize that the main goal of using PCA for 

economically important traits is to capture the distribution for different genetic effects 

that allow contrasting individuals according to distinguished biotypes, while the 

selection indexes are developed according to the relative importance of the traits that 

meets a general production system. In this sense, the PCA would still represent an 

alternative approach that could be used by breeding programs to select individuals 

according to specific PCs that agree with the breeding objectives. In addition, when 

combining PC1 and PC2 to create a Harmonic Index, genetic gains of higher 

magnitude can be obtained.  

Because the great relevance of Nellore cattle in beef production systems in 

Brazil, breeding programs have focused on using genomic selection to accelerate 

genetic improvement of economically important traits. Several studies have proven 

the feasibility of implementing genomic selection for growth, carcass, and meat 

quality traits in this breed (Neves et al., 2014, Fernandes Júnior et al., 2016, 

Magalhães et al., 2018). In this study, genomic predictions with moderate accuracies 

were obtained for growth, visual score and reproductive traits, PCs and a selection 

index in Nellore cattle. In general, these findings were slightly higher when compared 

to the reported in the literature for a similar set of traits. These differences may be 

due to the size of the training population, accuracy of the pseudo-phenotypes, level 

of LD, and the degree of relationship between training and validation populations 

(Bolormaa et al., 2013; Boddhireddy et al., 2014). 
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