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Resumo

Como é bem conhecido, a relatividade especial de Einstein, cuja cinemática é governada pelo
grupo de Poincaré, deixa de valer na escala de Planck devido à existência de uma escala de
comprimento invariante, dada pelo comprimento de Planck. Por essa razão, ela é incapaz de
descrever a cinemática naquela escala. Uma solução possível para esse problema, a qual preserva
a simetria de Lorentz — e consequentemente a causalidade — é substituir a relatividade espe-
cial de Einstein por uma relatividade especial na qual a cinemática é governada pelo grupo de de
Sitter. Claro que uma mudança na relatividade especial irá pruduzir mudanças concomitantes na
relatividade geral, a qual se torna o que chamamos de relatividade geral modificada por de Sit-
ter. Trabalhando no contexto dessa teoria, o objetivo desse trabalho é deduzir a fórmula geral da
aceleração relativa entre duas geodésicas próximas, a qual leva à equação do desvio geodésico
modificada por de Sitter. Uma análise simples dos efeitos adicionais induzidos pela cinemática
local de de Sitter é apresentada.
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Abstract

As is well-known, the Poincaré invariant Einstein special relativity breaks down at the Planck
scale due to the presence of an invariant length, given by the Planck length. For this reason, it is
unable to describe the spacetime kinematics at that scale. A possible solution to this problem that
preserves Lorentz symmetry — and consequently causality — is arguably to replace the Poincaré
invariant Einstein special relativity by a de Sitter invariant special relativity. Of course, a change in
special relativity produces concomitant changes in general relativity, which becomes what we have
called de Sitter modified general relativity. By working in the context of this theory, the purpose
of this work is to deduce the general relative acceleration between nearby geodesics, which leads
to the de Sitter modified geodesic deviation equation. A simple analysis of the additional effects
induced by the local de Sitter kinematics is presented.
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1 Introduction

1.1 The Problem with Einstein Special Relativity

As is well-known, Einstein special relativity is inconsistent with quantum mechanics [1]. The
problem is that, for very high energies, or more precisely, for energies of the order of the Planck en-
ergy, quantum mechanics predicts the existence of an invariant length scale, dubbed Planck length,
which is sometimes interpreted as the minimum attainable length in Nature. Since Lorentz is a
subgroup of Poincaré—which is the group that rules the kinematics in ordinary special relativity—
and considering that Lorentz is believed not to allow the existence of an invariant length, the kin-
ematics at Planck scale cannot be described by ordinary special relativity. This is the origin of
the inconsistency between Einstein special relativity and quantum mechanics. The first idea that
comes to mind whenever searching for a quantum kinematics is that, in order to allow the exist-
ence of an invariant length, Lorentz symmetry should be broken down [2,3]. However, to accept a
possible violation of the Lorentz symmetry is not so easy. Lorentz symmetry is deeply related to
causality [4], and any violation of the first implies a violation of the second. The point is that caus-
ality is one of the most fundamental principles of Physics, and its violation, even if it is assumed
to take place at the Planck scale only, is something we cannot be sure Nature is prepared to afford.
One way out of this conundrum is to look for a special relativity that preserves Lorentz symmetry.
An interesting possibility in this direction is arguably to assume that, instead of governed by the
Poincaré group, the spacetime kinematics is governed by the de Sitter group. As we are going
to discuss below, this amounts to replace the Poincaré invariant Einstein special relativity by a de
Sitter invariant special relativity.

1.2 de Sitter Invariant Special Relativity

The de Sitter spacetime is usually interpreted as the simplest dynamical solution of the sourceless
Einstein equation in the presence of a cosmological constant, standing on an equal footing with
all other gravitational solutions, like for example Schwarzschild and Kerr. However, as a non-
gravitational spacetime, in the sense that its metric does not depend on Newton’s gravitational
constant, the de Sitter solution should instead be interpreted as a fundamental background for
the construction of physical theories, standing on an equal footing with the Minkowski solution.
General relativity, for instance, can be constructed on any one of them. Of course, in either case
gravitation will have the same dynamics, only their local kinematics will be different. If the
underlying spacetime is Minkowski, the local kinematics will be ruled by the Poincaré group of
special relativity. If the underlying spacetime is de Sitter, the local kinematics will be ruled by the
de Sitter group, which amounts then to replace ordinary special relativity by a de Sitter-invariant
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special relativity [5–7]. It is important to mention that the first ideas about a de Sitter special
relativity are due to L. Fantappié, who in 1952 introduced what he called Projective Relativity, a
theory that was further developed by G. Arcidiacono. The relevant literature can be traced back
from Ref. [8]. The question then arises. Since the Lorentz group is usually blamed responsible
for the non-existence of an invariant length, and considering that it is also a subgroup of de Sitter,
how is it possible that in a de Sitter invariant kinematics the existence of an invariant length turns
out to be possible? To understand this point, let us first recall that Lorentz transformations can
be performed only in homogeneous spacetimes. In addition to Minkowski, therefore, they can be
performed in de Sitter and anti-de Sitter spaces, which are the unique homogeneous spacetimes in
(1+ 3)-dimensions [9]. As a homogeneous spaces, the de Sitter and anti-de Sitter spacetimes have
constant sectional curvature. Of course, their Ricci scalar are also constant and have respectively
the form

R = ±12 l−2 , (1.1)

where l is a length-parameter, usually called pseudo-radius. Now, by definition, Lorentz trans-
formations do not change the curvature of the homogeneous spacetime in which they are per-
formed. Since the scalar curvature is given by (1.1), Lorentz transformations are found to leave
the length parameter l invariant [10]. Although somewhat hidden in Minkowski spacetime, be-
cause what is left invariant in this case is an infinite length—corresponding to a vanishing scalar
curvature—in de Sitter and anti-de Sitter spacetimes, whose pseudo-radii are finite, this property
becomes manifest. Contrary to the usual belief, therefore, Lorentz transformations do leave in-
variant a very particular length parameter: that defining the scalar curvature of the homogeneous
spacetime in which they are performed. If the Planck length lP is to be invariant under Lorentz
transformations, it must represent the pseudo-radius of spacetime at the Planck scale, which will
be either a de Sitter or an anti-de Sitter space with a Planck cosmological term

ΛP = ±3/l2
P ' ±1.2 × 1070 m−2. (1.2)

In the de Sitter invariant special relativity,* therefore, the existence of an invariant length-parameter
at the Planck scale does not clash with Lorentz invariance, which remains a symmetry at all scales.
Taking into account the deep relationship between Lorentz symmetry and causality [4], in this the-
ory causality is always preserved, even at the Planck scale. Instead of Lorentz, translation invari-
ance is broken down. In fact, in this theory, physics turns out to be invariant under the so-called de
Sitter translations, which in stereographic coordinates are given by a combination of translations
and proper conformal transformations [11]. We can then say that, in the same way Einstein special
relativity may be thought of as a generalization of Galilei relativity for velocities near the speed
of light, the de Sitter invariant special relativity may be thought of as a generalization of Einstein
special relativity for energies near the Planck energy. It holds, for this reason, at all energy scales.

1.3 General Purposes

When general relativity is constructed on a de Sitter spacetime, the Poincaré invariant Einstein
special relativity is naturally replaced by a de Sitter invariant special relativity, changing general
relativity to what we have called de Sitter modified general relativity [12]. In this theory, the

*From now on, our interest will be restricted to the de Sitter case.
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kinematic curvature of the underlying de Sitter spacetime and the dynamical curvature of general
relativity are both included in the same Riemann tensor. This means that the cosmological term Λ
no longer appears explicitly in Einstein’s equation, and consequently the second Bianchi identity
does not require it to be constant [13]. Far away from the Planck scale, Λ can consequently assume
smaller values, corresponding to larger values of the de Sitter length-parameter l. For low energy
systems, like for example the present-day universe, the value of Λ will be very small, and the
de Sitter invariant special relativity will approach the Poincaré-invariant Einstein special relativ-
ity. Spacetimes that do not reduce locally to Minkowski are known since long and come under the
name of Cartan geometry [14]. The particular case in which it reduces locally to de Sitter is known
in the literature as de Sitter-Cartan geometry [15]. By considering general relativity in such geo-
metry, the basic purpose of the present work is to derive the de Sitter modified geodesic deviation
equation, and then make an attempt to understand the new effects that will show up. It should
be mentioned that geodesic deviation is one of the effects present in the Landau-Raychaudhuri
equation. This means that the results of the present work could eventually be used to deduce the
de Sitter induced modifications in the Landau-Raychaudhuri equation, as well as its implications
for Cosmology.

3



2 Isometries and Killing Vectors

In this chapter we are going to introduce some basic concepts about symmetries of a spacetime.
In particular, we are going to see how the invariance of the metric tensor under a local group of
transformations gives rise to the so-called Killing vectors. This construction will be illustrated in
the specific case of Minkowski spacetime, whose kinematics is governed by the Poincaré group.

2.1 Isometries of spacetime and Killing vector

If the metric of a given spacetime is invariant under a coordinate transformation, then this coordin-
ate transformation is said to be an isometry of the spacetime. Instead of regarding such coordinate
transformation as changes from one coordinate system to another, we can adopt an alternative
point of view and regard them as changes of position within the same, fixed coordinate system. A
metric gµν is said to be invariant under a given coordinate transformation x → x ′ if the new metric
tensor is the same function of its argument as the old metric tensor, that is

g′µν(x) = gµν(x) (2.1)

for all x. The usual tensor transformation formula is

g′µν(x
′) =

∂xα

∂x ′µ
∂xβ

∂x ′ν
gαβ(x) , (2.2)

with its inverse given by

gµν(x) =
∂x ′α

∂xµ
∂x ′β

∂xν
g′αβ(x

′) . (2.3)

We consider the special case of a infinitesimal coordinate transformation

x ′µ = xµ + ξµ (2.4)

where ξµ is an arbitrary function of position, with |ξµ | � 1. For this transformation,

∂x ′α

∂xµ
= δαµ +

∂ξα

∂xµ
(x ′) , (2.5)

and the transformation of the metric tensor takes the form

gµν(x) =
(
δαµ +

∂ξα

∂xµ

) (
δ
β
ν +

∂ξβ

∂xµ

)
g′αβ(x

′) . (2.6)
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Neglecting higher order terms, we can write

gµν(x) ≈ g′µν(x
′) +

∂ξα

∂xµ
g′αν(x

′) +
∂ξβ

∂xν
g′µβ(x

′) . (2.7)

Using the Taylor series expansion as an explicit function of x,

g′µν(x
′) ≈ g′µν(x) + ξ

σ
∂g′µν

∂xσ
, (2.8)

the last equation can be rewritten in the form

gµν(x) ≈ g′µν + εξ
σ
∂g′µν(x)

∂xσ
+ ε

∂ξα

∂xµ
g′αν(x

′) + ε
∂ξβ

∂xν
g′µβ(x

′) . (2.9)

Condition (2.1) is then

0 = ξσ
∂gµν

∂xσ
+
∂ξα

∂xµ
gαν +

∂ξβ

∂xν
gµβ , (2.10)

which is equivalent to

0 = ξσ
∂gµν

∂xσ
+

(
∂µξν − ξ

α∂µgαν
)
+

(
∂νξµ − ξ

β∂νgµβ

)
. (2.11)

Combining the three derivatives of the metric tensor into a Christoffel symbols, we get

∂µξν + ∂νξµ − 2ξαΓαµν = 0 , (2.12)

or more compactly
− ∇νξµ − ∇µξν = 0 . (2.13)

This is the Killing equation. The vector fields ξα that satisfy (2.13) are called Killing vectors of
the metric gµν(x). The problem of determining all infinitesimal isometries of a given metric is now
reduced to the problem of determining all Killing vectors of the metric [9]. Of course, any linear
combination of Killing vectors (with constant coefficients) is also a Killing vector.

2.2 Homogeneous Spaces

A metric space is said to be homogeneous if there exist infinitesimal isometries (2.4) that carry
any given point X into any other point in its immediate neighborhood. This metric must admit
Killing vectors that at any given point take all possible values. For any n-dimensional space we
can choose a set of n Killing vector ξµλ (x,X) with

ξ
µ
λ (X,X) = δ

µ
λ (2.14)

A metric space is said to be isotropic about a given point X if there exist infinitesimal isometries
(2.4) that leave the point X fixed, so that ξµ(X) = 0 and for which the first derivatives ξλ;ν take all
possible values, subject only to the antisymmetric condition (2.13). For any n-dimensional space
we can choose a set of n(n − 1)/2 Killing vectors ξ(µν)λ (x,X):

ξ
(µν)
λ (x,X) ≡ −ξ(µν)λ (x; X) (2.15)

ξ
(µν)
λ (X,X) ≡ 0 (2.16)

ξ
(µν)
λ;ρ (X,X) ≡ δ

µ
λδ

ν
ρ − δ

µ
ρδ

ν
λ (2.17)
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Another useful formula relates the second derivative of the Killing vector to the Riemann tensor

∇ν∇µξσ − ∇µ∇νξσ = −Rλσνµξλ . (2.18)

If we write the same equation with cyclic permutations of the indices (νµσ), and then add (νµσ)
equation to the (µσν) equation and subtract the (σνµ) equation, we obtain that

∇ν∇µξσ = −Rλσνµξλ . (2.19)

As an example of a maximally symmetric space, consider an n-dimensional flat space (Minkowski),
with vanishing Riemann tensor. We choose a coordinate system with constant metric and vanish-
ing affine connection. From equation (2.19) in this coordinate system, we get

∂2ξσ
∂xµ∂xν

= 0 . (2.20)

The general solution is
ξσ = aσ + bνσ xν (2.21)

with aσ and bνσ constant. This satisfies the Killing equation (2.13) only if

bνσ = −bσν . (2.22)

We can choose a set of n(n + 1)/2 Killing vectors

ξ
(ν)
σ ≡ δ

ν
σ (2.23)

and
ξ
(µν)
σ ≡ δ

µ
σ xν − δνσ xµ . (2.24)

The general Killing vector is
ξσ = aµξ

(ν)
σ + bµνξ

(µν)
σ . (2.25)

The n vectors ξ(ν)σ represent (ordinary) translations and the n(n − 1)/2 vectors ξ(µν)σ represent
infinitesimal rotation (which for Minkowski are the Lorentz transformations). Thus can see that
the Minkowski spacetime admits n(n + 1)/2 independent Killing vectors.

2.3 Minkowski spacetime as an example

The Killing vectors can be used as a basis for the generators of the kinematic group of special
relativity. In the four dimensional Minkowski spacetime, there are ten Killing vectors: six associ-
ated to the Lorentz group and four associated to the translation group. The four Killing vectors of
translation are

ξνµ = δ
ν
µ . (2.26)

The translation generators can then be written in the form

Pµ = δνµ
∂

∂xν
. (2.27)
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It is important to note that the translation Killing vectors appear explicitly in the generators. How-
ever, since they are given by Krönecker delta’s, it is a usual to rewrite them in the form

Pµ =
∂

∂xµ
, (2.28)

without any mention to the translational Killing vectors. Although mathematically correct, the pre-
vious version is more elucidative, as we are going to see when considering the de Sitter spacetime.
The translation generators obey the commutation relations[

Pµ,Pν
]
= 0 . (2.29)

On the other hand, the Killing vector of associated to the Lorentz symmetry are

ξ
(µν)
σ = δ

µ
σ xν − δνσ xµ . (2.30)

The corresponding generators can be split into three rotation generators Ji j ,

J12 = x
∂

∂y
− y

∂

∂x
(2.31)

J23 = z
∂

∂y
− y

∂

∂z
(2.32)

J31 = z
∂

∂x
− x

∂

∂z
(2.33)

and three Lorentz boost generators Ji0

J10 = x
∂

∂t
+ ct

∂

∂x
(2.34)

J20 = y
∂

∂t
+ ct

∂

∂y
(2.35)

J30 = z
∂

∂t
+ ct

∂

∂z
. (2.36)

They can be written in the compact form

Jµν =
(
xµ

∂

∂xν
− xν

∂

∂xµ

)
, (2.37)

which are generically called Lorentz generators. In terms of the Killing vectors, they read

Jµν = ξ α(µν)
∂

∂xα
. (2.38)

The set of ten generators Pµ and Jµν of the Poincaré group obey the commutation relations[
Jµν, Jσρ

]
= ηνσ Jµρ + ηµρJνσ − ηµρJνσ − ηνρJµσ (2.39)[

Pµ, Jνρ
]
= ηµνPρ − ηµρPν (2.40)[

Pµ,Pν
]
= 0 . (2.41)
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Minkowski space M with zero curvature has as group of motion the Poincaré group

P = L � T ,

the semi direct-product bewteen the Lorentz group L = SO(3,1) and the Abelian group of trans-
lation T . In fact, Minkowski is an homogeneous space under L, actually it is the quotient
M ≡ P/L. Lorentz group is a subgroup, which provides a isotropy around a given point of M ,
and the translation invariance enforces this isotropy around any other point. The translation group
T is then responsible for the equivalence of all points of spacetime. In other words, Minkowski is
transitive under translations.
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3 Geodesic Deviation in General Relativity

General relativity is constructed on a Riemannian spacetime that reduces locally to Minkowski.
This is a consequence of the strong equivalence principle, according to which the laws of physics
must reduce locally to that of special relativity. Since the kinematic group of Einstein special
relativity is Poincaré, which in turn is the group of motion of Minkowski, any solution of Einstein
equation must reduce locally to Minkowski. In this chapter we are going to review the geodesics of
general relativity, and then to obtain the corresponding geodesic deviation equation. Its Newtonian
limit will also be studied.

3.1 Geodesic Equation

In general relativity, the gravitational interaction is not described by a force, but by a geometric
property of the spacetime. More specifically, the presence of gravitation produces a curvature in
spacetime, and any particle moving in a gravitational field will follow the curvature of spacetime.
The corresponding trajectories are called geodesics. For the sake of comparison with the case of
locally de Sitter spacetimes, to be studied in the next chapter, we are going to deduce here the
equation of motion of particles in a curved spacetime. If gravity is regarded a manifestation of the
curvature of spacetime itself, and not as the action of some force, then the equation of motion of
a particle moving only under the influence of gravity must be that of "free" particle in the curved
spacetime. Hence, the action for such free particles is given by

S = −mc
∫ a

b

ds = −mc
∫ √

gµνdxµdxν . (3.1)

From the Euler-Lagrange equation, we obtain

d
ds

(
gµν

dxν

ds

)
−

1
2
gαβ,µ

dxα

ds
dxβ

ds
= 0 . (3.2)

Using the identity
dgµν
ds
= gµν,α

dxα

ds
, (3.3)

Eq. (3.2) can be rewritten as

gµν,α
dxα

ds
dxν

ds
+ gµν

d2xν

ds2 −
1
2
gαβ,µ

dxα

ds
dxβ

ds
= 0 . (3.4)

Multiplying both sides of this equation by gσµ, we get

d2xσ

ds2 +
1
2
gσµ

(
2gµβ,α − gαβ,µ

) dxα

ds
dxβ

ds
= 0 . (3.5)

9



In view of the symmetry of dxαdxβ in α and β, the above equation becomes

d2xσ

ds
+ Γσαβ

dxα

ds
dxβ

ds
= 0 , (3.6)

or equivalently
duσ

ds
+ Γσαβ uαuβ = 0 , (3.7)

where u = dxσ/ds is the four-velocity of particle. This is the geodesic equation for spacetimes
that reduce locally to Minkowski.

3.2 Geodesic Deviation Equation

From a general relativity perspective, the relative acceleration of particles in a freely-falling is
not caused by variation in the gravitational force (in general relativity there is no the concept
of gravitational force). Rather, free particles travel along the geodesics of spacetime, which are
trajectories that follow the curvature of spacetime. If two near particles accelerate relative to each
other, their geodesics that initially are parallel either converge or diverge, depending on the local
curvature. To obtain the geodesic deviation equation, we consider a family of geodesics

uν∇νuµ = 0 (3.8)

differing in the value of some parameter λ. This means that, for each λ = constant, xµ = xµ(s, λ)
will represent the equation of a geodesic, with s an affine parameter, as for example the proper
time. We introduce the four-vector [16]

ηµ =
∂xµ

∂λ
δλ ≡ vµ δλ (3.9)

joining points on infinitely close geodesics, corresponding to parameters λ and λ + δλ, that have
the same value of s. From the trivial equality vρ∂ρuµ = uρ∂ρvµ, it follows that

uρ∇ρvµ = vρ∇ρuµ , (3.10)

with uµ = ∂xµ/∂s the particle four-velocity. We consider now the second derivative

D2vµ

Ds2 = uσ∇σ (uν∇νηµ) . (3.11)

Using identity (3.10), as well as the relation(
∇σ∇ρ − ∇ρ∇σ

)
vµ = Rµνσρ vν , (3.12)

with Rµνσρ the curvature tensor, after some algebraic manipulation we arrive at

D2vµ

Ds2 = vα∇α(uν∇νuµ) + Rµνσρuνuσvρ . (3.13)

10



The first term on the right-hand side is zero due to the geodesic equation (3.8). Multiplying both
sides the factor δλ, we get finally

D2ηµ

Ds2 = Rµνσρuνuσηρ , (3.14)

which in general relativity is called the geodesic deviation equation. It expresses the relative
acceleration between two neighboring geodesics, which is seen to be proportional to the curvature
tensor, a concept related to the spacetime geometry. Physically, the acceleration of neighboring
geodesics is interpreted as a manifestation of gravitational tidal forces.

3.3 Newtonian Limit of the Geodesic Deviation Equation

An interesting test of the geodesic deviation equation is to obtain its Newtonian limit, where grav-
ity is described in terms of a force. To arrive at this result we have to assumer that the gravitational
field is weak, in which case we can consider an expansion around the Minkowski metric ηµν, in
the form

gµν = ηµν + hµν , (3.15)

where hµν is the metric perturbation, which satisfies the condition
��hµν �� � 1. As is well-known,

its time component is related to the Newtonian potential Φ through

h00 = 2Φ/c2 . (3.16)

Also, the metric (3.15) is stationary, which means that all the derivatives ∂0gµν are zero. And
finally, as a consequence of the weak field, all particle velocities are assumed to be small compared
with the speed of light c, that is, v � c. Under the above conditions, it is easy to verify that

Γ
0

00 = 0 and Γ
i
00 =

1
2
δi j∂jh00 . (3.17)

The non-vanishing components of the Riemann tensor are then found to be

Ri
00j = −∂jΓ

i
00 = −∂j

(
1
2
δik∂kh00

)
. (3.18)

Let us consider now the space components (µ = i) of the geodesic deviation equation (3.14). Since
in the Newtonian limit the space components u j are negligible in relation to the time component
u0 ' 1, it assumes the form

D2ηi

Ds2 = Ri
00ju0u0 η j = Ri

00j η
j , (3.19)

Furthermore, considering that the connection components Γi j0 vanishes, the covariant derivatives
on the left-hand side reduce to ordinary derivatives:

d2ηi

ds2 = Ri
00j η

j . (3.20)

Now, the usual Newtonian limit of the time component of the geodesic equation (3.7) yields [16]

cdt/ds = constant.
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We can then multiply both sides of (3.20) by ds2/c2dt2, which yields

d2ηi

dt2 = Ri
00j c2 η j . (3.21)

Substituting (3.18) and using identity (3.16), we get

d2ηi

dt2 = − δ
ik (

∂j∂kΦ
)
η j . (3.22)

It should be noted that the force appearing on the right-hand side is proportional to the distance
separating the particles, which shows that the Newtonian geodesic deviation in general relativity
is cosistent with the Newtonian description of tidal forces [17].
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4 de Sitter Space, Group, and All That

In this chapter we are going to review the de Sitter spacetime and group. We present a description
about the geometry of the de Sitter spacetime and a discussion about the structure of the de Sitter
group. After we will study the contraction limits of de Sitter group by means of Inönu-Wigner
procedure and, finally we will present the de Sitter Killing vectors.

4.1 The de Sitter Spacetime

The de Sitter spacetime, denoted dS (4,1), is a hyperbolic, maximally symmetric curved space-
time. It can be seen as a hypersurface in a host 5-dimensional pseudo-Euclidean space with metric
ηAB = (+1,−1,−1,−1,−1), whose points in Cartesian coordinates χA satisfy the relation

ηAB χ
AχB = −l2 . (4.1)

In terms of four-dimensional coordinates, it assumes the form

ηµν χ
µ χν −

(
χ4

)2
= −l2 (4.2)

where l is the de Sitter length parameter, or pseudo-radius. In addition, the de Sitter length para-
meter is related with the cosmological constant by

Λ =
3
l2 (4.3)

4.1.1 Stereographic coordinates

The stereographic coordinates {xµ} are obtained by performing a stereographic projection of hy-
perboloid, represented by equation (4.1), to Minkowski space. This projection is given by

χµ = Ωxµ and χ4 = −lΩ
(
1 +

σ2

4l2

)
, (4.4)

where
Ω =

1
1 − σ2/4l2 , (4.5)

with σ2 the Lorentz invariant squared form σ2 = ηµνxµxν. In these coordinates, the infinitesimal
de Sitter quadratic interval assumes the form

ds2 = Ω2ηαβdxαdxβ , (4.6)

13



from where we see that, in this case, the de Sitter metric is conformally flat:

gαβ = Ω
2ηαβ . (4.7)

The Levi-Civita connection of this metric is

Γ
ρ
µν =

Ω

2l2
(
δ
ρ
µηναxα + δρηµαxα − ηµνxρ

)
. (4.8)

The corresponding Riemann tensor is given by

Rρµνσ =
Ω2

l2
(
δ
ρ
ν ηµσ − δ

ρ
µηνσ

)
, (4.9)

or equivalently

Rρµνσ =
1
l2

(
δ
ρ
ν gµσ − δ

ρ
µgνσ

)
, (4.10)

with gµσ the metric (4.7). The Ricci and scalar curvatures are given respectively by

Rµν =
3
l2 gµν and R =

12
l2 . (4.11)

4.2 de Sitter group and algebra

Minkowski spacetime M , with vanishing curvature and Poincaré as its kinematic group, is the
simplest case of a homogeneous spacetime. It is actually a homogeneous space under the Lorentz
group:

M = P/L . (4.12)

Minkoswki is a isotropic and homogeneous spacetime. Its isotropy is ruled by the Lorentz trans-
formations and its homogeneity is ruled by the ordinary translations. de Sitter is also a homogen-
eous spacetime, with the de Sitter group SO(4,1) as kinematic group. It is homogeneous space
under the Lorentz group:

dS = SO(4,1)/L (4.13)

Its homogeneity property, as we are going to see, is completely different from Minkowski.

4.2.1 Generators of the de Sitter group

In Cartesian coordinates χA , the generators of the infinitesimal de Sitter are written in the form

LAB = ηAC χ
C ∂

∂ χB
− ηBC χ

C ∂

∂ χA
. (4.14)

These generators satisfy the commutation relations

[LAB, LCD] = ηBCLAD + ηADLBC − ηBDLAC − ηACLBD (4.15)

In term of stereographic coordinates {xµ}, the de Sitter generators are given by

Lµν = ηµρxρPν − ηνρxρPµ and L4µ = lPµ −
Kµ
4l

, (4.16)
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where
Pµ = ∂µ and Kµ =

(
2ηµνxνxρ − σ2δ

ρ
µ

)
∂ρ (4.17)

are the generators of ordinary and proper conformal transformation, respectively. Generators Lµν
refer to the Lorentz subgroup, whereas the L4µ define the transitivity on the homogeneous space.
These generators satisfy the commutation relations[

Lµν, Lσρ
]
= ηνσLµρ + ηµρLνσ − ηµρLνσ − ηνρµσ (4.18)[
L4µ, Lνρ

]
= ηµνL4ρ − ηµρL4ν (4.19)[

L4µ, L4ν
]
= Lµν (4.20)

We can see from equation (4.16) that de Sitter spacetime is transitive under combination of or-
dinary translations and proper conformal transformation — usually called "de Sitter translations".
This should be compared to Minkowski, which is transitive under ordinary translations only. We
can then say that the de Sitter spacetime naturally introduces the proper conformal transformations
as part of spacetime kinematics.

4.3 Inönü-Wigner contractions of de Sitter group

In this section we are going to discuss two possible Inönü-Wigner contractions of the de Sit-
ter group [18]. Starting with a semisimple group, the Inönü-Wigner contraction yields a non-
semisimple group with the same dimension of the original group. A trivial example is the contrac-
tion limit of the speed of light going to infinity c→ ∞, which leads the relativistic Lorentz group
to the non-relativistic Galilei group. In the same limit the de Sitter group contracts to the Newton-
Hooke group, which is a non-relativistic group in the presence of a non-vanishing cosmological
constant. In what follows we are going to consider both the limit of a vanishing and the limit of
an infinite cosmological term Λ.

4.3.1 The contraction limit l →∞

In order to study the limit l → ∞, which corresponds to Λ→ 0, it is convenient to rewrite the de
Sitter generators according to

Πµ ≡
L4µ

l
= Pµ −

Kµ
4l2 , (4.21)

whereas the generators Lµν keep their original form form. In term of theses generators, the com-
mutation relations assume the form[

Lµν, Lσρ
]
= ηνσLµρ + ηµρLνσ − ηµρLνσ − ηνρµσ (4.22)[
Πµ, Lνρ

]
= ηµνΠρ − ηµρΠν (4.23)[

Πµ,Πν
]
= l−2Lµν (4.24)

The last commutation relation shows that the "de Sitter translations" are not really, translations,
but rotations. When we take the limit l → ∞, we see from (4.21) that de Sitter generators Πµ
reduces to generators of ordinary translations:

Πµ → Pµ . (4.25)
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In this limit, the commutation relations (4.22), (4.23) and (4.23) reduce to[
Lµν, Lσρ

]
= ηνσLµρ + ηµρLνσ − ηµρLνσ − ηνρµσ (4.26)[

Pµ, Lνρ
]
= ηµνPρ − ηµρPν (4.27)[

Pµ,Pν
]
= 0 , (4.28)

which are the commutation relations of the Poincaré group. This means that, under the limit in
consideration, the de Sitter group SO(4,1) contracts to the Poincaré group P. Concomitantly, the
de Sitter space dS = SO(4,1)/L contracts to the Minkowski space M = P/L, and the curvature
tensor vanishes:

Rρµνσ → 0 , Rσρ → 0 , R→ 0 . (4.29)

4.3.2 The contraction limit l → 0

In order to study the limit l → 0, which corresponds to Λ → ∞, we have to rewrite the de Sitter
generators according to

Π̄µ = 4lL4µ = 4l2Pµ − Kµ , (4.30)

whereas the generators Lµν keep their original form. In this case the commutation relations as-
sumes the form [

Lµν, Lσρ
]
= ηνσLµρ + ηµρLνσ − ηµρLνσ − ηνρµσ (4.31)[
Π̄µ, Lνρ

]
= ηµνΠ̄ρ − ηµρΠ̄ν (4.32)[

Π̄µ, Π̄ν
]
= 16l2Lµν (4.33)

In the contraction limit l → 0, we can see from (4.30) that the de Sitter generators Π̄µ reduce to
the generators of proper conformal transformations:

Π̄µ = −Kµ . (4.34)

The commutation relations (4.31), (4.32) and (4.33) assume then the form[
Lµν, Lσρ

]
= ηνσLµρ + ηµρLνσ − ηµρLνσ − ηνρµσ (4.35)[
Kµ, Lνρ

]
= ηµνKρ − ηµρKν (4.36)[

Kµ,Kν
]
= 0 . (4.37)

We can identify these commutation relations as the Lie algebra of the conformal Poncairé group,
P̄ = L � T̄ , the semi-direct product of the Lorentz and the proper conformal. As a result of this
algebra and group deformations, the de Sitter spacetime reduces to the homogeneous space

dS → M̄ = P̄/L .

Concomitantly, the de Sitter metric reduces to

ḡµν = σ
−4ηµν , (4.38)
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which is invariant under proper conformal transformations. This is similar to the Minkowski
metric ηµν, which is invariant under ordinary translations. Also similar to Minkowski, the corres-
ponding Riemann, Ricci, and scalar curvatures vanish identically:

R̄ρµνσ → 0 , R̄σρ → 0 , R̄→ 0 .

From these properties we can infer that M̄ is a singular, four-dimensional cone spacetime, transit-
ive under proper conformal transformation [11]

4.4 de Sitter transformation and Killing vectors

The de Sitter spacetime is maximally symmetric in the sense that it can lodge the highest possible
number of Killing vectors. In terms of the five-dimensional space coordinates, an infinitesimal de
Sitter transformation is written as

δχC =
1
2
ε ABLAB χ

C (4.39)

where εCD = −εDC are the transformation parameter, and

LCD = ηCE χ
E ∂

∂ χD
− ηDE χ

E ∂

∂ χC
(4.40)

are the de Sitter generators. In terms of stereographic coordinates can express it:

δxµ ≡ δL xµ + δΠxµ =
1
2
ενρLνρxµ + ε4ρL4ρxµ (4.41)

where
δL xµ =

1
2
ενρLνρxµ

are the infinitesimal transformations of Lorentz group, with Lµν the Lorentz generators defined by
equation (4.16) and ενρ are transformation parameters,then

δΠxµ = ε4ρL4ρxµ (4.42)

are the infinitesimal transformations of de Sitter "translation", with L4ρ are the generators that
define the transitivity on the de Sitter spacetime. Now, we are going to study separately the cases
of large and small values of the de Sitter length parameter l, which correspond to the cases of
small and large values of the cosmological term Λ.

4.4.1 Large values of l

For large values of l, it is convenient to redefine the "de Sitter translations" generators according
to

Πρ =
L4ρ

l
= Pρ −

1
4l2 Kρ . (4.43)

In this case, the de Sitter transformation assume the form

δxµ ≡ δL xµ + δΠxµ =
1
2
ενρLνρxµ + ε4ρl

L4ρxµ

l
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δxµ ≡ δL xµ + δΠxµ =
1
2
ενρLνρxµ + ερΠρxµ (4.44)

where ερ = ε4ρl. Sustituting the generators, the infinitesimal transformations of Lorentz group
assumes the form

δL xµ =
1
2
ξ
µ
νρε

νρ (4.45)

where ξµνρ =
(
ηνλδ

µ
ρ − ηρλδ

µ
ν

)
xλ are the Killing vectors of the Lorentz group. On the other hand,

the "de Sitter translations" assume the form

δΠxµ = ξµρ ε
ρ (4.46)

Where
ξ
µ
ρ = δ

µ
ρ −

1
4l2 δ̄

µ
ρ (4.47)

are the Killing vectors of the "de Sitter translations", with δµρ the Killing vectors of the ordinary
translations, and

δ̄
µ
ν = 2ηνλxλxµ − σ2δ

µ
ν (4.48)

the Killing vectors of proper conformal transformation. Of course, the ten Killing vectors satisfy
the Killing equation:

∇νξ
(ρσ)
µ + ∇µξ

(ρσ)
ν = 0

∇νξ
(ρ)
µ + ∇µξ

(ρ)
ν = 0 .

In the contraction limit l →∞, the de Sitter Killing vectors reduce to those of the Poincaré group,
and we get back the transformation of the Poncairé group:

δL xµ =
1
2
ξ
µ
ρνε

ρν and δPxµ = δµρ ε
ρ . (4.49)

4.4.2 Small values of l

For small values of l, it is convenient to rewrite the "de Sitter translations" generators in the form

Π̄ρ ≡ 4lL4ρ = 4lPρ − Kρ . (4.50)

The de Sitter transformations then becomes

δxµ ≡ δL xµ + δΠ̄xµ =
1
2
ενρLνρxµ + ερΠ̄ρxµ (4.51)

with ερ ≡ ε4ρ/4l the transformation parameters. The infinitesimal Lorentz transformation keeps
its form

δL xµ =
1
2
ξ
µ
νρε

νρ (4.52)

where ξµρ =
(
ηµλδ

µ
ρ − ηρλδ

µ
nu

)
xλ are the Killing vectors of the Lorentz group. The "de Sitter

"translation", on the other hand, becomes

δΠ̄xµ = ξ̄µρ ε
ρ (4.53)

18



where
ξ̄
µ
ν = 4l2δ

µ
ν − δ̄

µ
ν (4.54)

are the Killing vectors of the "de Sitter translations". Of course, the ten Killing vectors satisfy the
Killing equations:

∇νξ
(ρσ)
µ + ∇µξ

(ρσ)
ν = 0

∇νξ
(ρ)
µ + ∇µξ

(ρ)
ν = 0 .

In the contraction limit l → 0, the de Sitter Killing vectors reduce to the transformation of the
conformal Poncairé group:

δL xµ =
1
2
ξ
µ
ρνε

ρν and δΠ̄xµ = δ̄µρ ε
ρ . (4.55)
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5 General Relativity in Locally de Sitter Spacetimes

As we have discusses in Chapter 1, the de Sitter spacetime represents a different background for
the construction physical theories, standing with an equal footing with Minkowski spacetime.
General relativity, for instance, can be constructed on any one of them. Of course, in either
case gravitation will have the same dynamics, only their local kinematics will be different. If
the underlying spacetime is Minkowski, the local kinematics will be ruled by the Poincaré group
of Einstein special relativity. If the underlying spacetime is de Sitter, the local kinematics will
be ruled by the de Sitter group, which amounts then to replace ordinary special relativity by a
de Sitter-invariant special relativity. When general relativity is constructed on Minkowski, all
solutions to Einstein equation will be a spacetime that reduces locally to Minkowski. On the other
hand, when general relativity is constructed on de Sitter, all solutions to the corresponding Einstein
equation will be a spacetime that reduces locally to de Sitter. Instead of a Riemannian geometry,
spacetime will be represented by a more general structure called Cartan geometry. In this chapter,
we are going to explore the changes that occur in general relativity when it is constructed on a
de Sitter spacetime. Our ultimately purpose is to understand how the concept of local transitivity
changes the notion of motion and consequently the notion of geodesics.

5.1 The de Sitter modified Einstein equation

In a locally de Sitter spacetime, the gravitational action is written in the form

Sg = −
c3

16πG

∫
R
√
−g d4x (5.1)

where the scalar curvature R represents both the kinematical curvature of the underlying de Sitter
spacetime and the dynamical curvature of general relativity. Let us consider an arbitrary dynamical
transformation δgρµ of the metric tensor, which is a transformation not related to any spacetime
coordinate transformation. Variation of the gravitational action under such metric transformation
yields

δSg =
c3

16πG

∫ (
Rρµ − 1

2g
ρµR

)
δgρµ
√
−g d4x . (5.2)

The term between parentheses is the so-called Einstein tensor, which satisfies the contracted form
of the second Bianchi identity

∇µ
(
Rρµ − 1

2g
ρµR

)
= 0 , (5.3)
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with ∇µ the covariant derivative in the spacetime metric. On the other hand, when considering the
variation of the action of a general source field

Sm =
1
c

∫
Lm
√
−g d4x , (5.4)

it is necessary to take into account some subtleties. The problem is that the explicit form of the
covariantly conserved current depends on the local properties of spacetime. The metric transform-
ation in this case must then take into account those properties. In the locally Minkowski spacetime
of ordinary general relativity, such metric transformation has the form

δTgνµ = δ
ρ
ν δgρµ , (5.5)

where δ
ρ
ν are the Killing vectors of translations, which are the transformations that define the

transitivity of the Minkowski spacetime, and δgρµ is the same arbitrary metric transformation
used to compute the variation of the gravitational action. In this case, the variation of the source
action (5.4) is

δSm = −
1
2c

∫
δ
ρ
α Tαµ δgρµ

√
−g d4x , (5.6)

where

δ
ρ
α Tαµ ≡ Tρµ = −

2
√
−g

δ(
√
−gLm)

δgρµ
(5.7)

is the symmetric energy-momentum tensor, which is covariantly conserved:

∇µ
(
δ
ρ
α Tαµ

)
= 0 . (5.8)

We have on purpose kept the (trivial) translational Killing vectors δρα in the above expressions
because they are quite elucidative. For example, remember that Noether’s theorem establishes
a relation between invariance under ordinary translations and energy-momentum conservation.
The presence of the translational Killing vectors in the conserved current leaves it clear that the
conservation law (5.8) is a legitimate consequence of Noether’s theorem, in the sense that the local
properties of spacetime were properly taken into account.* Let us consider now the case of locally
de Sitter spacetimes. Analogously to (5.5), the metric transformation in this case is written as

δΠgνµ = ξ
ρ
ν δgρµ , (5.9)

where ξρν are the Killing vectors of the de Sitter “translations”, which are the transformations
that define the transitivity of the de Sitter spacetime [18], and δgρµ is the same arbitrary metric
transformation used to compute the variation of the gravitational action. Using (5.9), the variation
of the source action (5.4) is found to be

δSm = −
1
2c

∫
Tρµ δΠgρµ

√
−g d4x , (5.10)

*In the usual formulation of general relativity, differently from (5.5), the translational Killing vectors are not expli-
citly shown in the metric transformation. Although this can be done—because the Killing vectors are just Kronecker
delta’s—it becomes unclear why the variation of the Lagrangian with respect to the metric tensor should give the
energy-momentum tensor, a current whose conservation law is related, through Noether’s theorem, to the invariance of
the source Lagrangian under spacetime translations.
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where Tρµ is the symmetric energy-momentum tensor (5.7). It can then be written in the form

δSm = −
1
2c

∫
Π
(ρµ) δgρµ

√
−g d4x , (5.11)

with Π(ρµ) the symmetric part of the current [19]

Π
ρµ = ξ

ρ
α Tαµ , (5.12)

which is the covariantly conserved current in locally de Sitter spacetimes:

∇µΠ
ρµ = 0 . (5.13)

Thus, from the variational principle δSg + δSm = 0, we get

c3

16πG

∫ (
Rρµ −

1
2
gρµR −

8πG
c4 Π

(ρµ)
)
δgρµ
√
−g d4x = 0 . (5.14)

In view of the arbitrariness of δgρµ, the de Sitter modified Einstein equation is found to be [19]

Rρµ −
1
2
gρµR =

8πG
c4 Π

(ρµ) . (5.15)

This is the equation that replaces ordinary Einstein equation when the Poincaré invariant Einstein
special relativity is replaced by a de Sitter-invariant special relativity [5–7]. In the contraction limit
l →∞, which corresponds to Λ→ 0, the underlying de Sitter spacetime contracts to Minkowski,
the de Sitter Killing vectors ξµρ reduce to the Killing vectors δµρ of ordinary translations, and we
recover the ordinary Einstein equation

Rρµ − 1
2g

ρµR =
8πG
c4 Tρµ (5.16)

of locally Minkowski spacetimes.

5.2 Geodesics in Locally de Sitter spacetimes

As is well-known, the de Sitter spacetime is geodesically complete. However, there are points of
the space that cannot be joined to each other by any usual geodesics of the de Sitter metric [20].
The reason is that the usual family of de Sitter geodesics describes trajectories whose points are
connected to each other by ordinary translation only. Since the de Sitter spacetime is transitive
under a combination of translation and proper conformal transformations, there will be points in
the de Sitter spacetime that cannot be joined to each other by any geodesics of this family. In
what follows we are going to show that, provided the local transitivity properties of spacetime are
appropriately taken into account, a new family of geodesics that are able to connect any two points
of spacetime is obtained. We are going to obtain these new geodesics from a variational principle,
and also from the Mathisson-Papapetrou method.
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5.2.1 de Sitter Geodesics from a Variational Principle

A particle of mass m is represented by the action integral

S = −mc
∫ b

a

ds (5.17)

with ds = (gµνdxµdxν)1/2. In the case of locally de Sitter spacetimes, as we have seen in the
previous section, a general coordinate transformation has the form

δxρ ≡ δΠxρ = ξρµδxµ , (5.18)

where ξρµ are the Killing vectors associated to the "de Sitter translations". Under such transforma-
tion, the action changes according to

δS = −mc
∫ b

a

[
1
2
∂ρgµνδΠxρuµdxν + gµνuµδΠdxν

]
(5.19)

where uµ = dxµ/ds is the usual particle four-velocity. Using the identity

δΠ(dxν) = d(δΠxν) ,

the action variation becomes

δS = −mc
∫ b

a

[
1
2
∂ρgµνδΠxρuµdxν + gµνuµd(δΠxν)

]
. (5.20)

Integrating the last term by parts, and considering that δΠxν vanishes at the extremes of integration,
the variation reduces to

δS = −mc
∫ b

a

[
1
2
∂ρgµνuµuν − ∂σgµρuσuµ − gµρ

duµ

ds

]
δΠxρds . (5.21)

Using now the relation
∂λgµν = Γ

ρ
µλgρν + Γ

ρ
νλgµρ , (5.22)

the variation assumes the form

δS = mc
∫ a

b

[
uσ∇σuγξ

γ
ρ

]
δΠxρds (5.23)

with ∇σ the covariant derivative in the Christoffel connection of the metric gµν. Considering that
the Killing vectors ξγρ satisfy locally the Killing equations, we get

δS = mc
∫ a

b

[
uσ∇σ

(
uγξ

γ
ρ

) ]
δΠxρds . (5.24)

Defining the anholonomic four-velocity Uρ = ξ
γ
ρuγ, and taking into account the arbitrariness of

the variation δΠxρ, we get finally

uσ∇σUρ ≡ uσ
[
∂σUρ − Γ

γ
ρσUγ

]
= 0 . (5.25)
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Equivalently, we can write [21]
dUρ

ds
− ΓγρσUγuσ = 0 . (5.26)

This is the new family of geodesic, which is consistent with the transitivity properties of locally
de Sitter spacetimes. The solutions of this equation are trajectories whose points are connected
to each other by the combination of translations and proper conformal transformation. For this
reason, they can be interpreted as the true geodesics of locally de Sitter spacetimes. It is important
to note that these geodesics introduce a new notion of motion. In fact, in stereographic coordinates,
the anholonomic four-velocity assumes the form

Uµ ≡ ξ
µ
ρ uρ = uµ −

1
4l2 δ̄

µ
ρuρ , (5.27)

from where we see that it takes into account both the translational and proper conformal "direc-
tions" of locally Sitter spacetimes. It is also important to note that, similarly to the usual case
of locally Minkowski spacetimes, the geodesics (5.26) coincide with the conservation of the for-
momentum, which in this case is the de Sitter four-momentum

πµ ≡ mcUµ = pµ −
1

4l2 kµ (5.28)

where
pµ ≡ δµρ pρ = mcuµ and kµ ≡ δ̄µρ pρ =

(
2ηρν xνxµ − σ2δρ

µ
)

pρ (5.29)

are respectively the ordinary four-momentum, and the proper conformal momentum. In fact, it
easy to see that (5.26) is equivalent to

dπµ

ds
+ Γµνλπ

νuλ = 0 , (5.30)

which is the conservation law of the de Sitter four-momentum. In the contraction limit l → 0,
which corresponds to Λ → 0, the underlying de Sitter spacetime reduces to Minkowski, and we
get the usual conservation of the ordinary four-momentum:

dpµ

ds
− Γµνλpνuλ = 0 . (5.31)

5.2.2 de Sitter Geodesics from the Mathisson-Papapetrou method

In this section, we are going to derive the geodesic equation using the Papapetrou method. This
method considers the simplest kind of a test particle, which is called single-pole particle. This
means that it has at least some of integrals

∫
Πµνdν , 0, while all integral with one or more factors

δxρ are equal to zero. Thus the particles will describe a narrow tube in four dimensional space.
Inside this tube a line C is chosen which will represent the motion of the particle. The coordinates
of the points of C denoted as Xσ . To begin with, let us consider the covariant conservation law
(5.13), that is,

∇µΠ
µν = ∂µΠ

µν + ΓµµσΠ
σν + ΓνµσΠ

σµ = 0 , (5.32)
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where Γνµσ is the Christoffel connection of the spacetime metric. Integrating this conservation
law in a space section of spacetime, and using the single-pole approximation [22–24], we obtain
the momentum conservation law

dπµ

ds
+ Γµνλ π

ν uλ = 0, (5.33)

where
πµ ≡ Π0µ =

∫
dv
√
−gΠ0µ (5.34)

is the de Sitter four-momentum. This is the conservation law (5.30), here obtained from the energy-
momentum conservation (5.32). As already remarked, similarly to what happens in ordinary spe-
cial relativity, the conservation of the four momentum coincides with the equation of motion, that
is, with

dUρ

ds
− ΓγρσUγuσ = 0 . (5.35)
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6 Geodesic Deviation in Locally de Sitter Spacetimes

When general relativity is constructed on Minkowski spacetime, any solution to Einstein equation
will be a spacetime that reduces locally to Minkowski. Considering that such spacetime is trans-
itive under ordinary translations, any trajectory in general relativity will be given by world-lines
whose points are connected to each other by translations. In this case, the relative acceleration of
two nearby geodesics, which is described by the geodesic deviation equation, is proportional to the
Riemann tensor. On the other hand, when general relativity is constructed on de Sitter spacetime,
any solution to the de Sitter modified Einstein equation will be a spacetime that reduces locally
to de Sitter. Considering that such spacetime is transitive under a combination of translations and
proper conformal transformations, any trajectory in this theory will be given by world-lines whose
points are connected to each other by a combination of translations and proper conformal trans-
formations. Of course, if the very notion of geodesics changes, the relative acceleration of two
nearby geodesics, which is described by the geodesic deviation equation, must change accordingly.
In what follows we are going to obtain the de Sitter modified geodesic deviation equation.

6.1 The de Sitter Modified Geodesic Deviation Equation

Consider a family of de Sitter modified geodesics (5.26) differing in the value of some parameter
λ. This means that, for each λ = constant, xµ = xµ(s, λ) will represent the equation of a geodesic,
with s an affine parameter, as for example the proper time. We introduce the four-vector [16]

ηµ =
∂xµ

∂λ
δλ ≡ vµ δλ (6.1)

joining points on infinitely close geodesics, corresponding to parameters λ and λ + δλ, that have
the same value of s. From the trivial equality vρ∂ρuµ = uρ∂ρvµ, it follows that

uρ∇ρvµ = vρ∇ρuµ . (6.2)

Analogously to the definition of the four-velocity Uµ = ξ
µ
αuα, we introduce now the anholonomic

four-velocity
Vµ = ξ

µ
α vα (6.3)

which is consistent with the transitivity properties of the de Sitter spacetime. Accordingly,

Vµδλ = ξ
µ
α η

α (6.4)

is a four-vector that is also consistent with the transitivity properties of the de Sitter spacetime.
This means that it is always able to join points on infinitely close geodesics, corresponding to
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parameters λ and λ+ δλ, with the same value of s. Using relation (6.2), it is easy to verify that Uµ

and Vµ satisfy
uρ∇ρVµ = vρ∇ρUµ −

(
uα vβ − uβ vα

)
∇βξ

µ
α . (6.5)

Consider now the second covariant derivative

D2Vµ

Ds2 = uσ∇σ
(
uρ∇ρVµ) . (6.6)

Using identity (6.5), it can be rewritten in the form

D2Vµ

Ds2 = uσ∇σ
(
vρ∇ρUµ) − uσ∇σ

[ (
uα vβ − uβ vα

)
∇βξ

µ
α

]
. (6.7)

Now, the first term on the right-hand side gives

uσ∇σ
(
vρ∇ρUµ) = uσ vρ ∇ρ∇σUµ + uσ∇σvρ ∇ρUµ . (6.8)

Using identity (6.2), it becomes

uσ∇σ
(
vρ∇ρUµ) = uσ vρ ∇ρ∇σUµ + vσ∇σuρ ∇ρUµ , (6.9)

which is equivalent to

uσ∇σ
(
vρ∇ρUµ) = uσvρ

(
∇σ∇ρ − ∇ρ∇σ

)
Uµ , (6.10)

where we have used that uρ∇ρUµ = 0 on account of the equation of motion (5.25). Substituting
into (6.7), we get

D2Vµ

Ds2 = uσvρ
(
∇σ∇ρ − ∇ρ∇σ

)
Uµ − uσ∇σ

[ (
uα vβ − uβ vα

)
∇βξ

µ
α

]
. (6.11)

Taking into account the relation (
∇σ∇ρ − ∇ρ∇σ

)
Uµ = Rµνσρ Uν (6.12)

it reduces to
D2Vµ

Ds2 = Rµνσρ Uνuσvρ − uσ∇σ
[ (

uα vβ − uβ vα
)
∇βξ

µ
α

]
. (6.13)

Multiplying both sides by the constant δλ and using Eqs. (6.1) and (6.4), we get

D2

Ds2
(
ξ
µ
α η

α) = Rµνσρ Uν uσηρ +
DVµ

Ds

[ (
ηα uβ − ηβ uα

)
∇βξ

µ
α

]
. (6.14)

Identifying

ηα uβ − ηβ uα =
Lαβ

mc
, (6.15)

with Lαβ the angular momentum of the particle moving in one geodesics in relation to the particle
moving in the other geodesics, we get

D2

Ds2
(
ξ
µ
α η

α) = Rµνσρ Uν uσηρ +
1

mc
DVµ

Ds
(
Lαβ ∇βξ

µ
α

)
. (6.16)
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Considering furthermore that the angular momentum is covariantly conserved,

∇βLαβ = 0 , (6.17)

we get finally
D2

Ds2
(
ξ
µ
α η

α) = Rµνσρ Uν uσηρ +
1

mc
D
Ds

[
∇β

(
Lαβ ξµα

) ]
. (6.18)

This is the de Sitter modified geodesic deviation equation, which is valid in locally de Sitter space-
times. It should be mentioned that the dependence of the geodesic deviation on the angular mo-
mentum Lαβ is expected in the sense that the de Sitter “translations” are not really translations,
but rotations. In the contraction limit l → ∞, which corresponds to a Λ → 0, the underlying de
Sitter spacetime contracts to Minkowski, and we get the usual geodesic deviation equation

D2ηµ

Ds2 = Rµνσρ uνuσηρ (6.19)

valid in locally Minkowski spacetimes.
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7 Conclusions

Both Minkowski and de Sitter are fundamental spacetimes in the sense that, as quotient spaces,
they are known a priori, independently of Einstein equation. They represent actually different
backgrounds for the construction of physical theories. General relativity, for instance, can be con-
structed on any one of the them. In the first case, a solution to the field equations will be a space-
time that reduces locally to Minkowski. In the second case, a solution to the field equations will
be a spacetime that reduces locally to de Sitter. Although these two classes of spacetime are iso-
tropic, their homogeneity properties differ substantially: whereas a locally Minkowski spacetime
is transitive under translations, a locally de Sitter spacetime is transitive under a combination of
translations and proper conformal transformations — the so-called de Sitter “translations”. Now,
transitivity is intimately related to the notion of motion. For example, any two points of a locally
Minkowski spacetime are connected by a spacetime translation. As a consequence, motion in this
spacetime is described by trajectories whose points are connected to each other by ordinary trans-
lations. On the other hand, any two points of a locally de Sitter spacetime are connected to each
other by a combination of translation and proper conformal transformations. As a consequence,
the notion of motion in this spacetime will change in the sense that it will be described by trajector-
ies whose points are connected to each other by a combination of translation and proper conformal
transformations. However, in the usual usual form of the geodesic equations, given by

duµ

ds
+ Γµργ uρ uγ = 0 , (7.1)

the appropriate local homogeneity properties of spacetime are not taken into account in the vari-
ational principle. As a consequence, there are points in a locally de Sitter spacetime which are
not connected by any one of these geodesics [20]. This single fact constitutes a clear evidence
that they do not represent the true geodesics of locally de Sitter spacetimes. On the other hand,
by taking into account the appropriate local homogeneity properties of locally de Sitter spacetime,
we obtain a new family of trajectories, given by [21]

dUµ

ds
+ Γµργ Uρ uγ = 0 , (7.2)

where
Uµ = ξ

µ
α uα (7.3)

is an anholonomic four-velocity, with ξµα the Killing vectors of the de Sitter “translations”. In the
specific case of stereographic coordinates, they have the form

ξ
µ
α = δ

µ
α − δ̄

µ
α , (7.4)
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where δµα are the Killing vectors of ordinary translations, and

δ̄
µ
α =
Λ

12

(
2ηανxνxµ − σ2δ

µ
α

)
(7.5)

are the Killing vectors of proper conformal transformations. We see in this way that the four
velocity Uµ takes into account the translational and the proper conformal ‘directions’ of locally de
Sitter spacetime. As a consequence, the corresponding trajectories include both notions of motion:
translational and proper conformal. They are, for this reason, able to connect any two points of
any locally de Sitter spacetime. Of course, if the very notion of geodesic changes, the geodesic
deviation must change accordingly. In this work we have obtained the explicit expression of the
geodesic deviation equation in locally de Sitter spacetimes, which is given by [cf. Eq. (6.18)]

D2

Ds2
(
ξ
µ
α η

α) = Rµνσρ Uν uσηρ +
1

mc
D
Ds

[
∇β

(
Lαβ ξµα

) ]
. (7.6)

It can be rewritten in the form

D2

Ds2
(
ξ
µ
α η

α) = Rµνσρ uνuσηρ + ∆µ , (7.7)

where the first term on the right-hand side represents the usual geodesic deviation in locally
Minkowski spacetimes, whereas the second term, given by

∆
µ =

{
− Rµνσρ δ̄να uαuσηρ −

1
mc

D
Ds

[
∇β

(
Lαβ δ̄µα

) ] }
, (7.8)

represents the additional effects produced by the local de Sitter kinematics. That is to say, they are
a direct consequence of replacing the Poincaré invariant Einstein special relativity by a de Sitter
invariant special relativity. Considering that geodesic deviation is one of the effects appearing in
the Landau-Raychaudhuri equation, the additional effects embodied in (7.8) could eventually play
a role in the Universe evolution.
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A Generators in Stereographic Coordinates

In the five-dimensional ambient space Cartesian coordinates χA, the generators of infinitesimal de
Sitter transformations are written as

LAB = ηAC χ
C ∂

∂ χB
− ηBC χ

C ∂

∂ χA
. (A.1)

As we have seen in Chapter 2, the generators in stereographic coordinates stereographic coordin-
ates xµ are obtained through the projection

χµ = Ωxµ and χ4 = −lΩ
(
1 +

σ2

4l2

)
, (A.2)

where

Ω =

(
1 −

σ2

4l2

)−1

. (A.3)

The components Lµν are

Lµν = ηµσ χσ
∂

∂ χν
− ηνσ χ

σ ∂

∂ χµ
. (A.4)

Using the first relation of (A.2), as well as the chain rule

∂

∂ χσ
=
∂xρ

∂ χσ
∂

∂xρ
=
∂

(
Ω−1χρ

)
∂ χσ

∂

∂xρ
= Ω−1 ∂

∂xσ
, (A.5)

equation (A.4) takes the form

Lµν = ηµσΩxσ
(
Ω
−1 ∂

∂xν

)
− ηνσΩxσ

(
Ω
−1 ∂

∂xµ

)
, (A.6)

or equivalently,

Lµν = ηµσ xσ
∂

∂xν
− ηνσ xσ

∂

∂xµ
. (A.7)

We see from this expression that Lµν are the six generators of the Lorentz group, which rules the
isotropy in a de Sitter spacetime. Therefore, the Lorentz symmetry is preserved in presence of a
cosmological term Λ. The remaining four generators are

L4µ = η4C χ
C ∂

∂ χµ
− ηµC χ

C ∂

∂ χ4 . (A.8)
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Expanding the sum we get

L4µ =
(
η4σ χ

σ + η44χ
4
) ∂

∂ χµ
−

(
ηµσ χ

σ + ηµ4χ
4
) ∂

∂ χ4 , (A.9)

which reduces to
L4µ = −χ

4 ∂

∂ χµ
− ηµσ χ

σ ∂

∂ χ4 , (A.10)

where we have used that η44 = −1 for the de Sitter group. Now, from the chain rule we have

∂

∂ χ4 =
∂xρ

∂ χ4
∂

∂xρ
=
∂

(
Ω−1χρ

)
∂ χ4

∂

∂xρ
. (A.11)

Using the alternative form of Ω, given by

Ω =
1
2

(
1 −

χ4

l

)
, (A.12)

we obtain
∂

∂ χ4 =
1
2l
Ω
−1xρ

∂

∂xρ
. (A.13)

Using relations (A.5) and (A.13), the generators (A.10) can be rewritten in the form

L4µ = l (−1 + 2Ω)Ω−1 ∂

∂xµ
− ηµσΩxσ

(
1
2l
Ω
−1xρ

∂

∂xρ

)
, (A.14)

which is equivalent to

L4µ = l
(
σ2

4l2 + 1
)

∂

∂xµ
−

1
2l
ηµσ xσ xρ

∂

∂xρ
. (A.15)

This equation can be recast in the form

L4µ = lPµ −
1
4l

Kµ , (A.16)

where
Pµ =

∂

∂xµ
and Kµ =

(
2ηµσ xσ xρ − σ2δ

ρ
µ

) ∂

∂xρ
(A.17)

are, respectively, the translation and the proper conformal generators.

33



B Commutation Relations

First commutation relation

Let us begin with the Lorentz generators, whose commutator is given by[
Lµν, Lσρ

]
=

[
ηµλxλ

∂

∂xν
− ηνλxλ

∂

∂xµ
, ησβxβ

∂

∂xρ
− ηρβxβ

∂

∂xσ

]
. (B.1)

Expanding, we get[
Lµν, Lσρ

]
=

[
ηµλxλ

∂

∂xν
, ησβxβ

∂

∂xρ

]
−

[
ηµλxλ

∂

∂xν
, ηρβxβ

∂

∂xσ

]
− (µ↔ ν) (B.2)

The first term on the right-hand side is[
ηµλxλ

∂

∂xν
, ησβxβ

∂

∂xρ

]
= ηµλησνxλ

∂

∂xρ
− ησβηµρxβ

∂

∂xν
. (B.3)

Following a similar procedure for the other terms, we arrive at[
Lµν, Lσρ

]
= ηνσLµρ − ηµσLνρ + ηµρLνσ − ηνρLµσ . (B.4)

Second commutation relation

Let us consider now the commutation relation[
L4µ, Lλν

]
≡

[
lPµ −

1
4l

Kµ, Lλν
]
= l

[
Pµ, Lλν

]
−

1
4l

[
Kµ, Lλν

]
. (B.5)

The first term on the right-hand size yields

l
[
Pµ, Lλν

]
= l

(
ηµλPν − ηµνPλ

)
. (B.6)

The second term, on the other hand, is

1
4l

[
Kµ, Lλν

]
=

1
4l

[(
2ηµσ xσ xρ − σ2δ

ρ
µ

) ∂

∂xρ
, ηλπ xπ

∂

∂xν
− ηνπ xπ

∂

∂xλ

]
, (B.7)

which can be recast in the form

1
4l

[
Kµ, Lλν

]
=

1
4l

[
2ηµσ xσ xρ

∂

∂xρ
, ηλπ xπ

∂

∂xν

]
−

1
4l

[
σ2δ

ρ
µ
∂

∂xρ
, ηλπ xπ

∂

∂xν

]
− (λ↔ ν) . (B.8)
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After some algebraic manipulation, it reduces to

1
4l

[
Kµ, Lλν

]
=

1
4l
ηµλ

(
2xνxρ − σ2δ

ρ
ν

) ∂

∂xρ
−

1
4l
ηµν

(
2xλxρ − σ2δ

ρ
λ

) ∂

∂xρ
, (B.9)

or equivalently
1
4l

[
Kµ, Lλν

]
=

1
4l

(
ηµλKν − ηµνKλ

)
. (B.10)

Substituting (B.6) and (B.10) into (B.5), we get[
L4µ, Lλν

]
= ηµλ

(
lPν −

1
4l

Kν

)
− ηµν

(
lPλ −

1
4l

Kλ

)
, (B.11)

which yields [
L4µ, Lλν

]
= ηµλL4ν − ηµνL4λ . (B.12)

Third commutation relation

Let us consider now the commutation relation[
L4µ, L4ν

]
=

[
lPµ −

1
4l

Kµ, lPν −
1
4l

Kν

]
. (B.13)

Expanding the products, we get[
L4µ, L4ν

]
= l2 [

Pµ,Pν
]
−

1
4

[
Pµ,Kν

]
−

1
4

[
Kµ,Pν

]
+

1
16l2

[
Kµ,Kν

]
. (B.14)

The first term on the right-hand side of this equation vanishes identically:[
Pµ,Pν

]
= 0 . (B.15)

The second term, on the other hand, is

1
4

[
Pµ,Kν

]
=

1
4

[
∂µ,

(
2ηνλxλxρ − σ2δ

ρ
ν

) ∂

∂xρ

]
, (B.16)

which can easily seen to be equivalent to

1
4

[
Pµ,Kν

]
=

1
2

(
ηνµxρ

∂

∂xρ
+ ηνσ xσ

∂

∂xµ
− ηµσ xσ

∂

∂xν

)
. (B.17)

Similarly, the third term is found to be

1
4

[
Kµ,Pν

]
= −

1
2

(
ηµνxρ

∂

∂xρ
+ ηµσ xσ

∂

∂xν
− ηνσ xσ

∂

∂xµ

)
. (B.18)

Finally, as a simple computation shows, the fourth term also vanishes identically:

1
16l2

[
Kµ,Kν

]
= 0 . (B.19)

Substituting theses expressions into equation (B.14), we obtain[
L4µ, L4ν

]
= ηµσ xσ

∂

∂xν
− ηνσ xσ

∂

∂xµ
≡ Lµν . (B.20)
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