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We suggest a time-dependent dynamical mean-field-hydrodynamic model for the collapse of a trapped
boson-fermion condensate and perform numerical simulation based on it to understand some aspects of the
experiment by Modugnoet al. [Science297, 2240(2002)] on the collapse of the fermionic condensate in the
40K- 87Rb mixture. We show that the mean-field model explains the formation of a stationary boson-fermion
condensate at zero temperature with relative sizes compatible with experiment. This model is also found to
yield a faithful representation of the collapse dynamics in qualitative agreement with experiment. In particular
we consider the collapse of the fermionic condensate associated with(a) an increase of the number of bosonic
atoms as in the experiment and(b) an increase of the attractive boson-fermion interaction using a Feshbach
resonance. Suggestion for experiments of fermionic collapse using a Feshbach resonance is made.
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I. INTRODUCTION

Recent successful observation of condensed boson-
fermion mixtures of trapped alkali-metal atoms by different
experimental groups[1–4] has initiated the intensive experi-
mental studies of different novel phenomena[5–7] . Among
these experiments there have been studies of condensate of
two components of40K [1] and6Li [2] atoms. Condensation
of boson-fermion mixtures6,7Li [3], 23Na- 6Li [4], and87Rb-
40K [5,6] have also been reported. The collapse of fermionic
condensate in a boson-fermion mixture87Rb- 40K has been
observed and studied by Modugnoet al. [5]. In this paper we
consider the collapse dynamics of fermions in a boson-
fermion mixture using a coupled time-dependent mean-field-
hydrodynamic model. The bosonic part is treated by the
mean-field Gross-Pitaevskii(GP) equation[8] and the fermi-
onic part is treated by a hydrodynamic model. The present
mean-field-hydrodynamic model could be considered to be a
time-dependent extension of a time-independent model sug-
gested for the stationary equilibrium states by Capuzziet al.
[9].

Because of the Pauli exclusion principle the fermions in
spin parallel states in the condensate experience a strong re-
pulsion. This is the dominating interaction at short distances
and avoids the collapse of a fermionic condensate. In con-
trast an attractive bosonic condensate larger than a critical
size is not dynamically stable[10]. However, if such a
bosonic condensate is “prepared” or somehow made to exist
it experiences a dramatic collapse and explodes emitting at-
oms leading to a condensate of small size with a high central
density. Under high pressure three-body recombination takes
place with the emission of energy leading to explosion and
loss of atoms. The possibility of collapse was first suggested
and observed in7Li atoms [10]. A dynamical study of con-
trolled collapse and explosion has been performed by Donley
et al. [11] on an attractive85Rb bosonic condensate, where
they manipulated the interatomic interaction by changing the
external magnetic field exploiting a nearby Feshbach reso-
nance [12]. In the vicinity of a Feshbach resonance the

atomic scattering lengtha can be varied over a huge range by
adjusting an external magnetic field, thus transforming a re-
pulsive bosonic condensate to a highly attractive one. There
have been many theoretical[13,14] studies to describe dif-
ferent features of the experiment by Donleyet al. [11].

In the classic study of a trapped boson-fermion mixture
Modugnoet al. [5] simulated a situation of a strong effective
interaction between fermions via a strongly attractive boson-
fermion interaction which may play an important role in the
collapse of the fermionic condensate. The presence of a
strong attractive interaction between bosons and fermions
can induce an effective attraction between the fermions[15].
If this overall effective attraction among the fermions can
overcome the Fermi repulsive pressure there is a possibility
of the collapse of a fermionic condensate in a boson-fermion
mixture. Modugnoet al. [5] showed in an experiment with
87Rb- 40K mixture that it is indeed the case and produced
some results of the collapsing dynamics of this system which
we would like to understand using a mean-field-
hydrodynamic model.

Previously, in addition to the study of the collapse of a
purely bosonic condensate[13,14], we also investigated
[16–18] the collapse dynamics in a two-species bosonic con-
densate initiated by an attraction between interspecies bosons
using the mean-field coupled GP equation[8]. It was found
that even when the intra-species interaction is repulsive one
can have a collapse in one or two species due to the inter-
species attraction which simulates an effective intraspecies
attraction. The situation is qualitatively similar in the present
boson-fermion mixture. The boson-fermion attraction in a
boson-fermion mixture can induce an attraction in the fermi-
onic system leading to collapse. However, there is no
coupled GP equation in the case of boson-fermion mixture
which complicates a theoretical description. Instead, in this
paper we use a time-dependent version of a recently sug-
gested equations of generalized hydrodynamics[9]. These
equations allow us to span the entire range of boson-fermion
interaction as in the coupled GP equation for bosons[16].

The equilibrium properties and the phase diagram of a
boson-fermion mixture have been studied by several authors
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[19] to obtain good agreement with experiment using a
mean-field-type description[20]. All of them employed a
time-independent formulation. Here, the study of nonequilib-
rium properties of fermionic collapse using a time-dependent
formulation is considered. Our findings are in agreement
with the experiment by Modugnoet al. [5].

In Sec. II we present our time-dependent mean-field
model. This consists of a set of coupled partial differential
equations involving the bosonic and fermionic condensate
wave functions. We introduce an appropriate loss term due to
three-body boson-fermion recombination. In Sec. III we
present our results for stationary boson-fermion wave func-
tions as well as fermion collapse initiated by a growth in
boson number and boson-fermion interaction. Our stationary
results are consistent with experiment[5] and other numeri-
cal studies[9,19,20]. The present study also yields a faithful
representation of the collapse dynamics as observed experi-
mentally [5]. Finally, a summary of our findings is given in
Sec. IV.

II. NONLINEAR MEAN-FIELD-HYDRODYNAMIC
MODEL

The time-dependent Bose-Einstein condensate wave func-
tion Csr ; td at positionr and timet allowing for atomic loss
may be described by the following mean-field nonlinear GP
equation[8]

F− i"
]

] t
−

"2¹2

2mB
+ VBsr d + gBBnBGCBsr ;td = 0, s2.1d

with normalizationedr uCBsr ; tdu2=NB. HeremB is the mass
and NB the number of bosonic atoms in the condensate,nB
;uCBsr ; tdu2 is the boson probability density,gBB

=4p"2aBB/mB the strength of interatomic interaction, with
aBB the scattering length. The trap potential with spherical
symmetry may be written asVBsr d= 1/2mBvB

2r2, wherevB

is the angular frequency. The probability density of an iso-
lated fermionic condensatenF;uCFsr du2 is given by

nF =
feF − VFsr dg3/2

A3/2 , s2.2d

where CFsr d is the condensate wave function,A
="2s6p2d2/3/ s2mFd, eF is the Fermi energy, andmF is the
fermionic mass. The spherical trap is given byVFsr d
= 1

2mFvF
2r2. The number of fermionic atomsNF is given by

the normalizationedr uCFsr du2=NF.
However, it has been suggested that if there is an interac-

tion between the fermions and bosons, Eqs.(2.1) and (2.2)
get modified to[20]

F− i"
]

] t
−

"2¹2

2mB
+ VBsr d + gBBnB + gBFnFGCBsr ;td = 0

s2.3d

and

nF =
seF − VF − gBFnBd3/2

A3/2 , s2.4d

where gBF=2p"2aBF/mR with the boson-fermion reduced
massmR=mBmF / smB+mFd wheremF is the mass of fermi-
onic atoms. The interaction between fermions in spin polar-
ized state is highly suppressed due to Pauli exclusion prin-
ciple and has been neglected in Eqs.(2.3) and(2.4) and will
be neglected throughout this paper. Also, we shall always
assume boson-fermion attractionsaBF,0d and boson-boson
repulsionsaBB.0d.

Capuzziet al. [9] developed a set of time-independent
equations for boson-fermion condensate from a consider-
ation of hydrodynamic motion of two condensed fluids, one
bosonic and another fermionic, in a spherical trap at zero
temperature. The interaction between bosons and between
bosons and fermions are described by contact potentials pa-
rametrized by coupling constantsgBB andgBF defined above.
They derived the following mean-field energy functional for
the system[9]

fEg =E drS"2u¹CBu2

2mB
+ VBuCBu2 +

1

2
gBBuCBu4D

+E drS"2u¹CFu2

6mF
+ VFuCFu2 +

3

5
AuCFu10/3D

+ gBFE dr uCFu2uCBu2. s2.5d

The first integral on the right-hand side of Eq.(2.5) is the
Gross-Pitaevskii energy functional of the bosons and is re-
lated to the(nonlinear) Schrödinger equation[8]. However,
the second integral, although bears a resemblance with the
first, is derived from the hydrodynamic equation of motion
of the fermions and is not related to a Schrödinger-like equa-
tion [9]. Hence, the derivative term in the second integral has
a different mass factor 6mF and not the conventional
Schrödinger mass factor 2mB as in the first integral. Finally,
the last integral corresponds to an interaction between
bosons and fermions.

Equation(2.5) corresponds to the following Lagrangian
density:

L =
i

2
" o

i=B,F
SCi

] Ci
*

] t
− Ci

* ] Ci

] t
D + S"2u¹CBu2

2mB
+ VBuCBu2

+
1

2
gBBuCBu4D+ S"2u¹CFu2

6mF
+ VFuCFu2 +

3

5
AuCFu10/3D

+ gBFuCFu2uCBu2. s2.6d

The mean-field dynamical equations for the system are just
the usual Euler-Lagrange equations

d

dt

] L

]
] Ci

*

] t

+ o
k=1

3
d

dxk

] L

]
] Ci

*

] xk

=
] L
] Ci

* , s2.7d

wherexk,k=1,2,3 are thethree space components,i =B cor-
responds to the bosonic wave function andi =F corresponds
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to the fermionic wave function. With the Lagrangian density
(2.6) these equations of motion become

F− i"
]

] t
−

"2¹2

2mB
+ VBsr d + gBBnB + gBFnFGCBsr ;td = 0,

s2.8d

F− i"
]

] t
−

"2¹2

6mF
+ VFsr d + AnF

2/3 + gBFnBGCFsr ;td = 0.

s2.9d

The normalization of the wave functions are given by
edr uCBsr ; tdu2=NB and edr uCFsr ; tdu2=NF. It is understood
that Eq.(2.4) results as a consequence of Thomas-Fermi-type
approximation to Eq.(2.9), when the kinetic energy term in
the latter(equation) is neglected at low temperatures.

Equations(2.8) and (2.9) are the desired time-dependent
mean-field-hydrodynamic equations. We shall use these
equations for the study of the collapse of the fermionic atoms
in a coupled boson-fermion mixture. IfgBF were zero, both
the bosonic and fermionic condensates would have been
stable. An attractive or negativegBF can make one or both
systems to become highly attractive and lead to collapse.
Similar effect was found before in the study of two coupled
bosonic condensates[16]. In that study it was found that
even if the interaction among atoms of the same species is
repulsive an attractive interaction among atoms of two dif-
ferent species can cause one or both components of the
coupled system to collapse. Similarly, in a coupled atomic-
molecular condensate a strong attraction between atoms and
molecules can cause one or both of atomic and molecular
condensates to collapse[17].

To study the phenomenon of collapse we have to add the
proper mechanism for atom loss in Eqs.(2.8) and(2.9). The
attractive interaction between a bosonic atomB and a fermi-
onic atomF leads to the following three-body recombination
process to form a moleculesBFd composed of a bosonic and
fermionic atom, which is responsible for the loss of atoms
[5] :

B + B + F → sBFd + B. s2.10d

As the fermions are in a spin-polarized state, due to Pauli
principle two-fermion molecules cannot be formed. Conse-
quently, femionic atoms could only be lost in the presence of
bosons and the loss rate scales quadratically with bosonic
density and is independent of fermion numberNF [5]. In
addition to reaction(2.10), there is also the possibility of the
formation of a two-boson moleculesBBd via the reaction

B + B + B → sBBd + B. s2.11d

However, for a low-densityrepulsivebosonic condensate as
in the experiment on boson-fermion mixture[5], the rate of
loss of bosons due to reaction(2.11) will presumably be
small [21]. Moreover, reaction(2.11) has no influence on the
collapse of the fermionic condensate. As the primary moti-
vation of this paper is to investigate the collapse of the fer-
mionic condensate, we neglect reaction(2.11) in our study.

The recombination reaction(2.10) adds an extra term in
Lagrangian density(2.6) of the form −i"K3uCFu2uCBu4/2 pro-
portional to the product of fermion density and the square of
boson density, whereK3 is the loss rate. In the presence of
only the bosonic atoms the contribution to the Lagrangian
density for the recombination reaction(2.11) is the usual
three-body recombination term −i"K3uCu6/2 [14,21] propor-
tional to the cube of boson density. After proper symmetri-
zation, with the use of the loss term −i"K3uCFu2uCBu4/2 in
Eq. (2.6), Eqs.(2.8) and (2.9) become

F− i"
]

] t
−

"2¹2

2mB
+ VBsr d + gBBnB + gBFnF − i"K3nBnFG

3CBsr ;td = 0, s2.12d

F− i"
]

] t
−

"2¹2

6mF
+ VFsr d + AnF

2/3 + gBFnB − i"K3nB
2G

3CFsr ;td = 0. s2.13d

In the spherically symmetric state of zero angular momen-
tum the wave function has the formCsr ; td=csr ; td. Of the
experimental condensation of boson-fermion mixtures the
two pioneering possibilities were the mixture of6Li (fer-
mion) and23Na (boson) [4], and the mixture of40K (fermion)
and87Rb (boson) [5]. The actual experiment on the collapse
of fermions[5] was performed in the40K- 87Rb system with
an axially symmetric trap. In this paper we shall consider the
effect of the variation of the boson-fermion scattering length
aBF on the collapse. For that purpose one requires not only
an accurate value ofK3 but a variation ofK3 with aBF. As the
dynamics of collapse is sensitive to this unknown variation
of K3, we are not in a position to produce the(quantitative)
dynamics of collapse in the realistic(experimental) situation.
Instead, in this paper we consider a spherically symmetric
model to see if this model can describe the essentials of the
observed collapse dynamics[5]. We also present results on
central probability density of the condensate to confirm the
collapse.

As we shall not be interested in a particular boson-
fermion system in this paper, but will be concerned with the
collapse of the fermionic condensate in general we take in
the rest of this papermB=3mF=msRbd, whencemR=3mF /4.
In the above two experimental situations[4,5] mB<3mF.
Also, we takeVBsr d=VFsr d=mBvB

2r2/2 which corresponds
to a reduction ofvB by a factorÎmB/mF as in the study by
Modugnoet al. [20]. These two assumptions give a simpler
analytical form of the final equations we derive eliminating
factors of masses and frequencies without any consequence
to our qualitative study. Now transforming to dimensionless
variables defined byx=Î2r / l, t= tv, l ;Î" / smBvBd and
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wisx;td
x

=Î4pl3

Ni
Î8

cisr ;td, s2.14d

i =B,F, we get

F− i
]

] t
−

]2

] x2 +
x2

4
+ 2Î2NBBUwB

x
U2

+ 4Î2NBFUwF

x
U2

− ijBNBBNBFUwB

x
U2UwF

x
U2G3wBsx;td = 0, s2.15d

F− i
]

] t
−

]2

] x2 +
x2

4
+ 3S3pNF

2
D2/3UwF

x
U4/3

+ 4Î2NFBUwB

x
U2

− ijFNBB
2 UwB

x
U4G3wFsx;td = 0, s2.16d

where NBB=NBaBB/ l, NBF=NFaBF/ l, NFB=NBaBF/ l, jB
=K3/ s2p2aBBaBFl4vBd, and jF=K3/ s2p2aBB

2 l4vBd. In the
nonabsorptive casejF=jB=0, the normalization of the wave-
function components is given bye0

` dxuwisx;tdu2=1, i =B,F.
In the absorptive casejFÞ0 andjBÞ0, the normalization
reduces with time due to loss of atoms.

III. NUMERICAL RESULT

We solve the coupled mean-field-hydrodynamic eqs.
(2.15) and (2.16) numerically using a time-iteration method
based on the Crank-Nicholson discretization scheme elabo-
rated in Ref. 22. We discretize the GP equation using time
step 0.00025 and space step 0.05 spanningx from 0 to 25.
This domain of space was sufficient to encompass the whole
condensate wave function during collapse and expansion.

First we solve Eqs.(2.15) and(2.16) with jB=jF=0. This
will allow us to find a stable bound state of boson-fermion
mixture. After some experimentation we take in our calcula-
tion aBB=5 nm, aBF=−12.5 nm, vB=2p3100 Hz, NB
=4800, and NF=1200, so that l <1 mm, aBB/ l =0.005,
aBF/ l =−0.0125,NBB=24, NBF=−15, andNFB=−60. These
values of parameters are similar to those employed in experi-
ments. The dimensionless unit of time corresponds tovB

−1

<1.6 ms, and dimensionless unit of length corresponds to
l /Î2<0.7 mm.

Now we consider the collapse of fermions initiated by a
sudden jump in the boson-fermion scattering length from
aBF=−12.5 nm to −37.5 nm which can be implemented near
a boson-fermion Feshbach resonance. Such boson-fermion
Feshbach resonances between23Na (boson) and 6Li (fer-
mion) atoms[23] and between87Rb (boson) and 40K (fer-
mion) atoms[24] have been experimentally observed. These
resonances should enable experimental control of the inter-
species interactions[24] and hence can be used to increase
the attractive force between bosons and fermions which in
turn increases the attractive nonlinearities 4Î2NBF and
4Î2NFB in Eqs.(2.15) and(2.16). If these attractive nonlin-

ear terms are larger than the repulsive nonlinearities in these
equations it is possible to have collapse of fermions or
bosons or both. In order to have collapse, the effective non-
linearities in these equations should be attractive.

Due to the imaginary terms in Eqs.(2.15) and (2.16) the
numbers of bosons and fermions decay with time. When the
net nonlinear attraction in these equations is small there is
smooth and steady decay of number of atoms. However,
when the net nonlinear attraction is gradually increased the
steady decay of number of atoms develops into a violent
decay called collapse. When this happens the condensate
loses a significant fraction of atoms in a small interval of
time (milliseconds) after which a remnant condensate with a
reasonably constant number of atoms is formed. Also, during
and immediately after collapse, the wave function of the con-
densate becomes very unsmooth and spiky in nature as op-
posed to a reasonably smooth wave function in the case of a
steady decay.

We study the the evolution of the boson and fermion num-
bers in the condensate from timet=0 to t=50 ms after the
sudden jump in the scattering length fromaBF=−12.5 to
−37.5 nm at timet=0. The evolution of boson and fermion
numbers depends on the value of the loss rateK3. We study
the sensitivity of the result onK3 by performing the calcula-
tion for different loss rates. In Fig. 1 we plot the evolution of
the boson and fermion numbers for different loss ratesK3
=2310−28, 10−27, and 10−26 cm6 s−1. With the increase ofK3
the rate of decay increases, although the results for different
K3 are qualitatively similar. We see in Fig. 1 that in all cases
both the number of bosons and fermions decay rapidly and
attain an approximately constant(remnant) number in less
than 50 ms. The panorama is similar to the collapse in attrac-
tive bosonic condensate studied experimentally by Donleyet
al. [11], where also a cold remnant bosonic condensate is
formed at the end of the collapse. In the recombination pro-
cess(2.10) two bosonic and one fermionic atoms are lost. In
Fig. 1 we find that during the collapse about 2000 bosonic
atoms and 1000 fermionic atoms are lost.

Experimentally, Modugnoet al. measured the following
loss rateK3=2s1d310−27 cm6 s−1 for the 40K- 87Rb system

FIG. 1. (Color online) The evolution of the numbers of bosons
NBstd and fermionsNFstd during collapse initiated by a jump in
boson-fermion scattering lengthaBF from −12.5 to −37.5 nm for
K3=2310−28, 10−27, and 10−26 cm6 s−1. The three upper(blue, dot-
ted) curves refer to number of bosons and three lower(red, solid)
curves refer to number of fermions. The curves are labeled by their
respectiveK3 values.
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[5]. In the remainder of this paper we shall use the value
K3=10−27 cm6 s−1 for all densities and all values of scatter-
ing lengths. This value ofK3 gives a loss rate during collapse
compatible with experiment[5], where a significant fraction
of fermions are lost in an interval of timeD,50 ms. We
further examined the wave function of the bosons and fermi-
ons to determine whether the decay in Fig. 1 really corre-
sponds to a collapse and not to a slow evaporation due to the
imaginary terms in Eqs.(2.15) and (2.16).

In Fig. 2 we plot the profiles of the bosonic and fermionic
wave functions in arbitrary units at timest=0 andt=50 ms.
A close look at Fig. 2 reveals that before collapse att=0 the
bosonic and fermionic wave functions are smooth and the
fermionic wave function extends over a larger distance than
the bosonic wave function. This is due to the large repulsion
between the fermions in the spin polarized state due to the
Pauli exclusion principle. Hence the bosonic condensate lies
well inside the fermionic condensate. This was noted in ex-
periment [5], as well as in previous theoretical studies
[9,19,20]. The wave functions after collapse have an entirely
different profile. As expected the wave functions are highly
peaked in the centralsr =0d region and develop spikes. How-
ever, they extend over a large distance too. The final spiky
wave function indicates the collapse in contrast to a smooth
final wave function corresponding to a steady loss of atoms.
The collapse is a quick process lasting at most a few tens of
milliseconds when a significant fraction of atoms are lost.
For example, in Fig. 1 forK3=10−27 cm6 s−1, the collapse
lasts for the first 25 ms when most of the atoms are lost.
After this interval the rate of loss of atoms is reduced and
remnant bosonic and fermionic condensates with a roughly
constant number of atoms are formed. The wave function
after the collapse of a purely bosonic condensate also exhib-
its a similar behavior[14].

To confirm further the collapse in Figs. 1 and 2 forK3
=10−27 cm6 s−1, we plot in Fig. 3 the evolution of the central
probability density of(a) the bosonicfNBucBs0,tdu2g and (b)
fermionic fNFucFs0,tdu2g components in arbitrary units dur-
ing collapse. We note a very strong fluctuation of the central
density reminiscent of collapse both in the bosonic and fer-
mionic components. Similar variations are common to the
collapse of a purely bosonic condensate[14]. Such strong

fluctuation of the central density could not be due to a weak
evaporation of the condensate due to recombination(2.10).

Next we consider fermionic collapse initiated by an in-
crease of the number of bosonic atoms. In Fig. 4(a) we plot
the evolution of the boson and fermion numbers in the con-
densate from timet=0 to t=50 ms after the jump in the
boson number from 4800 to 14 400 at timet=0. In this case
there is a decay in boson and fermion numbers. The decay of
boson numberss,2000d is double the decay of fermion
numberss,1000d. To determine if this case corresponds to
collapse, in Fig. 4(b) we plot the profiles of the bosonic and
fermionic wave functions in arbitrary units at timest=0 and
t=50 ms. Att=50 ms the fermionic wave function is sharply
peaked at the center and spiky in nature, whereas the reason-
able smooth bosonic wave function does not exhibit any cen-
tral peaking. The slowly varying final bosonic component
corresponds to a weak loss of atoms and not to collapse. The
collapse of the fermionic component deserves further exami-
nation. In Fig. 5 we plot the evolution of the central prob-
ability density of the fermionicfNFucBs0,tdu2g component in
arbitrary units during collapse exhibited in Figs. 4. The cen-
tral density exhibits rapid oscillation indicating collapse.
However, the fluctuation in Fig. 5 is less than those noted in
Figs. 3 indicating a less violent collapse in this case. This is
quite reasonable as in Fig. 2 both components undergo col-
lapse.

The initial nonlinearities in Eqs.(2.15) and (2.16) are
NBB=24,NBF=−15,NFB=−60, whereas the final nonlineari-
ties in Figs. 1 areNBB=24,NBF=−45,NFB=−180. The final

FIG. 2. (Color online) The initial st=0d and final st=50 msd
fermion and boson wave functions in arbitrary units before and after
collapse initiated by a jump in boson-fermion scattering lengthaBF

from −12.5 to −37.5 nm.

FIG. 3. Evolution of the(a) central boson probability density
fNBucBs0,tdu2g and (b) central fermion probability density
fNFucFs0,tdu2g in arbitrary units during the collapse exhibited in
Figs. 1 and 2.
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attractive(negative) nonlinearities are so strong that the ef-
fective nonlinearities in both Eqs.(2.15) and (2.16) have
become attractive and large in nature. This is responsible for
the collapse observed in both components in Figs. 1 and 2. In
the situation of Fig. 4 the final nonlinearities areNBB=72,
NBF=−15, NFB=−180. We find that, as a result, the repul-
sive nonlinearity in the bosonic equation(2.15) has increased
and hence the bosonic condensate does not collapse; whereas
the attractive nonlinearity in the fermionic equation(2.16)
has increased by a factor of 3 and hence this component
undergoes collapse. However, in Fig. 4(a) there is a steady
loss of atoms in the repulsive bosonic condensate during the
collapse of the fermionic condensate.

The present study indicates that under different situations
the fermionic component in a trapped condensed boson-
fermion mixture can undergo a collapse due to an attractive
boson-fermion interaction. In the present study we consider
two situations. Of these, the fermionic collapse associated
with the increase in the number of bosons has been exploited
in the experiment of Modugnoet al. [5]. In the present model
simulation, we introduced a sudden jump in the number of
atoms which is not possible in the laboratory. In the experi-
ment of Ref. 5 a steady increase in boson numbers has been
used to initiate the fermionic collapse. However, the situation
of collapse exploiting a Feshbach resonance in the boson-
fermion system is more exciting and controlled experiment
could be done by jumping the boson-fermion scattering
length aBF as in the collapse experiment with bosonic con-
densate[11]. This seems possible in6Li- 23Na [23] and40K-
87Rb [24] systems using the recently discovered Feshbach
resonances in these systems. The increase in the number of
bosonic atoms in the boson-fermion condensate to initiate
the collapse is a slow stochastic process as opposed to sud-
den controlled jump in the scattering length leading to a
much violent collapse. In this connection we recall that the
collapse of a purely bosonic7Li condensate in Ref. 10 by a
steady increase of the atom number was a stochastic process,
whereas the collapse of85Rb atoms in Ref. 11 by a jump in
scattering length was a more violent, nevertheless more ex-
citing, process. However, the collapse initiated by a jump in
the scattering lengthaBF will require a careful study of the
boson-fermion system in the search of an appropriate Fesh-
bach resonance[23,24].

An examination of Eqs.(2.15) and (2.16) with jF=jB=0
reveals that for a fixedNF with the increase of the boson
numberNB the attractive nonlinearityNFB can overcome the
repulsive Fermi pressure and lead to a collapse of the fermi-
onic condensate. Hence, for a fixedNB and fixed values of
scattering lengths,NF has to be larger than a critical value in
order to have a stable condensate. The fermionic collapse is
a function of the boson-fermion scattering lengthaBF and the
boson numberNB. These aspects of collapse have been stud-
ied via equilibrium equations(2.3) and(2.4) by Modugnoet
al. [20]. Finally, we comment that a large number of fermi-
onsNF in Eqs.(2.15) and(2.16) will lead to a strong attrac-
tion in the bosonic equation(2.15) via the termNBF which
may initiate a collapse of the bosonic atoms. An increase of
NB stabilizes the bosonic condensate but may initiate col-
lapse in the fermionic one, whereas an increase inNF stabi-
lizes the fermionic condensate but may start collapse in the
bosonic one. Finally, an increase inuaBFu may initiate col-
lapse in both components. A detailed study of these features
in the actual experimental situation would be a welcome fu-
ture work.

IV. SUMMARY

We have suggested a coupled set of time-dependent
mean-field-hydrodynamic equations for a trapped boson-
fermion condensate using the(time-independent) energy
functional of Ref. 9 successfully used to study the equilib-
rium states of the trapped boson-fermion condensate. One

FIG. 4. (Color online) (a) The evolution of the numbers of
bosonsNBstd and fermionsNFstd during collapse initiated by a jump
in the boson number from 4800 to 14 400 forK3=10−27 cm6 s−1.
(b) The initial st=0d and finalst=50 msd fermion and boson wave
functions in arbitrary units before and after the collapse in(a).

FIG. 5. Evolution of the central fermion probability density
fNFucFs0,tdu2g in arbitrary units during the collapse exhibited in
Figs. 4.
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could identify collapse from the time independent formula-
tion, where equilibrium stationary solutions for the boson-
fermion mixture cease to exist. The present time-dependent
generalization permits us to study nonequilibrium dynamics
of the coupled boson-fermion condensate. We use the time-
dependent nonlinear model to study the collapse dynamics
for the boson-fermion mixture. There are two possibilities
for the collapse of the fermionic component. From Eq.(2.16)
we see that this happens when the attractive nonlinearityNFB
becomes stronger either via an increase in boson numberNB
or via an increase in the strength of boson-fermion interac-
tion uaBFu. We considered both possibilities in the present
numerical study. The increase ofuaBFu leads to a collapse of

both components, whereas the increase ofNB leads to a col-
lapse of the fermionic component alone. The collapse is
more violent in the first case. The present simulation was
done in a spherically symmetric model. The collapse dynam-
ics is strongly dependent on the loss rateK3. Once one has a
good knowledge of the variation ofK3 with uaBFu, and high-
quality experiment data will be available, a more realistic
calculation will be worth doing in the future.
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