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www.scielo.br/tema
doi: 10.5540/tema.2020.021.01.0057

Constructions of Dense Lattices over Number Fields

A. A. ANDRADE1*, A. J. FERRARI2, J. C. INTERLANDO3 and R. R. ARAUJO4

Received on September 26, 2019 / Accepted on January 1, 2020

ABSTRACT. In this work, we present constructions of algebraic lattices in Euclidean space with optimal
center density in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Λn, for n =

2,3,4,5,6,8 and K12. These algebraic lattices are constructed through canonical homomorphism via Z-
modules of the ring of algebraic integers of a number field.
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1 INTRODUCTION

Algebraic number theory has recently raised a great interest for its new role in algebraic lat-
tice theory and in code design for many different coding applications. Algebraic lattices have
been useful in information theory and the question of finding algebraic lattices over number
fields maximum center density. The problem of finding algebraic lattices with maximal mini-
mum product distance has been studied in last years and this has motived special attention of
many researchs in considering ideals of certain rings. The search for dense algebraic lattices
in general dimensions has been encouraged in the last decades because they can be applied to
Information Theory [1]- [4].

The classical sphere packing problem consists to find out how densely a large number of identical
spheres can be packed together in the Euclidean space. The packing density, ∆(Λ), of a lattice
Λ is the proportion of the space Rn covered by the non-overlapping spheres of maximum radius
centered at the points of Λ. The densest possible lattice packings have only be determined in
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58 CONSTRUCTIONS OF DENSE LATTICES OVER NUMBER FIELDS

dimensions 1 to 8 and 24. It is also known that these densest lattice packings are unique (up to
equivalences) [5].

This paper is organized as follows. In Section 2, notions and results from algebraic number
theory that are used in the work are reviewed. In Section 3, rotated lattices are constructed from
number fields in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Λn,
for n = 2,3,4,5,6,8 and K12.

2 BACKGROUND OF NUMBER FIELDS

Let K be a number field, i.e., K is a finite extension of Q. By Primitive Element Theorem,
there is an element θ ∈ K such that K = Q(θ) = {∑n−1

i=0 aiθ
i; ai ∈ Q}, where θ is a root of

a polynomial p(x) ∈ Q[x] of minimal degree n. A cyclotomic field is a number field such that
K = Q(θ), where θ is a primitive n-th root of unity. If θ1 = θ ,θ2, . . . ,θn are the n distinct
roots of p(x), then threre are exactly n distinct Q-embeddings σi : K→ C such that σi(θ) = θi,
for all i = 1,2, . . . ,n. Furhtermore, there are r1 real embeddings σ1, . . . ,σr1 and 2r2 complex
embeddings σr1+1,σr1+1, . . . ,σr1+r2 ,σr1+r2 . If R(x) and I(x) denote, respectively, the real part
and the imaginary part of x, the canonical embedding σ : K−→ Rn, with x ∈K, is defined by

σ(x) = (σ1(x), . . . ,σr1(x),R(σr1+1(x)), . . . ,I(σr1+r2(x))) .

The set OK = {α : f (α) = 0 for some monic polynomial f (x) ∈ Z[x]} is a ring called ring of
algebraic integers of K. The ring OK has a basis {α1,α2, . . . ,αn} over Z. In other words, every
element α ∈ OK is uniquely written as α = ∑

n
i=1 aiαi, where ai ∈ Z for all i = 1,2, . . . ,n, and

every nonzero fractional ideal M of OK is a free Z-module of rank n [7].

If α ∈K, the value

TrK(α) =
n

∑
i=1

σi(α)

is called trace of α in K. If {α1,α2, . . . ,αn} is an integral basis of K, the discriminant of K is
defined as DK = det[σ j(αi)]

2 and it is an invariant over change of basis [6].

3 CONSTRUCTIONS OF DENSE ALGEBRAIC LATTICES

A lattice Λ is a discrete additive subgroup of Rn, that is, {0} 6= Λ ⊆ Rn is a lattice iff there are
linearly independent vectors {v1,v2, . . . ,vk}, with k ≤ n, in Rn such that

Λ = {
k

∑
i=1

aivi : ai ∈ Z, for all i = 1,2, . . . ,k}.

The set {v1,v2, . . . ,vk} is called a basis for Λ, the matrix M whose rows are these vectors is called
a generator matrix for Λ and the matrix G = MMt is called Gram matrix.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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If M is a Z-submodule in K of rank n, the set Λ = σ(M ) is a lattice in Rn called an algebraic
lattice. The center density of Λ is given by

δ (Λ) =
tn/2

2n[OK : M ]
√
| DK |

,

where t = min{TrK(αα) : α ∈M ,α 6= 0} and [OK : M ] denotes the index of the submodule
M .

Example 3.1. If K = Q(ζ3), where ζ3 is the primitive 3-th root of unity, then
[K : Q] = 2, {1,ζ3} is a basis of K and DK =−3. If M is a submodule of OK given by

M = {a0 +a1ζ3 : a0,a1 ∈ Z},

then [OK : M ] = 1 and
TrK(αα) = 2(a2

0−a0a1 +a2
1),

where α ∈M . Since t = min{TrK(αα) : α ∈M ,α 6= 0}= 2 with a0 = 1 and a1 = 0, it follows
that

δ (M ) =
(
√

2/2)2
√

3
=

1
2
√

3
,

i.e., the center density of σ(M ) is the same of the lattice Λ2. Similarly, if
K = Q(

√
3), then [K : Q] = 2, {1,

√
3} is a basis of K and DK = 12. If M is a submodule of

OK given by M = {a0 + a1
√

3 : a0− a1 ≡ 0(mod 2) and a0,a1 ∈ Z}, then [OK : M ] = 2 and
TrK(α2) = 8a2

0 +24a0a1 +24a2
1, where α ∈M . Since t = min{TrK(α2) : α ∈M ,α 6= 0} = 8

with a0 = 1 and a1 = 0, it follows that δ (M ) = (
√

8/2)2

23
√

3
= 1

4
√

3
.

Example 3.2. If K = Q(θ), where θ = ζ9 + ζ
−1
9 and ζ9 is the primitive 9-th root of unity, then

[K : Q] = 3, {1,θ ,θ 2} is an integral basis of K and DK = 34. If M is a submodule of OK given
by

M = {a0 +a1θ +a2θ 2 : a0 ≡ 0(mod 2) and a0 +2a1 +a2 ≡ 0(mod 3), where
a0,a1,a2 ∈ Z},

then [OK : M ] = 6 and

TrK(α2) = 18(a2
0 +a0a1 +5a0a2 +a2

1 +5a1a2 +9a2
2),

where α ∈M . Since t = min{TrK(α2) : α ∈M ,α 6= 0} = 18 with a0 = 1 and a1 = a2 = 0, it
follows that

δ (M ) =
(
√

18/2)3

54
=

1
4
√

2
,

i.e., the center density of σ(M ) is the same of the lattice Λ3. Similarly, if
M = {a0 + a1θ + a2θ 2 : a0 ≡ 0(mod 2) and a0 + 2a1 + a2 ≡ 0(mod 3),where a0,a1,a2 ∈ Z},
then [OK : M ] = 6 and TrK(α2) = 18(3a2

0 + 3a0a1 + 10a0a2 + a2
1 + 5a1a2 + 9a2

2),

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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where α ∈ M . Since t = min{TrK(α2) : α ∈ M ,α 6= 0} = 18 with a0 = a2 = 0 and

a1 = 1, it follows that δ (M ) = (
√

18/2)3

2·3·32 = 1
4
√

2
. Similarly, if M = {a0 + a1θ + a2θ 2 :

a0 ≡ 0(mod 2) and a0 + 2a1 + a2 ≡ 0(mod 3), where a0,a1,a2 ∈ Z}, then
[OK : M ] = 6 and TrK(α2) = 18(3a2

0 + 3a0a1 + 10a0a2 + a2
1 + 5a1a2 + 9a2

2), where α ∈M .
Since t = min{TrK(α2) : α ∈M ,α 6= 0} = 18 with a0 = a2 = 0 and a1 = 1, it follows that

δ (M ) = (
√

18/2)3

2·3·32 = 1
4
√

2
. Finally, if K = Q(θ), where θ is a root of p(x) = x3− 3x+ 1, then

[K : Q] = 3, {1,θ ,θ 2} is a basis of K and DK = 34. If M is a submodule of OK given by
M = {a0 +a1θ +a2θ 2 : a2 ≡ 0(mod 2) and a0−a1 +a2 ≡ 0(mod 3), with a0,a1,a2 ∈ Z}, then
[OK : M ] = 6 and TrK(α2) = 18(a2

0 + 5a0a1 + 3a0a2 + 9a2
1 + 10a1a2 + 3a2

2), where α ∈M .
Since t = min{TrK(α2) : α ∈M ,α 6= 0} = 18 with a0 = 1 and a1 = a2 = 0, it follows that

δ (M ) = (
√

18/2)3

2·3·32 = 1
4
√

2
. Similarly, if K=Q(θ), where θ = ζ7+ζ

−1
7 and ζ7 is the primitive 7-th

root of unity, then [K :Q] = 3, {1,θ ,θ 2} is a basis of K and DK = 72. If M is a submodule of OK
given by M = {a0+a1θ +a2θ 2 : a0 ≡ 0(mod 7) and 3a1−a2 ≡ 0(mod 7), with a0,a1,a2 ∈ Z},
then [OK : M ] = 27̇2 and TrK(α2) = 98(a2

0 − a0a2 + a2
1 + 7a1a2 + 13a2

2), where α ∈ M .
Since t = min{TrK(α2) : α ∈M ,α 6= 0} = 98 with a0 = 1 and a1 = a2 = 0, it follows that

δ (M ) = (
√

98/2)3

2·73 = 1
4
√

2
.

Example 3.3. If K = Q(ζ8), where ζ8 is the primitive 8-th root of unity, then
[K : Q] = 4, {1,ζ8,ζ

2
8 ,ζ

3
8 } is an integral basis of K and DK = 28. If M is a submodule of

OK given by

M = {a0 +a1ζ8 +a2ζ
2
8 +a3ζ

3
8 : a0 +a1 +a2 +a3 ≡ 0(mod 2), where a0,a1,a2,a3 ∈ Z},

then [OK : M ] = 2 and

TrK(αα) = 8(2a2
0−2a0a3 +a2

1−a1a2 +a22−2a2a3 +2a2
3),

where α ∈M . Since t = min{TrK(α2) : α ∈M ,α 6= 0}= 8 with a1 = 1 and a0 = a2 = a3 = 0,
it follows that

δ (M ) =
(
√

8/2)4

32
=

1
8
,

i.e., the center density of σ(M ) is the same of the lattice Λ4. Similarly, if
M = {a0 + a1ζ8 + a2ζ 2

8 + a3ζ 3
8 : a2 + a3 ≡ 0(mod 2), where a0,a1,a2,a3 ∈ Z}, then

[OK : M ] = 2 and TrK(α2) = 8(a2
0 + a2

1 + a2
2 + 2a2

3 + a0a2 + 2a0a3 + a1a2 + 2a2a3), where
α ∈M . Since t = min{TrK(α2) : α ∈M ,α 6= 0}= 8 with a0 = 1 and a1 = a2 = a3 = 0, it fol-

lows that δ (M ) = (
√

8/2)4

32 = 1
8 . Similarly, if K=Q(θ), where θ is a root of p(x) = x4 +3x2 +1,

then [K : Q] = 4, where {1,θ ,θ 2,θ 3} is an integral basis of K, DK = 245̇2. If M is
a submodule of OK given by M = {a0 + a1θ + a2θ 2 + a3θ 3 : a0 − 2a1 + 2a2 − a3 ≡
0(mod 5), where a0,a1,a2,a3 ∈ Z}, then [OK : M ] = 10, and if α ∈M , then TrK(αα) =

40a2
0 − 40a0a1 + 132a0a2 + 360a0a3 + 20a2

1 − 28a1a2 − 140a1a3 + 158a2
2 + 720a2a3 + 900a2

3.
Since t = min{TrK(α2) : α ∈M ,α 6= 0}= 20 with a0 = a2 = a3 = 0 and a1 = 1, if follows that

δ (M ) = (
√

20/2)4

23·52 = 1
8 .

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Example 3.4. If K=Q(θ), where θ = ζ 10
44 −ζ 12

44 and ζ44 is the primitive 44-th root of unity, then
[K : Q] = 5, {1,θ ,θ 2,θ 3,θ 4} is an integral basis of K and the discriminant of K is 114. Let M

be a submodule of OK given by

M = {a0 +a1θ +a2θ 2 +a3θ 3 +a4θ 4 : a0 ≡ 0(mod 11), 5a2 +a3 ≡ 0(mod 11)
and a0 +15a1 +11a2 +a4 ≡ 0(mod 22), where a0,a1,a2,a3,a4 ∈ Z}.

In this case, M is a submodule of OK of index 2 ·113 and the trace form of α ∈M is given by

TrK/Q(α
2) = 37752a2

0 +43802a0a1 +79134a0a2 +16456a0a3 +136488a0a4

+12826a2
1 +46706a1a2 +10406a1a3 +79860a1a4 +44286a2

2
+26136a2a3 +144716a2a4 +9438a2

3 +30976a3a4 +124388a2
4.

Thus, t = min{TrK(α2) : α ∈M ,α 6= 0}= 242 with a0 = a2 = a3 = 0,a1 =−3 and a4 = 1. As
the volume of the lattice σ(mathcalM) is

√
| DK |[M : OK] = 2 ·115, it follows that

δ (M ) =
(
√

242/2)5

2 ·115 =
1

8
√

2
,

i.e., the center density of σ(M ) is the same of the lattice Λ7.

Example 3.5. If K = Q(ζ9), where ζ9 is the primitive 9-th root of unity, then
[K : Q] = 6, {1,ζ9,ζ

2
9 ,ζ

3
9 ,ζ

4
9 ,ζ

5
9 } is an integral basis of K and DK =−39. If M is a submodule

of OK given by

M = {a0 +a1ζ9 +a2ζ 2
9 +a3ζ 3

9 +a4ζ 4
9 +a5ζ 5

9 : a1−a2 +a4−a5 ≡ 0(mod 3),
where a0,a1, . . .,a5 ∈ Z},

then [OK : M ] = 9 and

TrK(αα) = 18(a2
0 +a0a1 +a0a2 +a0a3 +2a0a4 +2a0a5 +a2

1 +a1a3 +3a1a4

+a2
2 +a2a3 +3a2a5 +a2

3 +2a3a4 +2a3a5 +3a2
4 +3a2

5,

where α ∈M . Since t = min{TrK(αα) : α ∈M ,α 6= 0}= 18 with a0 = 1 and a1 = a2 = a3 =

a4 = a5 = 0, it follows that

δ (M ) =
(
√

18/2)6

36
√

3
=

1
8
√

3
,

i.e., the center density of σ(M ) is the same of the lattice Λ6.

Example 3.6. If K = Q(ζ20), where ζ20 is the primitive 20-th root of unity then
[K : Q] = 8, {1,ζ20,ζ

2
20,ζ

3
20,ζ

4
20,ζ

5
20,ζ

6
20,ζ

7
20} is an integral basis fo K and

DK = 28 ·56. If M is a submodule of OK given by

M = {a0 +a1ζ20 +a2ζ 2
20 +a3ζ 3

20 +a4ζ 4
20 +a5ζ 5

20 +a6ζ 6
20 +a7ζ 7

20 : a0 +a4 ≡ 0(mod 4),
a1 +a5 ≡ 0(mod 2),a2 +a3 +a6 ≡ 0(mod 4) and a7 ≡ 0(mod 5), where
a0,a1, . . . ,a7 ∈ Z},

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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then [OK : M ] = 5 and

TrK(αα) = 20(2a2
0 +2a0a1 +5a0a2 +3a0a3 +3a0a4 +2a0a5 +5a0a6 +8a0a7 +a2

1
+3a1a2 +2a1a3 +2a1a4 +a1a5 +3a1a6 +5a1a7 +4a22 +4a2a3 +5a2a4

+3a2a5 +7a2a6 +12a2a7 +2a2
3 +3a3a4 +2a3a5 +5a3a6 +7a3a7 +2a2

4
+2a4a5 +5a4a6 +8a4a7 +a2

5 +3a5a6 +5a5a7 +4a2
6 +12a6a7 +10a2

7),

where α ∈M . Since t = min{TrK(αα) : α ∈M ,α 6= 0}= 20 with a1 = 1 and a0 = a2 = a3 =

a4 = a5 = a6 = a7 = 0, it follows that

δ (M ) =
(
√

20/2)8

24 ·54 =
1

16
,

i.e., the center density of σ(M ) is the same of the lattice Λ8.

Example 3.7. If K = Q(ζ21), where ζ21 is the primitive 21-th root of unity, then [K : Q] = 12,
{1,ζ21, . . . ,ζ

11
21 } is an integral basis of K and DK = 36 ·710. If M is a submodule of OK given by

M = (ζ 6
21−ζ 2

21 +1)a0 +(ζ 7
21−ζ 3

21 +ζ21)a1 +(ζ 8
21−ζ 4

21 +ζ 2
21)a2

+(ζ 9
21−ζ 5

21 +ζ 3
21)a3 +(ζ 10

21 −ζ 6
21 +ζ 4

21)a4 +(ζ 1
211−ζ 7

21 +ζ 5
21)a5

+(ζ 11
21 −ζ 9

21 +ζ 4
21−ζ 3

21 +ζ21−1)a6

+(ζ 11
21 −ζ 10

21 −ζ 9
21 +ζ 8

21−ζ 6
21 +ζ 5

21−ζ 3
21 +ζ 2

21−1)a7

+(−ζ 10
21 +ζ 8

21−ζ 7
21−1)a8 +(−ζ 11

21 +ζ 9
21−ζ 8

21−ζ21)a9

+(−ζ 11
21 +ζ 10

21 −ζ 8
21 +ζ 6

21−ζ 4
21 +ζ 3

21−ζ 2
21−ζ21 +1)a10

+(−ζ 8
21 +ζ 7

21 +ζ 6
21−ζ 5

21−ζ 2
21 +1)a11, where a0,a1, . . . ,a11 ∈ Z},

then [OK : M ] = 7 and

TrK(αα) = 28a2
0−14a0a2−14a0a3−14a0a4 +28a0a5−28a0a7−14a0a9

+28a0a10 +28a0a11 +28a2
1−14a1a3−14a1a4−14a1a5 +28a1a6

−28a1a8−14a1a10 +28a1a11 +28a2
2−14a2a4−14a2a5−14a2a6

+28a2a7−28a2a9−14a2a11 +28a2
3−14a3a5−14a3a6−14a3a7

+28a3a8−28a3a10 +28a2
4−14a4a6−14a4a7−14a4a8 +28a4a9

−28a4a11 +28a2
5−14a5a7−14a5a8−14a5a9 +28a5a10 +28a2

6
−14a6a8−14a6a9−14a6a10 +28a6a11 +28a2

7−14a7a9−14a7a10

−14a7a11 +28a2
8−14a8a10−14a8a11 +28a2

9−14a9a11 +28a2
10

+28a2
11,

where α ∈M . Since t = min{TrK(αα) : α ∈M ,α 6= 0}= 28 with a0 = 1 and a1 = a2 = · · ·=
a11 = 0, it follows that

δ (M ) =
(
√

28/2)12

33 ·56 =
1
33 ,

i.e., the center density of σ(M ) is the same of the lattice K12.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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RESUMO. Neste trabalho, apresentamos construções de reticulados algébricos no espaço
euclidiano com densidade central ótima nas dimensões 2,3,4,5,6,8 e 12, que são versões
rotacionadas dos reticulados Λn, para n = 2,3,4,5,6,8 e K12, onde esses reticulados
algébricos são construı́dos através do homomorfismo canônico via Z-módulos do anel de
inteiros algébricos de um corpo de números.

Palavras-chave: reticulados algébricos, corpos de números, empacotamento esférico.
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