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We discuss some results frogrseries that can account for the foundations for the introduction of orthogonal
polynomials on the circle and on the line, namely the Rogers<saad Stieltjes-Wigert polynomials. These
polynomials are explicitly written and their orthogonality is verified. Explicit realizations of the raising and
lowering operators for these polynomials are introduced in analogy to those of the Hermite polynomials that
are shown to obey thg-commutation relations associated with thdeformed harmonic oscillator.

| Introduction physics[18]), phase transition[19, 20, 21, 2g]effects in
specific heat[23, 24], and so on. The introduction of-a
The so called-deformed algebras[1, 2, 3, 4] have been ob- deformed bosonic harmonic oscillator is a subject of great
ject of interest in the physics and mathematical physics lit- interest in this context and, as a tool for providing a boson
erature along the last years, and a great effort has been derealization of the quantum algebsa,,(2), brought to light
voted to its understanding and development[5, 6, 7]. The new commutation relations[25, 26, 27] which have been ex-
basic interest in g-deformed algebras resides in the facttensively discussed in the literature.
that they are deformed versions of the standard Lie alge-
bras, which are recovered as the deformation parameter
goes to unity. And, in this connection, since it is known
that the deformed algebras encompass a set of symmetrie
that is richer than that of the standard Lie algebras, one
is tempted to propose thatdeformed algebras are the ap-
propriate tool to be used when describing physical systems

i hich I ithin th . ; . . .
symmetries which cannot be properly treated within the approach is that, associated with that difference equation,

Lie algebras. Notwithstanding this, the direct interpreta- there apbpears some polviomials which can be obtained from
tion of the deformation parameter in these cases is some- pp poly

mes incompete or eve completey Iacking, To men- 11 D95 Vpergecneticcons and hat generalzes e
tion some particularly sucessful cases in which the physi- poly ' Y » -ag

cal meaning of the deformation parameter is clearly estab-mlte polyr_10m|als[31, 32, 3.3]' On the other hand, Feinsil-
lished. we could cite for instance. the XXZ-model. where V€T has discussed how using the three-term recurrence re-

e eromaelcantferomagnetcratre ofaspehain (S0 o Cbesona bobnomias i possbe o oish o
of length N can be simulated through the introduction of a 9 gop

g-deformed algebra[8], or the rotational bands in deformed connection with Lie algebras and th_q+|exten_3|0ns[34, 35].
nuclei and molecules which can be fitted viagaotor In the same perspective, the technique using the three-term
Hamiltonian[9, 10, 11], instead of using the variable mo- recurrence relation for the generalized Hermite polynomials
ment of inertia; (Vl</|| m<’3del). In spite of this interpretation was used in [36] o discuss algebraic approach of obtaining

difficulty, a solid development has emerged, from the origi- sum rules.

nal studies which appeared in connection with problemsre-  Inthis paper we intend to further follow the technique of
lated to solvable statistical mechanics models [12] and quan-obtaining raising and lowering operators from the three-term
tum inverse scattering theory[13], which encompass nowa- recurrence relation. We will focus our attention on tywo
days various branches of mathematical problems related topolynomials, namely the Rogers-Spegyid Stieltjes-Wigert
physical applications, such as deformed superalgebras[14] polynomials[37, 38], and we will show how it is possible
knot theories[15], noncommutative geometries[16], many- to obtain explicit realizations of the raising and lowering
body systems[17](in particular, for nuclear and molecular operators associated with these polynomials that are differ-

In this connection, some approaches have been put for-
ward that aim to exhibit realizations of tihedeformed har-
Qwonic oscillator algebra. The technique using the factor-
ization method [28, 29, 30] starts from the difference equa-
tion associated with the-deformed harmonic oscillator and
obtains raising and lowering operators which obey the well-
knowng-commutation relation. An interesting aspect of this

*This paper is dedicated to Prof. G.W. Bund, on the occasion of his 70th birthday.
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ent from those obtained from the factorization technique and that are essential for the discussion of the Rogers<sargd "

that still satisfy theg-commutation relations. The physical Stieltjes-Wigert polynomials, which are presented in Sec-

motivation for this particular choice of the polynomials is tion lll. In Section IV we discuss how to obtain raising and

that they both are possible solutions of thkarmonic oscil- lowering operators that satisfy tlgecommutation relations

lator and can be used as different bases states for describingssociated to thg-harmonic oscillator. Finally in section V

physical systems for which the free parameter (the defor- we present our conclusions.

mation parameter of the algebra) can account for squeezing

effects, for instance. Furthermore, the Rogers-8zsgy- ) )

nomials are orthonormalized on the circle and can thereforel |~ Brief review of some results from

be used in connection with angular representations of the q—series

harmonic oscillator. In this connection, the Wigner func-

tions for these po_lynomials hth_a bgen.already obtained andjy order to prepare the scene for tpolynomials we are

the angle and action marginal distributions calculated[39].  iyterested in, let us first introduce some concepts related to
The present paper is organized as follows: In section the theory ofg-series[6, 31, 32, 40, 41]. The basic notation

Il we present a brief review of some results frgmseries will be, for |g| < 1,

]

(a), = (a;q),, = (1 —a) (1 —aq) (1 —ag®) ... (1 —ag™™")

such that
(@) = (a;9) = lim (a3q),,,
and

(a), = 1.
The particular case should be noted

@)= (@9),=0-9(1-¢)(1-¢")...(0-¢").
Furthermore, one can recognize that, for any reane can write

(a), = (a)oo _ (1—-a)(1—agq) (l—an) _‘_(1_aqn+1)‘”
n (aqn)oo (]. — aqn) (]_ _ aqn+1) L

=(1-a)(1-ag) (1 —ag®)...(L—ag"™").
The Cauchy theorem plays an essential role in this context and states that<fdr, the following equality holds

o0 [ee]

1 —atg” a;

1 —tq” P Eq'ggntn'
n=0 a n=0 ‘1’ 7%/n

It is interesting to verify that, starting from the Cauchy theorem, the finite case holds

N-1 N N
@y =] a-a0 =3 v 7] g0 &
s=0 s=0 q
|
where
— 1—q" n—1
N (9) N [n], = [n] := =14+q+..+¢q 3)
=N 2) l—q
sl (@) (@n-s
with
is also calledz-binomial (sometimes it is also called Gauss [0] = 0

polynomials [40]).
Hereafter we will use fon € Ny andq € [0,1) which is called a;-number(or basic number)[42].
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1 q-OrthogonaI Polynomials Upon recalling thatg; ¢) , = 1, and that the following prop-
erty holds

n n
A. Roger s-Szegd polynomials T _n_j]’

The Rogers-Szegpolynomials have been already dis- so that
cussed in the literature [37, 38, 40, 43] so that here we will

only recall some important definitions and relations. [n] _ n} -1
The Rogers-Szen(RS) polynomials are defined as 10] "
n the first few polynomials can be written, namely
n
H, (x;q9) = k 4
(x:9) ZMm (@) 0
k=0 Hy (z;q9) = ol® =1,

and satisfy a three-term recurrence relation
1

Hy (z;q9) = [O]xo + {ﬂx =1+z.
Hpy1 (z3q) = (1 +2) Hy (v39) — (1 = ¢") 2Hp—1 (259) -
(5) Recalling (2)
]

1-9)(1-¢°)
(1-q)(1-q)
The remaining ones can be directly obtained through the use of the recurrence relation. Now, since we know thabit the
limit we get back the usual binomial, i.e.,
lim ("
i 1] = (2)

n n
. T ny ok LLAPN
t};rr}Hn (z;q) —Z}eri ,;,0 []Ja: _>,§,0 <k>x .

The RS polynomials were shown to be othogonalized on the circle with respect to the dggabt) function as the
measure[43]. To explicitely show this property, let us consider the proper choice of the variables, namely

Hs (z;9) =1+ z+a2° =1+ (1+q)z+2°

we see that

H, (z;q) = H, (—q‘l/Qew;q) :

Therefore, the orthonormalization condition is written as

Lnn = /7r H, (—q_l/Qew;q) H, (—q‘l/Qe_w;q) 2 (0,0) 22

o 2w

with the definition[44, 45]

Using the definition of the RS polynomials, (4), we see that, owing to the convergence propgstyqofo),

o m] [n] _1 = 2
Imn = -1 e —3(rts) 7, s—r
Sy ot 7] [t 0 G,

t=—o0

which gives

Imn _ Z Z (_1)r+s

r=0 s=0
However, this result is precisely that discussed in the Appendix and we directly verify that the orthogonality relation holds

/7; o, (_q—1/26w;q) H, (—q_l/Qe_w;q) 93 (¢, ¢) Z_‘;’ _ ((J;Z)ném,n_

m] [n Z(r— 2(s— —rs
} }qg D361 s,

rlLs
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From this relation we can extract what is sometimes known as Rogers-faegion

Ro(piq) = —— -
= o

In order to see that these polynomials are associated with superpositions of Gaussians on the circle, let us recall the ba:s
relation obeyed by the Jacobi (¢, ») function, namely, in general form [44, 45]

o0

2.

m=—00

Since we have been using from the beginning
[e's] 2
193 (Q7g0) = Z qTeltW’
t=—0o0

all we have to do now is to consider= exp (—2u) to get
expression (6) back. Therefore, the Jac®bi(q, p) func-

o0
S _ T L 2
exp (—pm” — imy) = \/;n;m exp [ m (p — 27n) } .

(6)

Gi(y;q9) =1+y

(1+q) 2

Gz(y;q)=1+—q Y+ 92,

and the others can be directly obtained from the recurrence

tion is indeed seen to be a superposition of Gaussians andelation.

the RS polynomials a family of orthogonalized functions on
the circle.

B. Stieltjes-Wigert polynomials

The Stieltjes-Wigert (SW) polynomials are introduced
through their definition [38]

n

Gn(Y) =Gn(y;0) =) m gy

r=0

and satisfy the three-term recurrence relation

Grn1 (y59) = (1 +y) Gr (y59)

+¢ " (1=q")yGn-1(y;9). )
The first polynomials are
Go(y;q) =1
|

n

Gn (u; q) = Z (_1)7“

r=0

e [_L
r P 2k2

If we specialize the parameters appearing in their defini-
tion, we can obtain a family of polynomials that are orthog-
onal on the line, namely let us considee= — ¢"*1/2z. In
this way the SW polynomials read

G, (_ qn+1/2x) — zn: (-1)"

|:n:| qr(r+1/2)x7“
r=0

r

Let us consider further

B 1
1= P 792

u
Tr = exp (ﬁ) .
With these choices we have

(8)
and

C)

(r+ 1/2)} exp (%) .

To show that these polynomials are orthogonal on the line we have to verify that a weight fyngtjoexists such that

/000 Gm (— qu/zx) Gn (— q”+1/2x) p(x)dr = F(q,n) 0nm,

whereF (g, n) is some definite function af andn. In fact it has been shown[46] that

p(z)

is the desired function with

= % exp (—k*log” z)

1

2k = ———

log q
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which is equivalent to expression (8). With the definition (9) we see that

2

U
k2

k u?
p(u) = mexp T2 )

We can now rewrite the modified SW polynomials in such a form to embody the weight function, namely,

=k?log’ x

so that

Sn (u;q) = p'/* (w) Gy, (usq)

- S (5) S [ o [t 2] e ()

r=0
k2 & - n 1 9 r
v 2 (-1) r} exp { Byl (u—r) ] exp (_4—]{?2) . (10)

It is worth noticing that each of these polynomials can be written as a superpositioiiaiussians centered at the points
Furthermore these polynomials are orthogonal on the line, since1waw< u < oo, and, in particular, are orthogonal to a
single Gaussian centered around the origin since this correspo@gi0q). In order to see this property let us consider

Tin = / Sm U q ( ) expk_( )du

Substituting the explicit expressions for the polynomials, Eq.(10)
_ r+s m
Linn = k7r1/2 Z ] [5

00 2
x/ exp{—%—k%(rﬁ-sﬁ-l)]du

which gives

Ton=ew (313) 3 0[] [ oo |22 oo [ 2652 oo (5).

r,s=0

Recalling that we are considerigg= exp (—

—1/2 Z T+s
mn -

r,s=0

=q PLyn=q"¢ " (4:9),, Onm
which proves the orthogonality of the SW polynomials.

5= ), we end up with

n

m| _r._ _S(g— —rs
[Jq Fr—1) 51,

In this form we have shown that this particular kind of |1V Q- Orthogonal Polynomialsand g-
Gaussian superpositions, which correspond to the Stieltjes- Algebras
Wigert polynomials, can be used as a orthogonal set of states
on the line.

A. Hermite polynomials

Before we treat the connection between these
polynomials and the realization of the deformed harmonic
oscillator algebra we are interested in, let us recall the prop-
erties of a classical polynomial[47], namely, the Hermite
polynomial.
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As is well known from the theory of classical polynomi-
als, the Hermite polynomials obey a three-term recurrence [N,R]=R
relation and

Hpii (z) =22Hy () — 2nHp—q (2) (11) IN,I] = L.

as well as a differentiation relation In this form, we see that we can obtain a raising, a lower-

ing and a number operator from the two basic relations sat-

%Hn () =2nH, (x). (12) isfied by the Hermite polynomials, namely, the three-term
) : recurrence relation and the differentiation relation respec-
If we insert (12) in (11), we get tively, such that they satisfy the well known commutation
d relations.
Hpp1 (z) = (23: - %) H, (z) On the other hand, let us consider the usual Hilbert space

‘H which is spanned by the vectdrs), generated from the
vacuum| 0) by the raising operatoR. Together with the

which points to the introduction of a raising operator[36], ) ! )
lowering operatot_, the following relations hold

defined as
d LR - RL =1,
R=2x— —
da (0]0) =1,
such that the set of Hermite polynomials can be generated — R0
by the application of this operator to the first polynomial, ) = | 0),
viz., Hy (z) = 1, L|0)y=0.
R"H, (z) = H,, (). In partit_:ular, the _following can also be proven by the use
of the previous relations
In exactly the same form we can define a lowering oper-
ator directly from Eq.(12), namely Rln)=|n+1),
1iHn(x):LHn(at:):an,l (z). Liny=n]|n-1),
2 dx

Itis a direct task to verify that these operators satisfy the o
canonical commutation relation (m | n) = nlomn.
Now, it isimmediately seen that the raising and lowering
[L,R] = 1. operators obtained from the basic properties of the Hermite
In this form, from Eqgs.(11) and (12) we were able to plolyr;omi_al.s are ehxplic.it.realihzati_o.ns of thhe abov? Earticulgr
write a pair of operators that satisfy a characteristic canon- algebra (itis wort notl_cmg that it 1S not the usual harmonic
oscillator algebra). This clearly points then to the fact that

gzla%grrgﬁéagggi;ﬁgfﬂnbag?;g?: :;Zggc?;?egott)t?ﬁeuSLT::]-the three-term recurrence relation together with the differen-
. 1 Oper: q tiation relation of the Hermite polynomials give an way of
tum mechanics harmonic oscillator. Furthermore, we can

also construct a number operator in the form constructing that particular realization of an algebra closely
P related to the harmonic oscillator one.

N =RL B. Roger s-Szegd polynomials
such that As already pointed out by some authors[27, 28, 29], it
is possible to introduce @-generalization of the harmonic
NHy (z) = RLHy () = nHy (z). oscillator algebra by considering a Hilbert spa¢g, where

Using the explicit representation of those operators we haved i the parameter already discussed before, spanned by the
vectors| n), which are generated from the vaccl®) by

d 1d . the action of a raising operat®. In a similar way the rela-
<23!j B @) (5 @) - ”] H, (z) =0, tions hold
which can be cast in the standard form of a second order .
differential equation for the Hermite polynomials LE—qRL =1, (13)
, whereq is a real parametef, < ¢ < 1, or equivalently, as
a 2wi +on ) H, (z) = 0. presented by Feinsilver[35],
dx? dx
LR — RL = ¢V,

It can also be directly verified that the operatdfsR
andL obey the standard commutation relations whereN is the usual number operator,
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(0]0)=1,
| n) =R"[0),
L]0)=0.

In a similar way as before, we can also verify that the rela-
tions follow

Rin)=n+1),
Lin)=n]|n-1),

(m [ n) = [n)'0mn,

where theg-number factorial is given by

[n]! = [1]]2][3]..-[n]-

It is then seen that the vectof:]!) ~'/? | n) form an or-
thonormal basis set and this Hilbert spétg consists of all
vectors| u) = > °7  u, | n), with complexu,, such that

(ulu) =30 ual” [n],! is finite.

Brazilian Journal of Physics, vol. 33, no. 1, March, 2003

where

Exactly in the same form we can identify a lowering opera-
tor directly from Eq.(14), viz.,

A,:lA
x

such that

A_H, (z39) = (1 —¢") Hp—1 (239),
and verify that the operator defined 4s A_ gives
AyA_Hy (z;9) = (1= ¢") Hy (z59)

whose eigenvalues are in close connection with ¢he
number, Eqg.(3). Hence, guided by these results, we rede-
fine these operators by the introduction of the Jacksgn's
derivative[31, 32], namely

¢(z) —d(qz) _ Ad(2)
z(1-q) r(l—gq)’

which goes to the usual derivative in the—» 1 limit. With

D, (l‘) =

Guided by the results of the previous section, and the this expression, the raising and lowering operators may be

analogy between the Hermite polynomials and the Rogers-

Sze@'polynomials, as emphasized by Carlitz[37, 38], in this

section we want to obtain the corresponding raising, lower-

ing andg-number operators and to look for the correspond-
ing commutation relations.
As already shown, Eq.(5),

Hn+1 (m,q) = (1 + l‘) H, (a:,q) - (1 - qn) zH, (l‘,q) :

Now we will be interested in a simple relation, namely the
analogous expression to the differentiation relation of the
Hermite polynomials, Eq.(12). In fact, the RS polynomi-

als do not exhibit such a relation, but if we calculate ghe

difference of these polynomials, designated by the operator

A, ie.,

AH, (z3q) = Hy (z59) — Hy (2g;9)
by the direct use of Eq.(4) we get

AH, (2;9) = (1= ¢") xHn 1 (239, (14)

which establishes, together with the recurrence relation
Eq.(5), a pair of equations relating neighbouring polynomi-
als. Inthe same form we pointed out for the Hermite polyno-
mials, if we substitute the above expressionfby_ (z;q)

in Eq.(5), we end up with

Hpyr (2,9) = [(1+2) = Al Hy (239),

which can again be understood as the action of a raising op-

erator for the RS polynomials, namely

AyH, (z;q) = Hpt1 (2, q) ,

written as
Si=(1+a)-(1-q)aD,

and
S_ =D,

respectively. The5, operator acts on the RS polynomials
in the same form ad ;, while now

S_Hp (z;9) = [n] Ho—1 (239)

so that, callingV, = S S_, we see that

n

q
lin x;(l )
( )

N, H, (25q) = [n] Hy (230) = ~— (15)

1-—

which plays the role of the-number operator.
The commutation relation between these operators can
be directly obtained giving
[S_,54]=1-(1-g)N,.

On the other hand, since we know Eg.(15), we further ob-

' serve that, making use of the standard number opehator

NH, (z;q) =nH, (z;q),

we may write

such that
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which is the particular case of the commutation relation
for the ¢g-deformed harmonic oscillator we have presented [N,S:]=S5+.

above. In the same form we can also obtain . . . .
It is also immediate to see that thecommutation rela-

[N,,S_] = —¢"§ tion of these operators is given by
g ~—=]1 —
N, 5.] = S, g S-S+ —qS+S-=[N+1—-¢[N]=1,
hi ner . which is the equivalent form of the commutation relation
while of the ¢g-deformed harmonic oscillator as also stated above,
N,S_]= -8 Eq.(13).
et Now, from Eq.(15), and using the explicit realization of
and the raising and lowering operators, we can write

]

N,H, (z;q) = [(1 +z)D,—(1—gq) ng] H, (z;q) = [n] H, (z;9) ,

from which we get the second ordgdifferential equation
obeyed by the Rogers-Szepgolynomials

W_ =D,
1+
a:DS - ((1 — x; D, + (l[ﬁ] ) H, (z;q9) =0. as the desired operators associated to the SW polynomials.
q q It is direct to see that they act on those polynomials as
C. Stieltjes-Wigert polynomials W.Gp (2;9) = Guyr (739) ,
The Stieltjes-Wigert polynomials satisfy the three-term
recurrence relation, Eq.(7) and

Gry1 (z59) = (1 +2)Gr (z;9)+¢ " (1 = ¢") 2Groy (759)

—n

as already stated. Instead of deducing the raising and Iow—W G (259) = 1—¢
ering operators in this case from the very beginning, we =~ """’ 1—¢g!
shall take advantage of an important property shown by

Carlitz[37], namely that the SW polynomials are directly re- respectively.

lated to the RS polynomials through the transformation

G (z;9) = [n] -1 Gn1 (759)

As in the case of the RS polynomials, we can obtain the
_ commutation relation between these operators, namel

Gy (w;q) = Hy (25071) . P y

This means that properties related to the RS polynomials

can be put in direct correspondence with properties of the W_,Wy]=1- (1 - q*l) W,.W_

SW polynomials so that we refrain from explicitely deduc-

ing all them here again. Instead, using this connection, we

can look for the raising and lowering operators associated

to these polynomials taking advantage of the ones already

obtained in the previous section. Therefore, knowing that

which can also be rewritten in terms of the standard number
operator as

_ —N
Sy =(1+z)—(1—q)zD,, W_, Wil =q¢",
and and it is also direct to see that thecommutation relation
S_ =D, obeyed by these operators is
we propose the new operators
W Wy —¢ "W, W_ =1
Wy=Q04z)—(1-q¢ ")zD,,

and as expected.
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V Conclusions and put it in (16) so that

In this paper we have discussed twepolynomials pre- m S Iml e n—l B

sented in the mathematical literature, namely the Rogers-  Tmn = »_ (—1) [T g V[ -). @)
s=0

Sze@'and Stieltjes-Wigert polynomials and presented some r=0
interesting properties they exhibit in connection with the
classical Hermite polynomials. Upon recalling a technique
of constructing explicit realizations of raising and lowering t
w
operators which satisfy an algebra akin to the usual har-
monic oscﬂla’ior. algeb(;a,hthé%Jgh the use of the t_hreeft:rm r (the rhs is constituted of a sum of products. Each sum-
recurrence re _atlon and the differentiation EXPressIon orrier- and has a product of terms where one of them will give
mite polynomials, we have shown that a similar procedure (1—¢" ") = 0, since, asn < n, s will necessarily as-

;:ar; *?[‘h? C?”'id out '(;‘ the tgase Ofl thop?ﬁlynoml?ls. In 4 Sume the value). Therefore, the sum only have vanishing
act, the Jacksong-derlivative replaces the usual on€ and o, ,mangs, since there will always be a zero factor in the
the procedure we have proposed here was shown to give ori- products

gin to new realizations of the-deformed algebra associated Thus
to theg-deformed harmonic oscillator, which then obey the
well-known commutation ang-commutation relations pre-

sented in the literature. Second: Form = n there will be only one term to be con-

In what refers to the Stieltjes-Wigert polynomialsitis to sidered, namely = m, what will give
be observed that raising and lowering operators — obeying
the g-deformed harmonic oscillator algebra — have been al- .
ready obtained for them in a somewhat different approach in L= (=1)"¢ 20D ] (1-¢"").

Ref.[29]. There the authors factorize the difference equation

satisfied by those polynomials and obtain the raising and To calculate this expression, let us explicitely write the prod-
lowering operators in terms gtdifference operators which  yct

are still another different realization of the corresponding al-

gebra.

One of the interesting points to be discussed in a fu-  _ (_jyn (=3 (n-1) (1 _ i) (1 1 ) (1 _ 1)
ture publication in connection with these realizations of the gt q
g-deformed harmonic oscillator algebra is that the Rogers-

Sze@ polynomials were shown to be orthogonalized on the
unit circle, allowing them to be good representations of an-

Now, without any loss of generality, we can assume that
m < n (the inverse could also be considered). There are
0 situations to be discussed. First: For< n, it is ev-
ident that the product on the rhs of (17) will vanish for all

I,, =0 for m<n. (18)

cren (ED (=g (1-¢"7") ... (1—0)

gle states in the description of the radiation field, in which =(1)"q qnq3 (=1
the deformation parameter of the algebra plays the role of a
squeezing parameter. Work along this line is in progress and (1—q") (1 _ qn—l) (1—q)
will be presented in another publication. = ’ -
qn
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Appendix A: An important equality L = 47" (4;0),, 6nm

Following Carlitz[38], let us first consider
g [38] References

[1] V.G. Drinfeld, Proceedings of the International Congress on
T = Z Z T+S [ } { ]q z(r- 1)(1 5o 1)(177‘s Mathematics, Vol. 1 (University of California Press, Berke-
r=0 s=0 ley, Cal., 1987), p. 798.

(16) .
and let us show that,,, = ¢ " (g; q)n 8,m. To this end we [2] M. Jimbo, Lett. Math. Physl1, 247 (1986).
recall the result already presented in the text, Eq.(1) [3] P.Kulish and N. Reshetikhin, J. Sov. Maft8, 2435 (1983).

N [4] E.K. Sklyanin, Funct. Anal. Appl16, 262 (1982).

N-1
(a;9)y = H 1—¢a) = Z [ :|q2](3 D gd [5] V. Chariand A. Pressley Guide to Quantum Groups (Cam-
Jj=0

=0 bridge University Press, 1995).



Dibgenes Galetti

(6]
(7]
(8]
9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]
[26]
[27]

L.C. Biedenharn and M.A. Loh&uantum Group Symmetry
and Q-Tensor Algebras (World Scientific, Singapore, 1995).

M. Chaichian and A. Demichevntroduction to Quantum
Groups (World Scientific, Singapore, 1996).

V. Pasquier and H. Saleur, Nucl. Phy330, 523 (1990).
S. Iwao, Prog. Theor. Phy83, 363 (1990).

P.P. Raychev, R.P. Roussev and Yu.F. Smirnov, J. PH&. G
L137 (1990).

E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Phys.
Lett. B280, 180 (1992).

R.J. BaxterExactly Solved Models in Statistical Mechanics
(Academic Press, London, 1982).

E. Sklyanin, L.Takhatajan and L. Fadeev, Theor. Math. Phys.
40, 194 (1979).

M. Chaichian and P. Kulish, Phys. Lett284, 72 (1990).
L. Kauffman, Int. J. Mod. Phys. B, 93 (1990).

Y. Manin, Quantum Groups and Non-Commutative Geome-
try, (Centre des Recherches Mathatiques, Montreal Uni-
versity Press, Montreal, 1988); A. Conn&zometry Non-
Commutative (Intereditions, Paris, 1990).

D. Galetti, J.T. Lunardi, B.M. Pimentel and C.L. Lim@:-
deformed algebras and many-body systems, in Topicsin The-
oretical Physics, Festschrift for Paulo Leal Ferreira, Eds. V.C.
Aguilera-Navarro, D. Galetti, B.M. Pimentel and L. Tomio
(Ed. IFT, SP, Brazil, 1995).

D. Bonatsos and C. Daskaloyannis, Prog. Part. Nucl. Phys.
43,537 (1999).

D. Galetti and B.M. Pimentel, An. Acad. Bras. @7, 7
(1995); S.S. Avancini, A. Eiras, D. Galetti, B.M. Pimentel
and C.L. Lima, J. Phys. A: Math. Gef@8, 4915 (1995); D.
Galetti, B.M. Pimentel, C.L. Lima and J.T. Lunardi, Physica
A242, 501 (1997).

S. S. Avancini and J. C. Brunelli, Phys. Lett124, 358
(1993).

S.S. Avancini, D.P.Menezes, M.M.W. de Moraes and F.F. de
Souza Cruz, J. Phys. A: Math. G&2Y, 831 (1994).

S.S. Avancini, F.F. de Souza Cruz, D.P. Menezes and M.M.W.
de Moraes, J. Phys.28, 701 (1995).

S. Zhang, Phys. Lett. 202, 18 (1995).

M. R-Monteiro, L. M. C. S. Rodrigues and S. Wulck, Phys.
Rev. Lett.76, 1098 (1996).

L.C. Biedenharn, J. Phys.2®, L873 (1989).
A.J. Macfarlane, J. Phys.2®, 4581 (1989).
M. Arik and D. Coon, J. Math. Phy47, 524 (1975).

(28]

(29]

(30]

(31]

(32]

(33]

(34]
(35]
(36]

(37]
(38]
(39]

(40]

[41]

[42]

(43]

(44]

(45]

[46]
[47]

157

N.M. Atakishiev and S.K. Suslov, Theor. Math. Phy5,
1055 (1991).

N.M. Atakishiev and S.K. Suslov, Theor. Math. Ph§%, 442
(2991).

N.M. Atakishiev, A. Frank and K.B Wolf, J. Math. Phy35,
3253 (1994).

G. Gasper and M. Rahmaiasic Hypergeometric Series
in Encyclopedia of Mathematics and its Applications (Cam-
bridge University Press, Cambridge, UK, 1997).

N. Ja. Vilenkin and A.U. Klimyk, Representation of Lie
Groups and Special Functions, vol. 3 (Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1992).

T.S. Chihara,An Introduction to Orthogonal Polynomials
(Gordon and Breach, N.Y., 1978).

P. Feinsilver, Acta Appl. Mathl3, 291 (1988).

P. Feinsilver, Acta Appl. Mathl9, 207 (1990).

J. Daboul and S.S. Mizrahi, Jour. of Group Theory in Phys.
2,161 (1994).

L. Carlitz, Ann. Math. Pura Applic4l, 359 (1956).

L. Carlitz, Publicationes Mathematic&e222 (1958).

D. Galetti, S.S. Mizrahi and M. Ruzzi, Proceedings of the
VIl International Wigner Symposium, Maryland, USA, Au-
gust 2001.

G. E. Andrews,The Theory of Partitions in Encyclopedia
of Mathematics and its Applications (Addison-Wesley Publ.
Co., Reading, Ma, USA, 1976).

G. E. Andrewsg-Series: Their development and application

in analysis, number theory, combinatorics, physics, and com-
puter algebra, Regional Conference Series in Mathematics,
vol. 26 (American Mathematical Society, Providence, USA,
1986).

F.H. Jackson, Q. J. Pure, Appl. Ma#i, 193 (1910).

G. Sze@, Orthogonal Polynomials, Colloquium Publica-
tions, vol. 23 (Americam Mathematical Society, Providence,
RI, USA, 1991).

E.T. Whittaker and G.N. Watso# Course of Modern Anal-
ysis (Cambridge University Press, USA, 1969).

R. Bellman,A Brief Introduction to Theta Functions (Holt,
Rinehart and Winston, NY, 1961).

S. Wigert, Arkiv for Mat. 27, no.18 (1923).

A. Erdelyi et al. (eds), Higher Transcendental Functions (Cal-
ifornia Institute of Technology H. Bateman M.S. Project),
Vol.2, McGraw Hill, New York (1953).



