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We discuss some results fromq-series that can account for the foundations for the introduction of orthogonal
polynomials on the circle and on the line, namely the Rogers-Szeg¨o and Stieltjes-Wigert polynomials. These
polynomials are explicitly written and their orthogonality is verified. Explicit realizations of the raising and
lowering operators for these polynomials are introduced in analogy to those of the Hermite polynomials that
are shown to obey theq-commutation relations associated with theq-deformed harmonic oscillator.

I Introduction

The so calledq-deformed algebras[1, 2, 3, 4] have been ob-
ject of interest in the physics and mathematical physics lit-
erature along the last years, and a great effort has been de-
voted to its understanding and development[5, 6, 7]. The
basic interest in q-deformed algebras resides in the fact
that they are deformed versions of the standard Lie alge-
bras, which are recovered as the deformation parameterq
goes to unity. And, in this connection, since it is known
that the deformed algebras encompass a set of symmetries
that is richer than that of the standard Lie algebras, one
is tempted to propose thatq-deformed algebras are the ap-
propriate tool to be used when describing physical systems
symmetries which cannot be properly treated within the
Lie algebras. Notwithstanding this, the direct interpreta-
tion of the deformation parameter in these cases is some-
times incomplete or even completely lacking. To men-
tion some particularly sucessful cases in which the physi-
cal meaning of the deformation parameter is clearly estab-
lished, we could cite for instance, the XXZ-model, where
the ferromagnetic/antiferromagneticnature of a spin1

2 chain
of lengthN can be simulated through the introduction of a
q-deformed algebra[8], or the rotational bands in deformed
nuclei and molecules which can be fitted via aq-rotor
Hamiltonian[9, 10, 11], instead of using the variable mo-
ment of inertia (VMI model). In spite of this interpretation
difficulty, a solid development has emerged, from the origi-
nal studies which appeared in connection with problems re-
lated to solvable statistical mechanics models [12] and quan-
tum inverse scattering theory[13], which encompass nowa-
days various branches of mathematical problems related to
physical applications, such as deformed superalgebras[14],
knot theories[15], noncommutative geometries[16], many-
body systems[17](in particular, for nuclear and molecular

physics[18]), phase transition[19, 20, 21, 22],q-effects in
specific heat[23, 24], and so on. The introduction of aq-
deformed bosonic harmonic oscillator is a subject of great
interest in this context and, as a tool for providing a boson
realization of the quantum algebrasuq(2), brought to light
new commutation relations[25, 26, 27] which have been ex-
tensively discussed in the literature.

In this connection, some approaches have been put for-
ward that aim to exhibit realizations of theq-deformed har-
monic oscillator algebra. The technique using the factor-
ization method [28, 29, 30] starts from the difference equa-
tion associated with theq-deformed harmonic oscillator and
obtains raising and lowering operators which obey the well-
knownq-commutation relation. An interesting aspect of this
approach is that, associated with that difference equation,
there appears some polynomials which can be obtained from
the basic hypergeometric functions, and that generalizes the
classical polynomials, namely the Jacobi, Laguerre and Her-
mite polynomials[31, 32, 33]. On the other hand, Feinsil-
ver has discussed how using the three-term recurrence re-
lation for orthogonal polynomials it is possible to obtain a
link with raising and lowering operators and discussed their
connection with Lie algebras and theirq-extensions[34, 35].
In the same perspective, the technique using the three-term
recurrence relation for the generalized Hermite polynomials
was used in [36] to discuss algebraic approach of obtaining
sum rules.

In this paper we intend to further follow the technique of
obtaining raising and lowering operators from the three-term
recurrence relation. We will focus our attention on twoq-
polynomials, namely the Rogers-Szeg¨o and Stieltjes-Wigert
polynomials[37, 38], and we will show how it is possible
to obtain explicit realizations of the raising and lowering
operators associated with these polynomials that are differ-

�This paper is dedicated to Prof. G.W. Bund, on the occasion of his 70th birthday.
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ent from those obtained from the factorization technique and
that still satisfy theq-commutation relations. The physical
motivation for this particular choice of the polynomials is
that they both are possible solutions of theq-harmonic oscil-
lator and can be used as different bases states for describing
physical systems for which the free parameter (the defor-
mation parameter of the algebra) can account for squeezing
effects, for instance. Furthermore, the Rogers-Szeg¨o poly-
nomials are orthonormalized on the circle and can therefore
be used in connection with angular representations of the
harmonic oscillator. In this connection, the Wigner func-
tions for these polynomials have been already obtained and
the angle and action marginal distributions calculated[39].

The present paper is organized as follows: In section
II we present a brief review of some results fromq-series

that are essential for the discussion of the Rogers-Szeg¨o and
Stieltjes-Wigert polynomials, which are presented in Sec-
tion III. In Section IV we discuss how to obtain raising and
lowering operators that satisfy theq-commutation relations
associated to theq-harmonic oscillator. Finally in section V
we present our conclusions.

II Brief review of some results from
q-series

In order to prepare the scene for theq-polynomials we are
interested in, let us first introduce some concepts related to
the theory ofq-series[6, 31, 32, 40, 41]. The basic notation
will be, for jqj < 1,

c

(a)n � (a; q)n � (1� a) (1� aq)
�
1� aq2

�
: : :
�
1� aqn�1

�
such that

(a)
1
� (a; q)

1
� lim

n!1
(a; q)n ;

and

(a)0 � 1:

The particular case should be noted

(q)n � (q; q)n � (1� q)
�
1� q2

� �
1� q3

�
: : : (1� qn) :

Furthermore, one can recognize that, for any realn, one can write

(a)n =
(a)
1

(aqn)
1

=
(1� a) (1� aq)

�
1� aq2

�
: : :
�
1� aqn+1

�
: : :

(1� aqn) (1� aqn+1) : : :

= (1� a) (1� aq)
�
1� aq2

�
: : :
�
1� aqn�1

�
:

The Cauchy theorem plays an essential role in this context and states that, forjtj < 1, the following equality holds

1Y
n=0

1� atqn

1� tqn
=
1X
n=0

(a; q)n
(q; q)n

tn:

It is interesting to verify that, starting from the Cauchy theorem, the finite case holds

(x; q)N =
N�1Y
s=0

(1� qsx) =
NX
s=0

(�1)s
�
N

s

�
q

q
s

2
(s�1)xs; (1)

d

where

�
N

s

�
=

(q)N
(q)s (q)N�s

(2)

is also calledq-binomial (sometimes it is also called Gauss
polynomials [40]).

Hereafter we will use forn 2 N0 andq 2 [0; 1)

[n]q � [n] :=
1� qn

1� q
= 1 + q + :::+ qn�1 (3)

with

[0] = 0;

which is called aq-number(or basic number)[42].
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III q-Orthogonal Polynomials

A. Rogers-Szegö polynomials

The Rogers-Szeg¨o polynomials have been already dis-
cussed in the literature [37, 38, 40, 43] so that here we will
only recall some important definitions and relations.

The Rogers-Szeg¨o (RS) polynomials are defined as

Hn (x; q) =

nX
k=0

�
n

k

�
xk (4)

and satisfy a three-term recurrence relation

Hn+1 (x; q) = (1 + x)Hn (x; q)� (1� qn)xHn�1 (x; q) :
(5)

Upon recalling that(q; q)0 = 1, and that the following prop-
erty holds �

n

j

�
=

�
n

n� j

�
;

so that
�
n

0

�
=

�
n

n

�
= 1

the first few polynomials can be written, namely

H0 (x; q) =

�
0

0

�
x0 = 1;

H1 (x; q) =

�
1

0

�
x0 +

�
1

1

�
x = 1 + x:

Recalling (2)

c

H2 (x; q) = 1 +
(1� q)

�
1� q2

�
(1� q) (1� q)

x+ x2 = 1 + (1 + q)x+ x2:

The remaining ones can be directly obtained through the use of the recurrence relation. Now, since we know that in theq ! 1
limit we get back the usual binomial, i.e.,

lim
q!1

�
n

k

�
=

�
n

k

�
;

we see that

lim
q!1

Hn (x; q) = lim
q!1

nX
k=0

�
n

k

�
xk !

nX
k=0

�
n

k

�
xk :

The RS polynomials were shown to be othogonalized on the circle with respect to the Jacobi# 3 (x; t) function as the
measure[43]. To explicitely show this property, let us consider the proper choice of the variables, namely

Hn (x; q) = Hn

�
�q�1=2ei'; q

�
:

Therefore, the orthonormalization condition is written as

Imn =

Z �

��

Hm

�
�q�1=2ei'; q

�
Hn

�
�q�1=2e�i'; q

�
#3 (q; ')

d'

2�
;

with the definition[44, 45]

#3 (q; ') =

1X
t=�1

q
t
2

2 eit':

Using the definition of the RS polynomials, (4), we see that, owing to the convergence property of# 3 (q; '),

Imn =

mX
r=0

nX
s=0

(�1)
r+s

�
m

r

��
n

s

�
q�

1

2
(r+s)

1X
t=�1

q
t
2

2 Æt;s�r;

which gives

Imn =

mX
r=0

nX
s=0

(�1)
r+s

�
m

r

��
n

s

�
q
r

2
(r�1)q

s

2
(s�1)q�rs:

However, this result is precisely that discussed in the Appendix and we directly verify that the orthogonality relation holds

Z �

��

Hm

�
�q�1=2ei'; q

�
Hn

�
�q�1=2e�i'; q

�
#3 (q; ')

d'

2�
=

(q; q)n
qn

Æm;n:
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From this relation we can extract what is sometimes known as Rogers-Szeg¨o function

Rn ('; q) =
q�

n

2

[(q; q)n]
1=2

Hn

�
�q�1=2e�i'; q

�
:

In order to see that these polynomials are associated with superpositions of Gaussians on the circle, let us recall the basic
relation obeyed by the Jacobi#3 (q; ') function, namely, in general form [44, 45]

1X
m=�1

exp
�
��m2 � im'

�
=

r
�

�

1X
n=�1

exp

�
�

1

4�
('� 2�n)

2

�
: (6)

d

Since we have been using from the beginning

#3 (q; ') =

1X
t=�1

q
t
2

2 eit';

all we have to do now is to considerq = exp (�2�) to get
expression (6) back. Therefore, the Jacobi#3 (q; ') func-
tion is indeed seen to be a superposition of Gaussians and
the RS polynomials a family of orthogonalized functions on
the circle.

B. Stieltjes-Wigert polynomials

The Stieltjes-Wigert (SW) polynomials are introduced
through their definition [38]

Gn (y) � Gn (y; q) =

nX
r=0

�
n

r

�
qr(r�n)yr;

and satisfy the three-term recurrence relation

Gn+1 (y; q) = (1 + y)Gn (y; q)

+q�n (1� qn) yGn�1 (y; q) : (7)

The first polynomials are

G0(y; q) = 1

G1(y; q) = 1 + y

G2(y; q) = 1 +
(1 + q)

q
y + y2;

and the others can be directly obtained from the recurrence
relation.

If we specialize the parameters appearing in their defini-
tion, we can obtain a family of polynomials that are orthog-
onal on the line, namely let us considery = � qn+1=2x. In
this way the SW polynomials read

Gn

�
� qn+1=2x

�
=

nX
r=0

(�1)
r

�
n

r

�
qr(r+1=2)xr:

Let us consider further

q = exp

�
�

1

2k2

�
(8)

and

x = exp
� u

k2

�
: (9)

With these choices we have

c

Gn (u; q) =

nX
r=0

(�1)
r

�
n

r

�
exp

h
�

r

2k2
(r + 1=2)

i
exp

�ur
k2

�
:

To show that these polynomials are orthogonal on the line we have to verify that a weight functionp (x) exists such that

Z
1

0

Gm

�
� qm+1=2x

�
Gn

�
� qn+1=2x

�
p (x) dx = F (q; n) Æn;m;

whereF (q; n) is some definite function ofq andn. In fact it has been shown[46] that

p (x) =
k

�1=2
exp

�
�k2 log2 x

�
is the desired function with

2k2 = �
1

log q
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which is equivalent to expression (8). With the definition (9) we see that

u2

k2
= k2 log2 x

so that

p (u) =
k

�1=2
exp

�
�
u2

k2

�
:

We can now rewrite the modified SW polynomials in such a form to embody the weight function, namely,

Sn (u; q) = p1=2 (u)Gn (u; q)

=
k1=2

�1=4
exp

�
�
u2

2k2

� nX
r=0

(�1)r
�
n

r

�
exp

h
�

r

2k2
(r + 1=2)

i
exp

�ur
k2

�

=
k1=2

�1=4

nX
r=0

(�1)
r

�
n

r

�
exp

�
�

1

2k2
(u� r)

2

�
exp

�
�

r

4k2

�
: (10)

It is worth noticing that each of these polynomials can be written as a superposition ofn Gaussians centered at the pointsr.
Furthermore these polynomials are orthogonal on the line, since now�1 � u � 1, and, in particular, are orthogonal to a
single Gaussian centered around the origin since this corresponds toS 0 (u; q). In order to see this property let us consider

Imn =

Z
1

�1

Sm (u; q)Sn (u; q)
exp

�
u
k2

�
k2

du

Substituting the explicit expressions for the polynomials, Eq.(10)

Imn =
1

k�1=2

m;nX
r;s=0

(�1)
r+s

�
n

r

��
m

s

�
exp

�
�

r2

2k2
�

r

4k2
�

s2

2k2
�

s

4k2

�

�

Z
1

�1

exp

�
�
u2

k2
+

u

k2
(r + s+ 1)

�
du

which gives

Imn = exp

�
1

4k2

� m;nX
r;s=0

(�1)
r+s

�
n

r

��
m

s

�
exp

�
�
r (r � 1)

4k2

�
exp

�
�
s (s� 1)

4k2

�
exp

� rs

2k2

�
:

Recalling that we are consideringq = exp
�
� 1

2k2

�
, we end up with

Imn = q�1=2
m;nX
r;s=0

(�1)
r+s

�
n

r

��
m

s

�
q�

r

2
(r�1)q�

s

2
(s�1)q�rs

= q�1=2Imn = q�1=2q�n (q; q)n Æn;m;

which proves the orthogonality of the SW polynomials.

d

In this form we have shown that this particular kind of
Gaussian superpositions, which correspond to the Stieltjes-
Wigert polynomials, can be used as a orthogonal set of states
on the line.

IV q- Orthogonal Polynomials and q-
Algebras

A. Hermite polynomials
Before we treat the connection between theseq-

polynomials and the realization of the deformed harmonic
oscillator algebra we are interested in, let us recall the prop-
erties of a classical polynomial[47], namely, the Hermite
polynomial.
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As is well known from the theory of classical polynomi-
als, the Hermite polynomials obey a three-term recurrence
relation

Hn+1 (x) = 2xHn (x) � 2nHn�1 (x) (11)

as well as a differentiation relation

d

dx
Hn (x) = 2nHn�1 (x) : (12)

If we insert (12) in (11), we get

Hn+1 (x) =

�
2x�

d

dx

�
Hn (x)

which points to the introduction of a raising operator[36],
defined as

R = 2x�
d

dx

such that the set of Hermite polynomials can be generated
by the application of this operator to the first polynomial,
viz.,H0 (x) = 1,

RnH0 (x) = Hn (x) :

In exactly the same form we can define a lowering oper-
ator directly from Eq.(12), namely

1

2

d

dx
Hn (x) = LHn (x) = nHn�1 (x) :

It is a direct task to verify that these operators satisfy the
canonical commutation relation

[L;R] = 1:

In this form, from Eqs.(11) and (12) we were able to
write a pair of operators that satisfy a characteristic canon-
ical commutation relation, although they are not the usual
creation and annihilation operators associated to the quan-
tum mechanics harmonic oscillator. Furthermore, we can
also construct a number operator in the form

N = RL

such that

NHn (x) = RLHn (x) = nHn (x) :

Using the explicit representation of those operators we have
��

2x�
d

dx

��
1

2

d

dx

�
� n

�
Hn (x) = 0;

which can be cast in the standard form of a second order
differential equation for the Hermite polynomials

�
d2

dx2
� 2x

d

dx
+ 2n

�
Hn (x) = 0:

It can also be directly verified that the operatorsN;R
andL obey the standard commutation relations

[N;R] = R

and

[N;L] = �L:

In this form, we see that we can obtain a raising, a lower-
ing and a number operator from the two basic relations sat-
isfied by the Hermite polynomials, namely, the three-term
recurrence relation and the differentiation relation respec-
tively, such that they satisfy the well known commutation
relations.

On the other hand, let us consider the usual Hilbert space
H which is spanned by the vectorsj ni, generated from the
vacuumj 0i by the raising operatorR. Together with the
lowering operatorL, the following relations hold

LR�RL = 1;

h0 j 0i = 1;

j ni = Rn j 0i;

L j 0i = 0:

In particular, the following can also be proven by the use
of the previous relations

R j ni = j n+ 1i;

L j ni = n j n� 1i;

hm j ni = n!Æmn:

Now, it is immediately seen that the raising and lowering
operators obtained from the basic properties of the Hermite
polynomials are explicit realizations of the above particular
algebra (it is worth noticing that it is not the usual harmonic
oscillator algebra). This clearly points then to the fact that
the three-term recurrence relation together with the differen-
tiation relation of the Hermite polynomials give an way of
constructing that particular realization of an algebra closely
related to the harmonic oscillator one.

B. Rogers-Szegö polynomials
As already pointed out by some authors[27, 28, 29], it

is possible to introduce aq-generalization of the harmonic
oscillator algebra by considering a Hilbert spaceHq , where
q is the parameter already discussed before, spanned by the
vectorsj ni, which are generated from the vaccumj 0i by
the action of a raising operatorR. In a similar way the rela-
tions hold

LR� qRL = 1; (13)

whereq is a real parameter,0 < q < 1, or equivalently, as
presented by Feinsilver[35],

LR�RL = qN ;

whereN is the usual number operator,
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h0 j 0i = 1;

j ni = Rn j 0i;

L j 0i = 0:

In a similar way as before, we can also verify that the rela-
tions follow

R j ni =j n+ 1i;

L j ni = [n] j n� 1i;

hm j ni = [n]!Æmn;

where theq-number factorial is given by

[n]! = [1][2][3]:::[n]:

It is then seen that the vectors([n]!)�1=2 j ni form an or-
thonormal basis set and this Hilbert spaceHq consists of all
vectorsj ui =

P
1

n=0 un j ni, with complexun such that
hu j ui =

P
1

n=0 junj
2
[n]q ! is finite.

Guided by the results of the previous section, and the
analogy between the Hermite polynomials and the Rogers-
Szegö polynomials, as emphasized by Carlitz[37, 38], in this
section we want to obtain the corresponding raising, lower-
ing andq-number operators and to look for the correspond-
ing commutation relations.

As already shown, Eq.(5),

Hn+1 (x; q) = (1 + x)Hn (x; q)� (1� qn)xHn�1 (x; q) :

Now we will be interested in a simple relation, namely the
analogous expression to the differentiation relation of the
Hermite polynomials, Eq.(12). In fact, the RS polynomi-
als do not exhibit such a relation, but if we calculate theq-
difference of these polynomials, designated by the operator
�, i.e.,

�Hn (x; q) = Hn (x; q)�Hn (xq; q) ;

by the direct use of Eq.(4) we get

�Hn (x; q) = (1� qn)xHn�1 (x; q) ; (14)

which establishes, together with the recurrence relation,
Eq.(5), a pair of equations relating neighbouring polynomi-
als. In the same form we pointed out for the Hermite polyno-
mials, if we substitute the above expression forHn�1 (x; q)
in Eq.(5), we end up with

Hn+1 (x; q) = [(1 + x)��]Hn (x; q) ;

which can again be understood as the action of a raising op-
erator for the RS polynomials, namely

A+Hn (x; q) = Hn+1 (x; q) ;

where

A+ = (1 + x)��:

Exactly in the same form we can identify a lowering opera-
tor directly from Eq.(14), viz.,

A� =
1

x
�

such that

A�Hn (x; q) = (1� qn)Hn�1 (x; q) ;

and verify that the operator defined asA+A� gives

A+A�Hn (x; q) = (1� qn)Hn (x; q)

whose eigenvalues are in close connection with theq-
number, Eq.(3). Hence, guided by these results, we rede-
fine these operators by the introduction of the Jackson’sq-
derivative[31, 32], namely

Dq� (x) =
� (x)� � (qx)

x (1� q)
=

�� (x)

x (1� q)
;

which goes to the usual derivative in theq ! 1 limit. With
this expression, the raising and lowering operators may be
written as

S+ = (1 + x)� (1� q)xDq

and
S� = Dq

respectively. TheS+ operator acts on the RS polynomials
in the same form asA+, while now

S�Hn (x; q) = [n]Hn�1 (x; q)

so that, callingNq = S+S�, we see that

NqHn (x; q) = [n]Hn (x; q) =
1� qn

1� q
Hn (x; q) ; (15)

which plays the role of theq-number operator.
The commutation relation between these operators can

be directly obtained giving

[S�; S+] = 1� (1� q)Nq:

On the other hand, since we know Eq.(15), we further ob-
serve that, making use of the standard number operatorN

NHn (x; q) = nHn (x; q) ;

we may write

Nq =
1� qN

1� q
= [N ]

such that

[S�; S+] = qN ;
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which is the particular case of the commutation relation
for the q-deformed harmonic oscillator we have presented
above. In the same form we can also obtain

[Nq ; S�] = �qNS�;

[Nq; S+] = S+q
N ;

while

[N;S�] = �S�;

and

[N;S+] = S+ :

It is also immediate to see that theq-commutation rela-
tion of these operators is given by

S�S+ � qS+S� = [N + 1]� q [N ] = 1;

which is the equivalent form of the commutation relation
of theq-deformed harmonic oscillator as also stated above,
Eq.(13).

Now, from Eq.(15), and using the explicit realization of
the raising and lowering operators, we can write

c

NqHn (x; q) =
�
(1 + x)Dq � (1� q)xD2

q

�
Hn (x; q) = [n]Hn (x; q) ;

d

from which we get the second orderq-differential equation
obeyed by the Rogers-Szeg¨o polynomials

�
xD2

q �
(1 + x)

(1� q)
Dq +

[n]

(1� q)

�
Hn (x; q) = 0:

C. Stieltjes-Wigert polynomials

The Stieltjes-Wigert polynomials satisfy the three-term
recurrence relation, Eq.(7)

Gn+1 (x; q) = (1 + x)Gn (x; q)+q�n (1� qn)xGn�1 (x; q) ;

as already stated. Instead of deducing the raising and low-
ering operators in this case from the very beginning, we
shall take advantage of an important property shown by
Carlitz[37], namely that the SW polynomials are directly re-
lated to the RS polynomials through the transformation

Gn (x; q) = Hn

�
x; q�1

�
:

This means that properties related to the RS polynomials
can be put in direct correspondence with properties of the
SW polynomials so that we refrain from explicitely deduc-
ing all them here again. Instead, using this connection, we
can look for the raising and lowering operators associated
to these polynomials taking advantage of the ones already
obtained in the previous section. Therefore, knowing that

S+ = (1 + x)� (1� q)xDq ;

and

S� = Dq

we propose the new operators

W+ = (1 + x)�
�
1� q�1

�
xDq�1 ;

and

W� = Dq�1

as the desired operators associated to the SW polynomials.
It is direct to see that they act on those polynomials as

W+Gn (x; q) = Gn+1 (x; q) ;

and

W�Gn (x; q) =
1� q�n

1� q�1
Gn�1 (x; q) = [n]q�1 Gn�1 (x; q)

respectively.

As in the case of the RS polynomials, we can obtain the
commutation relation between these operators, namely

[W�;W+] = 1�
�
1� q�1

�
W+W�

which can also be rewritten in terms of the standard number
operator as

[W�;W+] = q�N ;

and it is also direct to see that theq-commutation relation
obeyed by these operators is

W�W+ � q�1W+W� = 1

as expected.
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V Conclusions

In this paper we have discussed twoq-polynomials pre-
sented in the mathematical literature, namely the Rogers-
Szegö and Stieltjes-Wigert polynomials and presented some
interesting properties they exhibit in connection with the
classical Hermite polynomials. Upon recalling a technique
of constructing explicit realizations of raising and lowering
operators which satisfy an algebra akin to the usual har-
monic oscillator algebra, through the use of the three-term
recurrence relation and the differentiation expression of Her-
mite polynomials, we have shown that a similar procedure
can be carried out in the case of thoseq-polynomials. In
fact, the Jackson’sq-derivative replaces the usual one and
the procedure we have proposed here was shown to give ori-
gin to new realizations of theq-deformed algebra associated
to theq-deformed harmonic oscillator, which then obey the
well-known commutation andq-commutation relations pre-
sented in the literature.

In what refers to the Stieltjes-Wigert polynomials it is to
be observed that raising and lowering operators – obeying
theq-deformed harmonic oscillator algebra – have been al-
ready obtained for them in a somewhat different approach in
Ref.[29]. There the authors factorize the difference equation
satisfied by those polynomials and obtain the raising and
lowering operators in terms ofq-difference operators which
are still another different realization of the corresponding al-
gebra.

One of the interesting points to be discussed in a fu-
ture publication in connection with these realizations of the
q-deformed harmonic oscillator algebra is that the Rogers-
Szegö polynomials were shown to be orthogonalized on the
unit circle, allowing them to be good representations of an-
gle states in the description of the radiation field, in which
the deformation parameter of the algebra plays the role of a
squeezing parameter. Work along this line is in progress and
will be presented in another publication.
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Appendix A: An important equality

Following Carlitz[38], let us first consider

Imn =
mX
r=0

nX
s=0

(�1)r+s
�
m

r

��
n

s

�
q�

r

2
(r�1)q�

s

2
(s�1)q�rs;

(16)
and let us show thatImn = q�n (q; q)n Ænm. To this end we
recall the result already presented in the text, Eq.(1)

(a; q)N =

N�1Y
j=0

�
1� qja

�
=

NX
j=0

(�1)
j

�
N

j

�
q
1

2
j(j�1)aj

and put it in (16) so that

Imn =

mX
r=0

(�1)
r

�
m

r

�
q�

r

2
(r�1)

n�1Y
s=0

�
1� qs�r

�
: (17)

Now, without any loss of generality, we can assume that
m � n (the inverse could also be considered). There are
two situations to be discussed. First: Form < n, it is ev-
ident that the product on the rhs of (17) will vanish for all
r (the rhs is constituted of a sum of products. Each sum-
mand has a product of terms where one of them will give
(1� qr�r) = 0, since, asm < n, s will necessarily as-
sume the valuer). Therefore, the sum only have vanishing
summands, since there will always be a zero factor in the
products.

Thus
Imn = 0 for m < n : (18)

Second: Form = n there will be only one term to be con-
sidered, namelyr = m, what will give

Inn = (�1)n q�
n

2
(n�1)

n�1Y
s=0

�
1� qs�n

�
:

To calculate this expression, let us explicitely write the prod-
uct

Inn = (�1)
n
q�

n

2
(n�1)

�
1�

1

qn

��
1�

1

qn�1

�
: : :

�
1�

1

q

�

= (�1)
n
q�

n

2
(n�1) (�1)

n
(1� qn)

�
1� qn�1

�
: : : (1� q)

qnq
n

2
(n�1)

=
(1� qn)

�
1� qn�1

�
: : : (1� q)

qn

which, upon identifying the numerator, gives

Inn =
(q; q)n
qn

:

This contribution together with (18) gives the final result

Imn = q�n (q; q)n Ænm:
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