
PHYSICAL REVIE%' A VOLUME SO, NUMBER 2 AUGUST 1994

ARTICLES

Derivation of the energy-time uncertainty relation

Donald H. Kobe and V. C. Aguilera-Navarro'
Department ofPhysics, University ofNorth Texas, Denton, Texas 76203 53-68

(Received 28 June 1993)

A derivation from first principles is given of the energy-time uncertainty relation in quantum mechan-

ics. A canonical transformation is made in classical mechanics to a new canonical momentum, which is

energy E, and a new canonical coordinate T, which is called tempus, conjugate to the energy. Tempus T,
the canonical coordinate conjugate to the energy, is conceptually difFerent from the time t in which the
system evolves. The Poisson bracket is a canonical invariant, so that energy and tempus satisfy the same

Poisson bracket as do p and q. When the system is quantized, we find the energy-time uncertainty rela-

tion bEbT) A/2. For a conservative system the average of the tempus operator 1is the time t plus a
constant. For a free particle and a particle acted on by a constant force, the tempus operators are con-
structed explicitly, and the energy-time uncertainty relation is explicitly verified.

PACS number(s): 03.65.Bz, 03.20.+i

I. IN iaODUCTION

Ever since the discovery of quantum mechanics, the
energy-time uncertainty relation bEbt )A'/2 has had a
difFerent basis than the position-momentum uncertainty
relation bq bp )fi/2. In nonrelativistic quantum
mechanics time t is a parameter, not an operator as is the
coordinate q. Therefore the usual quantum-mechanical
average and uncertainty in the time cannot be calculated
as in the case of the coordinate. For this reason, it has
been suggested that the energy-time uncertainty relation
simply be eliminated from quantum mechanics [1]. This
radical suggestion overlooks the many different ap-
proaches to the physically useful energy-time uncertainty
relation.

We brie6y mention some of the derivations of the
energy-time uncertainty relation, even though some are
only heuristic [2,3]. (i) The energy-time uncertainty rela-

tion can be obtained by showing that a wave packet of
width b,t in time requires a spread in angular frequencies
bto such that b,cobt —1. Together with the Planck rela-
tion E=A'to, we obtain b,Eb,t-fi [4]. (ii) The energy-
time uncertainty relation is derived by reducing it to the
position-momentum uncertainty relation [3,5]. If
bE=(M/Bp)bp=ubp and bt=bq/u, where u is the
group velocity, then EEL,t =bpb, q )A/2. (iii} Mandel-
stam and Tamm [6] showed that the energy-time uncer-
tainty relation can be derived from the Heisenberg equa-
tion of motion for an arbitrary operator A and the gen-
eralized uncertainty relation for A and the Hamiltonian

[3,7]. If we define b t to be the smallest
b,t„=—b, A /(d ( A ) /dt) for all operators A, and
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b E=b,H, we also recover the energy-time uncertainty re-
lation [8,9]. (iv) Wigner [10] has considered the expecta-
tion value of t" in the state f=P(q, t) to be

q, t
(t")= (1)f dtiP(q, t)i'

Therefore he defines the square of the uncertainty
(bt)2=(t ) —(t ) at constant q and defines (bE)2 simi-
larly. He shows that bEbt)R/2 holds at constant q.
Cook [11]uses this form of the uncertainty relation to an-
alyze the thought experiment that Einstein [12] proposed
to Bohr at the 1930 Solvay Conference. (v) Many authors
[13—29] have tried to find a time operator t, which
satisfies the canonical commutation relation [t,P]=i%
Then the energy-time uncertainty relation can be derived
by the same procedure as for the position-momentum un-
certainty relation [7]. These attempts have to contend
with Pauli's argument [30] that a time operator cannot
exist in general because the spectrum of the time operator
is continuous and unbounded, while the spectrum of the
Hamiltonian may be discrete and is bounded from below.
The role between the time t as a parameter and the time
operator t is often not clear in these attempts. A clear
distinction is however made by Razavy [17,18]. (vi) In
scattering theory it is the time of arrival which is impor-
tant and attempts have been made to find an operator
which describes this quantity [31—36]. (vii) In the con-
text of the density matrix p, Eberly and Singh [37] have
shown that Bp/Bt plays the role of an "inverse time
operator" from which the energy-time uncertainty rela-
tion can be derived [38]. (viii} The role of the uncertainty
relations in relativistic quantum theory has been dis-
cussed by a number of authors [39—43]. (ix) The inter-
pretation of the energy-time uncertainty relation is a part
of quantum measurement theory [44—51] and is distinct
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from its derivation. The energy-time uncertainty relation
for decaying states has been improved by Gislason, Sabel-
li, and Wood [52].

In this paper we give a derivation of the energy-time
uncertainty relation, which is based on first principles
and does not resort to any heuristic or ad hoc arguments.
Our derivation is firmly based on nonrelativistic classical
mechanics and its quantization, and puts the energy-time
uncertainty relation on the same footing as the position-
momentum uncertainty relation. In classical mechanics
we make a canonical transformation [53] from the old
canonical variables (q,p) to new canonical variables
(q', p'), where the new canonical momentum p' is the en-
ergy E of the particle and the new canonical coordinate
q' is a quantity T conjugate to the energy, which we call
tempus [54—56]. This tempus T has dimension of time,
but is conceptually different from the time t in which the
system evolves. Since T and E are canonically conjugate
variables and the Poisson bracket is a canonical invariant
[53], their Poisson bracket is unity. Upon quantization,
the tempus operator f' and the energy operator P satisfy
the canonical commutation relation. Therefore, the ener-

gy and the tempus operators satisfy the usual energy-time
uncertainty relation KENT ~ A'/2 as long as the expecta-
tion values of f' and f' exist. For a conservative system
the expectation value of the tempus operator is equal to
the time t plus an irrelevant constant. The distinction be-
tween the tempus operator f' conjugate to the energy
operator and the time t of evolution is thus made clear.

This approach is applied to two examples: (i) a free
particle and (ii) a particle acted on by a constant force.
In both cases the tempus operator 1is constructed explic-
itly by quantizing the corresponding classical tempus T
conjugate to the energy. In the subspace of the Hilbert
space in which it exists, the average value ( f') =t plus a
constant. The energy-time uncertainty relation is explic-
itly shown to be satisfied.

In Sec. II, a canonical transformation is made in classi-
cal mechanics to energy and its canonical conjugate
tempus. Using Poisson brackets, we quantize the system
in Sec. III and derive the energy-time uncertainty rela-
tion. In Sec. IV, examples of a free particle and a particle
acted on by a constant force are considered and it is
shown that the energy-time uncertainty relation is explic-
itly satisfied. Finally, the conclusion is given in Sec. V.

aH'q'=, , p'=
Bp

a—H'
(3)

as(q, E, t)p=
aq

and the new canonical coordinate tempus is

aS(q, E, t)

(4)

(5)

By integrating Eq. (4), we obtain

S(q,E, t)= f p(q, E, t)dq+S(qo, E, t), (6)
qo

where qo is an arbitrary initial displacement. The arbi-

trary function S(qo, E, t) of E and t in Eq. (6) can often be
chosen to be zero without loss of generality. To obtain
the generating function in Eq. (6), it is necessary to find

the canonical momentum p as function of q, E, and t.
The new generalized coordinate tempus T can be ob-
tained as a function of q, E, and t from Eq. (5). When
this equation is solved for q as a function of T, E, and t,
we have the solution to the problem if we know T and E
as functions of time t.

The new Hamiltonian H' in Eq. (3) for the new canoni-
cal variables (q', p') =(T,E) is

H =H+(as/at)„. (7)

The energy E may not be equal to the Harniltonian 8, so
their difference is defined as

When Eqs. (7) and (8) are used in Hamilton's equations
(3) for the new canonical variables ( T,E), we obtain [55]

where the new Hamiltonian is H'=H+aS/at
If the new canonical momentum p' is chosen to be the

energy E, the new canonical coordinate q' conjugate to it
is called tempus and denoted as T. This tempus canonical
coordinate conjugate to the energy is conceptually
different from the time t in which the system evolves and
is a function of q, E, and t [55] with the dimension of
time.

The generating function of the second type S(q,E, t),
which implements this canonical transformation, satisfies
[5,56],

II. ENERGY AND TEMPUS AS CANONICAL VARIABLES T= 1+ (9)

In the Hamiltonian formulation of classical mechanics,
the canonical coordinate q and the canonical momentum

p conjugate to it satisfy Hamilton's equations

and

aa . -aHp=
Bp Bq

(2)

E, r

(10)

where H=H(q, p, t) is the Hamiltonian for a system of
one degree of freedom and the overdot denotes the total
time derivative. Using a generating function S, we can
make a canonical transformation to a new set of canoni-
cal variables (q',p'), which also satisfy Hamilton's equa-
tions [54]

Bqs. (9) and (10) it is necessary to express

a+(aS/at)~z as a function of E, T, and t before

differentiation. Hamilton's equations (9) and (10) can be
solved for T(t) and E(t). The solution to the original
problem is q=q(E(t), T(t), t)—:q(t).
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III. QUANTIZATION

In order to quantize a system, it is necessary to replace
the Poisson bracket of two functions of the canonical
variables by (i') ' times the commutator of the corre-
sponding operators. The Poisson bracket between
A = A (q,p, t) and B=B(q,p, t) is defined as

aA aB aB aA

Bq Bp Bq Bp

The Poisson bracket is a canonical invariant [53],so

[A,B] =[A,B] ~

(12)

(13)

where the new canonical variables (q', p') are related to
the old canonical variables (q,p) by a canonical transfor-
mation. If A =q and B=p, we have

1= [q ~],,,=
I
q' p'], ,, =

I
q' p'], ,,=

[
T' E],,, (14)

from Eqs. (12) and (13).
When the system is quantized, the operators g and P ( f'

and X') corresponding to q and p (T and E) satisfy the
commutation relations

and

[q,P]=i%

[f',P]=i

(15)

(16)

from Eq. (14).
In eneral, the uncertainty relation for the operators A

and in the state f is [57—61]:

»~B ~-,'1&C &l, (17)

where iC = [ A,S ] and &
C' &—:& g~ C f &. The square of

the uncertainty in A is defined as

(&A)'=
& gl( A —

& A & )'g & . (18)

For the energy and tempus operators in Eq. (16) we have
the uncertainty relation

For a conservative system, there is no explicit time
dependence in S, so dS/dt =0. In this case, the Hamil-
tonian H can be chosen to be the energy E, so
4=H E—=O. Therefore, Eqs. (9) and (10}reduce to

T= 1, E=O .

The solution to Eq. (11}is T= t to a—nd E =ED, where ro

and Eo are constants. In this case, tempus is equal to the
time t minus a constant. The solution to the original
problem is therefore q =q (E, T)=q ( Eo, t to

—}
p(q, r) = U(r)g(q, O), (21)

where f(q, O) is the wave function at time zero. The time
evolution operator is

U(t) =exp[ i8t/A—], (22)

where 8 is the time-independent Hamiltonian operator.
From the commutation relation in Eq. (16) and k =8

we can show that the expectation value of the tempus
operator 0'is

& y(r)lfy(r) & =r+ &1((0)lf'y(0) &, (23}

where & P(0) ~
f'g(0) & is a constant depending on the ini-

tial wave function. Therefore, Eq. (23) shows that the ex-
pectation value of the tempus operator is directly related
to the time t of evolution of the system.

IV. EXAMPLES

In this section, we explicitly construct the tempus
operators for (i) a free particle and (ii) a particle acted on
by a constant force and show that the energy-time uncer-
tainty relation is satisfied.

A. Free particle

The tempus operator f'for a free particle is constructed
from the corresponding classical expression and the
energy-time uncertainty relation is obtained.

For a free particle of mass m, the energy E in terms of
the canonical momentum p is

E=p /2m . (24)

Equation (24) can be solved for the canonical momentum
p =(2mE)' sgn(po), where the sign of the initial momen-
tum po is sgn(po). The generating function in Eq. (6) is

S(q, E, t) =(2mE)'~ (q —qo)sgn(po), (25}

where we take the arbitrary function S(qo, E, t}=0 The.
new canonical coordinate tempus is obtained from Eq. (5)
and is

meaning for states f that are in the domain of 1'and f'
For a conservative system the average of the tempus

operator f'is the time t plus an irrelevant constant. The
Schrodinger equation is

P(q, P )P(q, t) =iAd/(q, t)/dt, (20)

for a system with a time-independent Hamiltonian
8=H(q, P). The time-dependent wave function f(q, t)
can be written as

EEET~fi/2, (19) T=(m/2E)' (q —qo)sgn(po) .
where the state P must be in the domain of 2, P, f', and

The choice of the new canonical momentum p'=E
and the new canonical coordinate q'= T puts the energy-
time uncertainty relation in Eq. (19) on the same solid
basis as the momentum-position uncertainty relation
hphq&'A/2 [57]. In contrast to t, the new canonical
tempus operator f' is conjugate to the energy operator k
The uncertainty in the tempus operator has a well defined

In this way we have derived the canonical coordinate
tempus conjugate to the energy, which is conceptually
distinct from the time t in which the system evolves.

The solution to the classical problem is obtained by
solving Eq. (26) for q and using the solutions of Eq. (11).
We therefore obtain

q (t)=qo+Uo(t to), —
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where the initial velocity vo =pa/m = (2EO/m)'~~sgn(po )

and T=t —to.
In order to construct a self-adjoint tempus operator,

Eq. (26) can be expressed in terms ofp by substituting the
energy in Eq. (24} into it. Then we obtain the canonical
tempus coordinate for qo =0 to be

T=mq/p .

(bE)'= & P l(E —«& )'P &

=(E')—&E)'

=(n + 1/2)(4mao)

From Eqs. (34) and (35) the product of b,E and b, T is

bEAT =[1+2/(n —3/2)]' A'/2 ~ 8/2 for n 2,

(35)

Equation (28) may be quantized to obtain the tempus
operator f' by replacing q and p by their corresponding
operators q and P and writing the operator in a sym-
metric way [14—16,19,25]:

,'m("qp -'+P 'q). (29)

The domain of f' is not the whole Hilbert space be-
cause of the presence of the operator P '. Nevertheless,
for the states in its domain, the operator f' has useful
properties. The argument of Pauli [30] applies only to
Hermitian operators defined on the whole Hilbert space.
From the commutation relation in Eq. (15) for and P,
we can derive for f'in Eq. (29) and the operator corre-
sponding to Eq. (24) the commutation relation in Eq. (16).

The uncertainty relation in Eq. (19) for energy and
time can be obtained if we choose a wave function which
is in the domain of f 2, f', and f' Since. the tempus
operator in Eq. (29) involves P ', it is more convenient to
work in momentum space where the realization of the
commutation relation in Eq. (15) is P =p and g = iA'8/Bp.
We choose a wave function in momentum space at time
t=0 tobe

(T—(T &)y=y(E —(&))y,
where y is a constant, and

(ii)

(37)

([(&—
& T &)(&—&& &)+(&—(& &)(&—

& ~) )] &

=2Re((~ —(f'))y~(X' —(P))y) =0, (38)

which are the two conditions for the equality to hold in
the uncertainty relation [57].

B. Particle acted on by a constant force

For a particle acted on by a constant force I'0, the
Hamiltonian H is

(36)

so the uncertainty relation is established.
.A.s n~~, Eq. (36) shows that bEb, T=fi/2, i.e.,

equality holds in the uncertainty relation Eq. (36). The
reason equality holds is that in the limit as n ~~, there
is no distinction between n+4, n+3, . . . , n —2. Then
we have the following:

(i) as n~ ~

P(p, 0) =Np "exp( —aop ), (30)

where ao is a real positive constant, n is an arbitrary in-

teger ~ 2, and N is the normalization constant. Since the
Schrodinger equation in momentum space is

H=p /2m Foq=E, — (39)

which is also the energy E. Equation (39) can be solved
for the canonical momentum p,

8(q,p, t)P(p, t) =iAd/(p, t) /Bt, (31) p =(2m)' (E+Foq)' (40)

the solution at time t%0 with the Hamiltonian 8 equal
to the energy E in Eq. (24) is

When Eq. (40) is substituted into Eq. (6) for the generat-
ing function S, and the integral is performed, we obtain

P(p, t)=Np "exp( —ap ), (32) S(q, E, t)=(2/3Fo)(2m)' [(E+Foq) ~ (E+Foqo) ~—]

where a=ao+it/2m' is a complex function of time.
With the wave function in Eq. (32), the average of the
tempus operator f'in Eq. (29) is

(33)

the time t in which the system evolves, as expected from
Eq. (23).

The square of the uncertainty in the tempus operator f'
at time t is

+S(qo, E, t) . (41)

T(q, E, t)=F '(2m)' [(E+F q)'

—(E+Foqo )'i2], (42)

where T(qo, E, t)=0. Since the Hamiltonian H in Eq.
(39) is conservative, Hamilton's equations (11) have the
solution T= t —to and E=ED, where to and Eo are con-
stants. If Eq. (42} is solved for q, we obtain

The canonical coordinate tempus T conjugate to the
energy is obtained from Eq. (5), which gives

=
& &') —

& &)' q(t) =qo+vo(t —to)+(1/2)a(t to)—(43)

=(2aomA') /(n —
—,') .

The square of the uncertainty in the energy operator E at
time t is

where qo=q(to) is the initial position, vo=q(to) is the
initial velocity, and a=q(to)=F0/m is the constant ac-
celeration. Equation (43) is the solution to the classical
problem.
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f'=P /Fo, (44)

where p is the canonical momentum operator. Because
the potential energy in Eq. (39) is not bounded from
below, Pauli's argument [30] for the nonexistence of a
Hermitian time operator does not apply to this example.

By a direct calculation we can show that the tempus

operator f' in Eq. (44) and the energy operator X' corre-
sponding to Eq. (39) satisfy the canonical commutation
relation in Eq. (16). Therefore, from Eq. (17) the energy-
time uncertainty relation in Eq. (19) is also satisfied.

V. CONCLUSION

In this paper a derivation of the energy-time uncertain-

ty relation is given based on first principles. It is not
necessary to make use of any ad hoc or heuristic assump-
tions. A classical canonical transformation is made from
the old canonical variables (q,p) to new canonical vari-
ables (q', p'), where the new canonical momentum p' is
chosen to be the energy F and the new canonical coordi-

In order to obtain a Hermitian tempus operator I', it is
necessary to express tempus in Eq. (42) in terms of q and

p. When Eq. (39) for the energy is substituted into Eq.
(42) for the canonical coordinate tempus we obtain
T=p/Fo for po=O. When this expression is quantized,
we obtain [23]

nate q' conjugate to the energy is called tempus T. This
tempus canonical coordinate has the dimension of time,
but is conceptually different from the time t in which the
system evolves. In general, tempus T is a function of q,
E, and t. The energy E and tempus T have the same Pois-
son bracket as do p and q, since the Poisson bracket is a
canonical invariant. When the system is quantized, the
operators 2 and f' satisfy the same comtnutation rela-
tions as do the operators P and q. Therefore, P and f'
satisfy the same uncertainty relation as do P and g. The
energy-time uncertainty relation is therefore put on the
same basis as the momentum-position uncertainty rela-
tion. The approach used here to derive the energy-time
uncertainty relation has a firm basis in classical mechan-
ics, which makes a clear distinction between the time of
evolution t and the canonical coordinate tempus T conju-
gate to the energy. For a conservative classical system,
tempus T is equal to the time t plus a constant. For a
conservative quantum system, the average of the tempus
operator f'is equal to the time t plus a constant.
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