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Models based on the continuous damage theory present good responses in representing the nonlinear 
behavior of reinforced concrete structures with loss of strength and stiffness of the material. However, 
damage theory is rarely employed in the analysis of masonry structures and numerical simulations 
are currently performed mostly by Finite Element Method formulations. A computational program 
was designed to determine the numerical parameters of a damage model of the physical properties of 
masonry components, solid clay brick and mortar. The model was formulated based on the composition 
of tensile and compressive surface strengths in the plane stress state. The numerical parameters, the 
corresponding curves of the activation surfaces and the evolution of the surfaces are presented. The 
results were fed into the computational program based on the Boundary Element Method (BEM) for 
the simulation of masonry walls, and two types of masonry were simulated. The results confirm the 
good performance of the model and the program based on the BEM.
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1. Introduction
Numerical modeling of the behavior of structural 

masonry, allied to laboratory results, can be extremely 
useful for understanding and predicting the performance 
of masonry structures. Numerical modeling requires 
the characterization of the component materials of 
masonry and mathematical modeling of the behavior 
(linear or nonlinear analysis, aspects of homogenization 
and anisotropy). The structural behavior of masonry 
considering geometrical aspects (load versus bed joint 
directions) has been studied since the pioneering works 
by Page1 and Dhanasekar et al.2.

Masonry walls can be built in several ways (Figure 1a-e), 
resulting in different dimensions and properties of masonry.

However, a standard geometrical arrangement (Figure 1) 
can be employed to estimate the elastic behavior of the 
brick-mortar unit on each axis, since this arrangement of 
units is repeated, simplifying the mathematical treatment for 
structural analysis. Thus, the homogenization technique was 
used here to translate the behavior of brick-mortar masonry, 
a heterogeneous solid, into a homogeneous equivalent 
Representative Volume Element (RVE).

Numerous studies have emphasized the importance of 
homogenization for numerical methods3-7. 

The nonlinear behavior of the material, including aspects 
of strain, microcracks and rupture, increase the level of 
complexity in numerical analysis. Basic and important 
works about these aspects have been published by Page8, 
Lourenço9, Lee et al.10, and others. Numerical models based 
on continuous damage theory provide a good representation 

of the structural behavior and allow for the prediction of 
microcrack growth and gradual loss of stiffness of the 
material in response to increased mechanical loads. Other 
important works include those of Chow and Wang11,12, 
Maier et al.13, Papa14 and Pegon and Anthoine15, all of which 
used the Finite Element Method (FEM).

However, there are a few studies involving the use of 
formulations of the Boundary Element Method (BEM) 
to simulate masonry structures by nonlinear analysis. 
The applications used by Alessandri and Brebbia16 and 
Rashed et al.17 are BEM formulations in the plane stress 
state, similar to the one used in this work. The former study 
simulates masonry walls subjected to horizontal loads, 
and considers homogeneous materials in elastic-plastic 
behavior with infinite compressive strength and zero tensile 
strength. The latter study evaluates the failure modes of 
a masonry wall under concentrated vertical loading. The 
same incremental-interactive procedure is employed in an 
inverse analysis to find unknown values of initial stresses 
when the failure modes and corresponding stress-strain 
correlations are known. However, these two studies have not 
been followed by sequels. It should be noted that the cited 
works only simulate walls according to the application of 
a formulation of the numerical method, without providing 
further information or a discussion about the numerical 
parameters and their correlations with the physico-elastic 
properties of the materials.

The current work, therefore, presents the application 
of a nonlinear boundary element formulation with a 
continuous damage model, as has been proposed in previous 
works18,19. 
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2. Material Properties
In this work, the parameters of a damage model are 

obtained directly from the material’s properties. The ABNT 
(Brazilian Association of Technical Standards) NBR 7170[20] 
standard classifies clay brick in three categories: A, B and C, 
while the NBR 13281[21] standard classifies mortar into 
classes P1 to P6, according to its compressive strength.

2.1. Clay brick

The NBR 7170/1983[20] standard defines solid brick as 
“brick that has all its sides filled with material, which may 
have a recessed part containing the manufacturer’s logo 
on one of the sides with a larger area.” It also specifies 
that it should be made of extruded or pressed clay, fired 
at a temperature that allows the end product to meet the 
conditions established in the standard.

Common clay bricks are classified into three categories: 
A, B and C, according to a minimum compressive strength 
of 1.5 MPa, 2.5 MPa and 4.0 MPa, respectively, as indicated 
in Table 1.

Solid clay bricks have nominal dimensions of 
19 cm length × 9 cm width × 5.7 cm thickness, or 
19 cm length × 9 cm width × 9 cm thickness, and the 
maximum manufacturing tolerance for common bricks in 
the three dimensions is 3 mm larger or smaller.

2.2. Mortar

The NBR 13281/2005[21] standard defines mortar as: “a 
homogeneous mixture of fine aggregate, inorganic binder 
and water, with or without additives or additions, with 

adhesive and hardening properties, which can be prepared 
on-site or at an industrial facility (industrial mortar).” This 
standard classifies mortar according to its compressive 
strength (see Table 2).

2.3. Damage parameter

Considering a damaged solid with the S
ef
 section as a 

portion of the total area (S
ef
 ≤ S) which effectively resists 

load F, the difference defines the area of defects:

0 efS S S= −  (1)

By definition, the local measure of damage, D, can be 
represented as:

0
0

lim
S

S
D

S→
=  (2)

By definition, the effective stress, σ
ef
 is

1ef ef
ef

F
S D

σσ = ⇒ σ =
−

 (3)

When the material remains intact (D=0), i.e., undamaged, 
then σ=σ

ef
, which indicates that the stress acting on the 

material remains unchanged. However, if D is close to 1, 
σ

ef
 increases indefinitely, causing the material to collapse.

Strain, ε, can be written as:

( )1
ef

E D E
σ σε = =

−
 (4)

where, as the damage spreads, Young’s modulus varies 
from E to E

ef
:

( )1efE D E= −  (5)

Analogously, if D is close to 1, E
ef
 approaches 0, i.e., 

the material shows loss of stiffness due to straining. The 
evolution of the damage directly affects the material’s 
elastic response, which is indicated by its reduced stiffness 
and strength.

A continuous damage model for concrete formulated 
by Comi and Perego22 was used in the present study. This 

Table 1. Classification of clay brick according to the ABNT NBR 
7170/1983 standard.

Class Compression strength (MPa)

A 1.5

B 2.5

C 4.0

Figure 1. Several brick masonry wall arrangements and standard arrangement.
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model is represented by a failure criterion of the material 
in the plane stress state (Figure 2), which is defined by an 
ellipse (compression function, f

c
) and a hyperbola (tension 

function, f
t
) that satisfy Equations 6 and 7:

( )( ) ( )
( ) ( )

2 21 1
3 3

2

( , ) 2

1 0

t I II t I II t I II

t t I II c t t

f a a

b h D k h

σ σ = − σ + σ − + σ σ +

σ + σ − − α =
 (6)

( )( )
( ) ( )

2 21
3

21
3

( , )

2 0

c I II c I II

c I II c c I II c c

f a

a b h k h

σ σ = + σ + σ −

− σ σ + σ + σ − =  
(7)

The expressions that relate the parameters of the model 
to the properties of materials (tensile and compressive 
stresses) are as follows:

2.4. Numerical parameters of the proposed 
damage model

In this work, the authors created a numerical program 
that determines the parameters of the damage model for 
the material properties established by the aforementioned 
Brazilian standards. Based on Equations 6 and 7, the basic 
damage parameters for each class of strength are a

t
, b

t
, k

t
 

(hyperbola) and a
c
, b

c
, k

c
 (ellipse). The parameters h

t
 and h

c
 

are calculated as a function of the variables of damage D
t
 

and D
c
, respectively22. 

The tensile strength of the materials is considered to 
be as follows:

•	 According	 to	 Lourenço,	Almeida	 and	 Barros23, a 
brick’s tensile strength is equal to approximately 5% 
of its compressive strength; and

•	 The	tensile	strength	of	mortar	is	assumed	to	be	equal	
to 10% of its compressive strength.

In the present research, the authors sought to determine 
the values of the damage parameters D

0c
 and D

0t
 that 

correspond to the material’s maximum strength in the 
hardening process. After compiling Equations 6 and 7 in the 
computer program with several values for the two damage 
variables (D

c
 and D

t
), the authors determined the maximum 

expansions for both activation surfaces, finding values of 
D

c
 = D

0c
 = 0.555 and D

t
 = D

0t
 = 0.3, which were used to plot 

the maximum surfaces.
Figures 3a, b, respectively, illustrate the graphs of the 

maximum activation surfaces for each strength class of brick 
and mortar. In these graphs, an elliptical surface delimits 
the minimum compressive stresses (blue curves, third 
quadrant), while a hyperbolic surface delimits the maximum 
tensile stresses (red curves, 1st, 2nd and 4th quadrants) in 
the composition of a failure criterion related to a plane 
stress state in principal directions. These graphs show the 
maximum compressive stresses on the principal stress axis 
for each class of strength (brick or mortar).

For example, to understand the damage model, Figure 4a 
depicts the maximum activation surface for class C clay 
brick, obtained for D

c
 = D

0c
 = 0.555 and D

t
 = D

0t
 = 0.3. Note 

that the maximum strength values are reached on the stress 
axis at a compressive stress of 4 MPa and at a tensile stress 
of 0.2 MPa (5% of the compressive strength).

For a better understanding of the behavior of the damage 
model, Figure 4b illustrates the evolution of the activation 
surfaces when the damage variable D changes from 0% to 
99.9%.

In the case of compressive stress activation surfaces 
(elliptic surface, Figure 4b), it can be noted that, as 
expected, the expansion reaches its maximum evolution at 
a uniaxial stress of 4 MPa, which corresponds to a damage 
variable of 55.5% (equivalent to the dashed red line, 60%). 

Table 2. Classification of mortar according to the ABNT NBR 
13281/2005 standard.

Identification MPa

Compressive strength
at 28 days (MPa)

P1
P2
P3
P4
P5
P6

≤2.0
1.5 to 3.0
2.5 to 4.5
4.0 to 6.5
5.5 to 9.0

>8.0

Figure 2. Constitutive equations of the damage model and linear elastic domain in the principal stress plane22.
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Figure 3. a) Activation surfaces of brick strength classes (stresses in MPa); b) Activation surfaces of mortar strength classes (stresses in MPa).

Table 3. Constitutive damage parameters of Comi’s model.

Clay brick

Parameter Class A Class B Class C P1 P4 P6

a
t

0.298 0.298 0.298 0.266 0.266 0.266

b
t
 (MPa) 0.068 0.114 0.183 0.008 0.330 0.660

k
t
 (MPa) 0.005 0.015 0.038 0.000 0.143 0.571

a
c

0.084 0.084 0.084 0.084 0.084 0.084

b
c
 (MPa) 0.313 0.522 0.836 0.021 0.836 1.671

k
c
 (MPa) 0.470 1.306 3.343 0.002 3.343 13.370

(a)

(b)

Figure 4. Class C brick: a) Linear elastic envelope; b) Evolution of activation envelopes.
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The maximum expansion of the tensile stress activation 
surfaces occurs at a uniaxial stress of 0.2 MPa (hyperbolic 
surface), which is equivalent to a damage variable of 20% 
(solid blue line).

Thus, based on the equations in Figure 2 compiled by the 
numerical program and the assumed values of the variables 
(D

c
 and D

t
), the numerical parameters for each class of 

strength values were determined as indicated in Table 3.
The efficiency of the formulation of the numerical 

program in determining the parameters of the properties of 
masonry materials (clay brick and mortar) was confirmed 
by its good representation of the structural behavior of the 
material in the evolution of damage resulting from increasing 
active stresses.

2.5. Boundary element formulation for 
two‑dimensional nonlinear analysis

After suitable adjustments in the computational code, the 
Boundary Element formulation presented by Botta et al.24 
was reoriented to analyze structural masonry in 2D stress 
analysis18,19, and the parameters of Comi’s damage model 
were implemented in the code.

Following the BEM formulation, after discretization of 
the boundary and the domain, the algebraic representations 
of integral equations of displacements (8) and internal 
stresses (9) results in:

[ ]{ } [ ]{ } [ ]{ }0H U G P Q= + σ  (8)

and

{ } [ ]{ } [ ]{ } [ ]{ }0´ ´ ´H U G P Qσ = − = + σ  (9)

where {U} is the displacement vector and {P} is the vector 
of boundary surface forces of the problem. The vector 
{σ0} represents the initial stresses in the domain. Matrices 
[H], [H´], [G] and [G´] are obtained from integrations over 
boundary elements and matrices [Q] and [Q´] are obtained 
from integrations over cells.

After imposing boundary conditions, the displacement 
Equation 8 results in:

[ ]{ } [ ]{ } [ ]{ } { } [ ]{ }0 0A X B Y Q F Q= + σ = + σ  (10)

or

{ } { } [ ]{ } { }

[ ] { } [ ] [ ] [ ]

0

1 1

X M R with M

A F and R A Q− −

= + σ =

=

in which {X} and {Y} are the vectors with unknown and 
imposed boundary values, respectively.

Applying the same procedure to the stress Equation 9 
and isolating the unknown boundary variables in vector 
{X}, one has:

{ } [ ]{ } { } [ ]{ }0´ ´ ´A X F Qσ = − + + σ  (11)

or

{ } { } [ ]{ } { }

[ ][ ] { } { } [ ]
[ ][ ] [ ] [ ]

0

1

1

´ ´

´ ´

N S with N

A A F F and S

A A Q Q

−

−

σ = + σ =

− + =

− +

Considering the definition of the initial stress as being 
the difference between the elastic stress and the real stress, 

and adding { }0σ  to the two terms, one has:

Figure 5. Internal points for initial stress calculation in cell vertices at boundaries or different material interfaces.

Figure 6. Dimensions of the brick-mortar specimen.
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{ } { } { }
{ } { } { } [ ] [ ]

0

0

e

e

N S with

S S I

σ = +   σ 

σ = σ + σ   = + 
 (12)

The equilibrium equation can then be rewritten, in terms 
of strain, as follows:

( ){ } [ ]{ } { } [ ]{ } { }{ }{ } 0Y E N S Eε = − ε + +   ε − σ ε =   (13)

which is a general expression for any nonlinear constituent 
law.

The algebraic equation must be calculated by means of 
an incremental-iterative procedure for nonlinear problems in 
which, for a loading step with an increment of ∆ε

n
, one has:

( ){ } [ ]{ } { }
[ ]{ } { }{ }{ } 0

n n n

n n n

Y E N

S E

∆ε = − ∆ε + ∆ +

  ∆ε − ∆σ ∆ε = 
 (14)

3. Proposed Discretization Procedure
To optimize the numerical procedure, internal points 

corresponding to the vertices of cells at the boundary are 
defined inside the cell (Figure 5). Thus, initial stresses are 
calculated only at internal points, allowing the calculation 
to be performed numerically or analytically for both domain 
integrals from Equations 8 and 9 for a resulting non-singular 
kernel, which is used to calculate the terms of matrices [Q] 
and [Q’].

The domain integrals are calculated numerically 
based on the Cauchy principal value sense24. To obtain the 
algebraic representation, linear approximations were used 
to transform the boundary variables and stresses over the 
triangular cells. With regard to the homogeneous medium 
in which the isotropic elastic tensor is defined, different 
damage parameters were adopted for both component 
materials, i.e., brick and mortar. It is also necessary to define 

Table 4. Physical characteristics of the specimens.

Specimens 

Parameter Type A
homogeneous

Type B
homogeneous

Type C
non-homogeneous

Type D
non-homogeneous

Brick 1 2 2 1

Mortar 1 2 1 2

Strength characteristic strong weak weak brick strong brick 

Figure 7. Brick-mortar specimen set; a) longitudinal elongation; b) longitudinal shrinkage.

Figure 8. a) Brick wall under vertical load; b) localized damage; c) minimum principal stress (Lourenço9).
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calculated by the numerical program are a
t
 = 0.248, 

b
t
 = 0.309, k

t
 = 0.137, a

c
 = 0.084, b

c
 = 0.836, k

c
 = 3.343.

The discretization mesh adopted here is more refined in 
the region where the highest damage is expected. The mesh 
contains 52 linear boundary elements, 692 triangular cells 
and 646 internal initial stress points. Figure 9 shows the 
mesh, in which the cell vertices corresponding to internal 
points are displaced from their original location in order to 
highlight them (enclosed region).

Figure 9. Discretization adopted in this work. Discontinuous 
cells adjacent to boundaries and interfaces; refined mesh in most 
damaged area (detail); (Paraview 3.2.1 Visualizer).

Figure 10. a) horizontal stress σ
x
 (N/mm2); b) vertical stress σ

y 

(N/mm2); c) damage parameter variable D
t
 . (Paraview 3.2.1 Visualizer).

points inside the cells (discontinuous cells) whose sides 
coincide with the interfaces of different materials (Figure 5).

This proposal implies a high computational cost due 
to the large number of internal points created, which 
considerably increase the size of the [Q] and [Q’] matrices 
and the calculations of the load functions. Therefore, it 
should be used to simulate small-scale structures such as 
prisms or small masonry panels such as those used for 
shear testing.

4. Examples
This example is similar to a numeric example presented 

on Botta et al.24 in which a rectangular plate is subjected to 
a uniform longitudinal load distributed over two opposing 
edges. Herein the plate is considered inhomogeneous, 
shown in Figure 6, and composed of a brick unit and a half 
thickness mortar joint.

The brick unit has dimensions of 220.0 × 52.0 mm2 and 
the mortar is 5.0 mm thick. The elastic properties of both 
materials are E = 36000.0 MPa and ν = 0.15 (homogeneous 
material). The discretization mesh (Figure 6) has 52 linear 
boundary elements, 480 cells and 215 internal points of 
initial stress.

The numerical data are:
•	 Parameters	of	material	1	(strong):	a

t
 = 0.31, b

t
 
=
 4.4, 

k
t
 = 15.5, a

c
 = 0.031, b

c
 = 4.0, k

c
 = 155.5;

•	 Parameters	of	material	2	(weak):	a
t
 = 0.31, b

t
 = 3.4, 

k
t
 = 10.5, a

c
 = 0.031, b

c
 = 3.0, k

c
 = 105.5;

•	 Load:	Maximum	controlled	longitudinal	elongation/
shrinkage: u

x
 = ±0.0030 mm;

•	 Number	of	increments:	100.
Four sets of brick-mortar specimens were considered, 

two with homogeneous characteristics and two with 
non-homogeneous characteristics, as described in Table 4.

Figure 7 illustrates the two simulations of the longitudinal 
stresses along the horizontal axis of symmetry plotted 
against longitudinal strains in each case.

Figure 7a indicates that the peak stress and the softening 
phase were determined by the strength of the mortar, i.e., 
the specimen sets with weak homogeneous material and 
with weak mortar showed the same stress/strain behavior. 
Figure 7b shows the same conclusion for the shrinkage 
process, but the peak stress of mortar and the softening 
phase could not be reached. Note that the elastic-linear 
phase occurs with Young´s modulus equal 36,000 N/mm2 
and maximum stress at 1,80 N/mm2.

4.1. Clay brick wall subjected to a uniformly 
distributed load at the top and controlled 
vertical displacement

The example considers a solid clay brick wall 
(Figure 8a) with dimensions of 757 × 457 mm2, supported on 
each side upon 188 mm of length, built with half-scale bricks 
of 122 × 37 × 54 mm3 and 5-mm-thick mortar joints. The 
load at the top, P, is applied by means of a stiff 381-mm-long 
steel beam (Lourenço9).

The elastic properties are E = 5920 N/mm2; ν = 0.167 
and tensile strength 0.29 N/mm2. The damage parameters 
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5. Conclusions
This paper proposed a computational program to 

determine the numerical parameters of a continuous damage 
model of the strength properties of masonry materials, i.e., 
solid clay bricks and mortar. A computer code was created 
to determine these parameters, and a failure criterion was 
developed for tensile and compressive surfaces in a plane stress 
state in principal stress directions. The proposed numerical 
program also enables visualization of these surfaces and their 
evolution when the damage variable D changes. The evolution 
of the activation surfaces offers a very good representation of 
the material’s behavior in terms of loss of strength and stiffness 
in response to the application of additional stresses.

The results were fed into the numerical program based 
on the Boundary Element Method to simulate brick walls. 
The novelty in this computer program is the definition of 
two different regions, each of them with different damage 
parameters corresponding to different materials, and the 
approach that determines discontinuos cells adjacents to 
boundary or interfaces.

Two examples were presented. Simulations of a 
brick-mortar specimen and a masonry wall resulted in the 
expected stress evolution, demonstrating that both computer 
codes performed well and have a promising potential for 
simulations involving physically nonlinear analysis based 
on a damage model.
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The numerical results presented by the referenced work 
are shown in Figure 8c. The principal stresses have minimum 
values concentrated at the ends of the steel beam and the 
inner side of the supports (between σ

3
 = –14.00 N/mm2 

and σ
3
 = –37.92 N/mm2). The results obtained in the 

present work are depicted in Figure 10. The stresses are 
σ

x
 = –0.430 N/mm2 and σ

y
 = –0.878 N/mm2 at the inner 

sides of the supports and σ
y
 = –1.29 N/mm2 at the ends of 

the loaded region. The similarities of these results confirm 
the good representation presented by the BEM formulation 
in this simulation.

The maximum tensile stresses (σ
1
 = 0.56 N/mm2, 

Figure 8c) are located mid-point at the bottom of the wall 
span (Figure 8b). The present work determined a value of 
σ

x
 = 0.292 N/mm2 based on Figure 10a (yellow area).

In the most damaged region, the tensile damage 
parameter D

t
 reached a value of about 0.586, as indicated in 

Figure 10c. This minor evolution in tensile damage, without 
evidence of compressive damage (D

c
 remains null due to the 

low compressive stresses developed along the entire wall), 
explains the quasi-linear shape of the load vs. vertical 
controlled displacement curve. Figure 11b shows that the 
maximum load reached 85kN, as a result of the higher 
tensile damage parameter D

t
 and the vertical displacement 

of 0.50 mm.
This load level, which is still close to the experimental 

collapse load (109 kN) but well below the peak stress 
simulated numerically, is represented by a critical stage after 
which uncontrolled compressive damage increases on the 
inner sides of the supports (Figure 8c). The post-peak can 
only be simulated by arc-length constraint loading, which 
has not yet been done by the authors.
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