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1 Introduction

The pure spinor formalism for the superstring [1] has the advantage over the Ramond-

Neveu-Schwarz (RNS) formalism of being manifestly spacetime supersymmetric and has

the advantage over the Green-Schwarz (GS) formalism of allowing covariant quantization.

However, the worldsheet origin of the pure spinor formalism is mysterious since its BRST

operator and b ghost do not arise in an obvious manner from gauge-fixing. Although there

have been various suggestions [2–4], there is still no convincing derivation of the pure spinor

formalism from a worldsheet reparameterization-inviarant theory.

In the non-minimal pure spinor formalism, the BRST current and b ghost can be

interpreted as twisted ĉ = 3 N=2 superconformal generators [5]. But when expressed in

terms of the d=10 superspace variables and the non-minimal pure spinor variables, the b

ghost and the resulting N=2 superconformal transformations are extremely complicated.

In fact, the nilpotency of the b ghost was only recently verified [6, 7]. An unusual feature

of the b ghost in the pure spinor formalism is its dependence on inverse powers of the

pure spinor variables which require regularization in superstring amplitudes above two-

loops [8]. This multilooop regularization procedure is not yet well-understood and a better

understanding of the b ghost might relate these multiloop subtleties in the pure spinor

formalism with the multiloop subtleties recently found in the RNS formalism involving

nonsplit supermoduli [9–11].

In this paper, it will be shown that the b ghost dramatically simplifies when expressed

in terms of a fermionic vector ψm that is defined in terms of the other worldsheet variables.

If one treats the ten ψm variables as independent variables, 5 of the 16 θα variables of d=10

superspace (and their conjugate momenta) can be eliminated [12]. The remaining 11 θα

variables and their conjugate momenta transform as the worldsheet superpartners of the

pure spinor variables. The resulting N=2 superconformal field theory generated by the b

ghost and the BRST current can be interpreted as a “dynamically twisted” version of the

RNS formalism.

– 1 –



J
H
E
P
0
6
(
2
0
1
3
)
0
9
1

In this dynamically twisted superconformal field theory, the N=2 generators are

T = −1

2
∂xm∂xm −

(λγmγnλ)

2(λλ)
ψm∂ψn + . . . , (1.1)

b =
(λγmγnλ)

2(λλ)
ψm∂xn + . . . ,

jBRST = −(λγmγnλ)

2(λλ)
ψn∂xm + . . . ,

J = −(λγmγnλ)

2(λλ)
ψmψn + . . . ,

where λα and λα are the non-minimal pure spinor ghosts whose projective components

parameterize the coset SO(10)/U(5) that describes different twistings. The remaining terms

. . . in (1.1) are determined by requiring that (λα, λα) and their worldsheet superpartners

transform in an N=2 supersymmetric manner.

So the resulting N=2 superconformal field theory is the sum of a dynamically twisted

RNS superconformal field theory with an N=2 superconformal field theory for the pure

spinor variables. This interpretation of the BRST operator and the b ghost as coming from

dynamical twisting of an N=1 superconformal field theory will hopefully lead to a better

geometrical understanding of the pure spinor formalism.

In section 2, the non-minimal pure spinor formalism is reviewed. In section 3, the b

ghost in the pure spinor formalism is shown to simplify when expressed in terms of an

RNS-like ψm variable. In section 4, dynamical twisting of the RNS formalism will be

defined and the resulting twisted N=2 superconformal generators will be related to the b

ghost and BRST current in the pure spinor formalism. And in section 5, the results will

be summarized.

2 Review of non-minimal pure spinor formalism

As discussed in [5], the left-moving contribution to the worldsheet action in the non-minimal

pure spinor formalism is

S =

∫
d2z

[
−1

2
∂xm∂xm − pα∂θα + wα∂λ

α + wα∂λα − sα∂rα
]

(2.1)

where xm and θα are d=10 superspace variables for m = 0 to 9 and α = 1 to 16, pα is

the conjugate momentum to θα, λα and λα are bosonic Weyl and anti-Weyl pure spinors

constrained to satisfy λγmλ = 0 and λγmλ = 0, and rα is a fermionic spinor constrained to

satisfy λγmr = 0. Because of the constraints on the pure spinor variables, their conjugate

momenta wα, wα and sα can only appear in gauge-invariant combinations such as

Nmn =
1

2
(wγmnλ), Jλ = (wλ), Smn =

1

2
(sγmnλ), S = (sλ), (2.2)

which commute with the pure spinor constraints.
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The d=10 superspace variables satisfy the free-field OPE’s

xm(y)xn(z)→ −ηmn log |y − z|2, pα(y)θβ(z)→ (y − z)−1δβα, (2.3)

and, as long as the pure spinor conjugate momenta appear in gauge-invariant combinations

and normal-ordering contributions are ignored, one can use the free-field OPE’s of pure

spinor variables

wα(y)λβ(z)→ (y − z)−1δβα, wα(y)λβ(z)→ (y − z)−1δαβ , sα(y)rβ(z)→ (y − z)−1δαβ .
(2.4)

It is convenient to define the spacetime supersymmetric combinations

Πm = ∂xm +
1

2
(θγm∂θ), dα = pα −

1

2

(
∂xm +

1

4
(θγm∂θ)

)
(γmθ)α (2.5)

which satisfy the OPE’s

dα(y)dβ(z)→ −(y − z)−1Πmγ
m
αβ, dα(y)Πm(z)→ (y − z)−1(γm∂θ)α. (2.6)

As shown in [5], the non-minimal BRST current forms a twisted ĉ = 3 N=2 super-

conformal algebra with the stress tensor, a composite b ghost, and a U(1) ghost-number

current. These twisted N=2 generators are

T = −1

2
∂xm∂xm − pα∂θα + wα∂λ

α + wα∂λα − sα∂rα, (2.7)

b = sα∂λα +
λα
(
2Πm(γmd)α −Nmn(γmn∂θ)α − Jλ∂θα − 1

4∂
2θα
)

4(λλ)
(2.8)

−(λγmnpr)(dγmnpd+ 24NmnΠp)

192(λλ)2
+

(rγmnpr)(λγ
md)Nnp

16(λλ)3

−(rγmnpr)(λγ
pqrr)NmnNqr

128(λλ)4
,

jBRST = λαdα − wαrα, (2.9)

Jghost = wαλ
α − sαrα − 2(λλ)−1[(λ∂λ) + (r∂θ)] + 2(λλ)−2(λr)(λ∂θ). (2.10)

The terms − 1
16(λλ)−1∂2θα in (2.8) and −2(λλ)−1[(λ∂λ) + (r∂θ)] + 2(λλ)−2(λr)(λ∂θ)

in (2.10) are higher-order in α′ and come from normal-ordering contributions. To simplify

the analysis, these normal-ordering contributions will be ignored throughout this paper.

However, it should be possible to do a more careful analysis which takes into account these

contributions.

3 Simplification of b ghost

In this section, the complicated expression of (2.8) for the b ghost will be simplified by

including an auxiliary fermionic vector variable which will be later related to the RNS ψm

variable. The trick to simplifying the b ghost is to observe that the terms involving dα
in (2.8) always appear in the combination

Γ
m

=
1

2
(λλ)−1(λγmd)− 1

8
(λλ)−2(λγmnpr)Nnp. (3.1)
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Note that only five components of Γ
m

are independent since Γ
m

(γmλ)α = 0. In terms

of Γ
m

,

b = ΠmΓm −
1

4
(λλ)−1(λγmnr)ΓmΓn + sα∂λα + wα∂θ

α − 1

2
(λλ)−1(wγmλ)(λγm∂θ) (3.2)

where terms coming from normal-ordering are being ignored and the identity

δγβδ
δ
α =

1

2
γmαβγ

γδ
m −

1

8
(γmn)γα(γmn)δβ −

1

4
δγαδ

δ
β (3.3)

has been used.1

It is useful to treat (3.1) as a first-class constraint where Γ
m

is a new worldsheet

variable which carries +1 conformal weight and satisfies the constraint Γ
m

(γmλ)α = 0. Its

conjugate momentum will be defined as Γm of conformal weight zero and can only appear in

combinations invariant under the gauge tranformation generated by the constraint of (3.1).

Note that Γ
m

and Γm satisfy the OPE Γ
m

(y) Γn(z)→ (y − z)−1ηmn and have no singular

OPE’s with the other variables.

One can easily verify that the b ghost of (3.2) is gauge-invariant since it has no singu-

larity with (3.1). Furthermore, any operator O which is independent of Γm can be written

in a gauge-invariant manner by defining Oinv = eR O e−R where

R =

∫
Γm

[
1

2
(λλ)−1(λγmd)− 1

8
(λλ)−2(λγmnpr)Nnp

]
. (3.4)

For example, the gauge-invariant version of the BRST current is

G+ = eR (λαdα − wαrα)e−R = λαdα − wαrα (3.5)

−1

2
Γm(λλ)−1

[
(λγmγnλ)Πn − (rγnγmλ)Γ

n]
+

1

4
ΓmΓn[(λλ)−1(λγmn∂θ)− (λλ)−2(λ∂θ)(λγmnλ)]

+
1

8
ΓmΓn(λλ)−2[(λγmnpr)Π

p + (rγmnpr)Γ
p
]

− 1

24
ΓmΓnΓp

[
2(λλ)−3(λ∂θ)(λγmnpr)− (λλ)−2(λγmnp∂λ)

]
where the constraint of (3.1) has been used to substitute Γ

m
for 1

2(λλ)−1(λγmd)− 1
8(λλ)−2

(λγmnpr)Nnp.

One can also compute the gauge-invariant version of the stress tensor and U(1) current

of (2.7) and (2.10) which are

T = eR
(
−1

2
∂xm∂xm − pα∂θα + wα∂λ

α − sα∂rα + wα∂λα

)
e−R (3.6)

= −1

2
∂xm∂xm − pα∂θα + wα∂λ

α − sα∂rα + wα∂λα − Γ
m
∂Γm

1When expressed in terms of Γ
m

, the b ghost no longer has poles when λα → 0. However, the definition

of Γ
m

in (3.1) is singular in this limit, so a multiloop regularization procedure such as [8] will probably still

be necessary.
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and

J = eR (wαλ
α + rαs

α) e−R = wαλ
α + rαs

α + ΓmΓ
m
. (3.7)

The operators of (3.6), (3.2), (3.5) and (3.7) form a set of twisted N=2 superconformal

generators which preserve the first-class constraint of (3.1). The resulting N=2 supercon-

formal field theory will be related to a dynamical twisting of the RNS formalism where the

RNS fermionic vector variable ψm is defined as

ψm = Γ
m

+
1

2
(λλ)−1Γn(λγmγnλ). (3.8)

Note that ψm satisfies the usual OPE ψm(y)ψn(z) → (y − z)−1ηmn and commutes with

the constraint Γ
m

(γmλ)α = 0. Since this constraint eliminates half of the Γ
m

variables and

can be used to gauge-fix half of the Γm variables, the remaining 10 variables of Γ
m

and Γm
can be expressed in terms of ψm.

Although wα and wα have singular OPE’s with ψm, one can define variables w′α and

w′α which have no singular OPE’s with ψm as

wα = w′α −
1

4
ψmψn[(λλ)−1(γmnλ)α − λα(λλ)−2(λγmnλ)], (3.9)

wα − 1

2
Γ
m

Γn(λλ)−1(γmγnλ)α = w′α − 1

4
ψmψn[(λλ)−1(γmnλ)α − λα(λλ)−2(λγmnλ)].

Note that wα always appears in the combination wα − 1
2Γ

m
Γn(λλ)−1(γmγnλ)α since it is

this combination which commutes with the constraint Γ
m

(γmλ)α = 0.

When expressed in terms of ψm, w′α and w′α, the twisted N=2 generators of (3.6), (3.2),

(3.5) and (3.7) take the form

T = −1

2
∂xm∂xm − pα∂θα + w′α∂λ

α − sα∂rα + w′α∂λα (3.10)

−1

2
ψm∂ψm −

1

4
∂[(λλ)−1(λγmγnλ)ψmψn],

G− =
1

2
(λλ)−1(λγmγnλ)ψmΠn + sα∂λα + w′α∂θ

α − 1

2
(λλ)−1(w′γmλ)(λγm∂θ)

+
1

4
ψmψn(λλ)−1

[
(λγmn∂θ) + (λλ)−1(λ∂θ)(λγmnλ)

+ (rγmnλ) + (λλ)−1(rλ)(λγmnλ)
]
,

G+ = −1

2
(λλ)−1(λγmγnλ)ψnΠm + λαdα − w′αrα

+
1

4
ψmψn(λλ)−1

[
(λγmn∂θ) + (λλ)−1(λ∂θ)(λγmnλ)

+ (rγmnλ) + (λλ)−1(rλ)(λγmnλ)
]
,

+G−
[

1

24
(λλ)−2(λγmnpr)ψ

mψnψp
]
,

J = −1

2
(λλ)−1(λγmnλ)ψmψn + w′αλ

α + rαs
α,

where G−
[
1
24(λλ)−2(λγmnpr)ψ

mψnψp
]

denotes the single pole in the OPE of G− with
1
24(λλ)−2(λγmnpr)ψ

mψnψp and is equal to the last two lines of (3.5).

– 5 –
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Except for the extra term G−
[
1
24(λλ)−2(λγmnpr)ψ

mψnψp
]

in G+, the generators

of (3.10) have a very symmetric form. This asymmetry in G+ and G− can be removed by

performing the similarity transformation O → eR O e−R on all operators where

R = − 1

24

∫
(λλ)−2(λγmnpr)ψ

mψnψp. (3.11)

This similarity transformation leaves G+ of (3.10) invariant but transforms T , G− and J as

T → T +
1

24
∂((λλ)−2(λγmnpr)ψ

mψnψp), (3.12)

G− → G− +G−
[

1

24
(λλ)−2(λγmnpr)ψ

mψnψp
]
,

J → J +
1

12
(λλ)−2(λγmnpr)ψ

mψnψp.

It also transforms the constraint of (3.1) into the constraint

1

2
(λλ)−1(λγnγmλ)ψn =

1

2
(λλ)−1(λγmd)− 1

8
(λλ)−2(λγmnpr)N ′np (3.13)

where N ′np = 1
2w
′γnpλ.

After performing the similarity transformation of (3.11), the twisted N=2 generators

preserve the constraint of (3.13) and take the symmetrical form

T = −1

2
∂xm∂xm −

1

2
ψm∂ψm − pα∂θα +

1

2
(w′α∂λ

α − λα∂w′α) (3.14)

−1

2
(sα∂rα + rα∂s

α) + w′α∂λα +
1

2
∂J,

−G+ +G− = ψmΠm − λαdα + w′αrα + sα∂λα + w′α∂θ
α − 1

2
(λλ)−1(w′γmλ)(λγm∂θ),

J = −1

2
(λλ)−1(λγmnλ)ψmψn +

1

12
(λλ)−2(λγmnpr)ψ

mψnψp + w′αλ
α + rαs

α,

G+ +G− = [−G+ +G−, J ]

= ψmΠn(λλ)−1(λγmnλ) + λαdα − w′αrα + sα∂λα + w′α∂θ
α

−1

2
(λλ)−1(w′γmλ) +

1

2
ψmψn(λλ)−1

[
(λγmn∂θ) + (λλ)−1(λ∂θ)(λγmnλ)

+ (rγmnλ) + (λλ)−1(rλ)(λγmnλ)
]

+
1

4
ψmψn

[
(λλ)−2(λγmnpr)Π

p +
1

2
(λλ)−3(rγmnpr)(λγ

pγqλ)ψq

]
+

1

12
ψmψnψp[−2(λλ)−3(λ∂θ)(λγmnpr) + (λλ)−2(λγmnp∂λ)],

where the last two lines in G+ +G− is G−
[
1
12(λλ)−2(λγmnpr)ψ

mψnψp
]
. These N=2 gener-

ators of (3.14) will now be related to a dynamically twisted version of the RNS formalism.

4 Dynamical twisting of the RNS formalism

In this section, the RNS formalism will be “dynamically twisted” to an N=2 superconformal

field theory by introducing bosonic pure spinor variables λα and λα and their fermionic

– 6 –
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worldsheet superpartners. The corresponding twisted N=2 superconformal generators will

then be related to the twisted N=2 generators of (3.14) in the pure spinor formalism.

Twisting the N=1 RNS superconformal generators

T = −1

2
∂xm∂xm −

1

2
ψm∂ψm, G = ψm∂xm (4.1)

into N=2 superconformal generators usually involves choosing a U(5) subgroup of the

Wick-rotated SO(10) Lorentz group and splitting the ten xm and ψm variables into five

complex pairs (xa, xa) and (ψa, ψ
a
) for a = 1 to 5. One then defines the twisted N=2

superconformal generators as

TRNS = −∂xa∂xa − ψa∂ψa, (4.2)

G−RNS = ψ
a
∂xa, G+

RNS = −ψa∂xa,

JRNS = −ψaψa,

which satisfy the OPE G+(y)G−(z)→ (y − z)−2J(z) + (y − z)−1T (z).

To dynamically twist, one instead introduces pure spinor worldsheet variables λα and

λα satisfying

λγmλ = 0, λγmλ = 0, (4.3)

whose projective components parameterize the coset SO(10)/U(5). The N=2 superconfor-

mal generators of (4.2) can then be written in a Lorentz-covariant manner as

TRNS = −1

2
∂xm∂xm −

1

2
ψm∂ψm −

1

4
∂[(λλ)−1(λγmγnλ)ψmψn], (4.4)

G−RNS =
1

2
(λλ)−1(λγmγnλ)ψm∂xn, G+

RNS = −1

2
(λλ)−1(λγnγmλ)ψm∂xn,

JRNS = −1

2
(λλ)−1(λγmγnλ)ψmψn.

The next step is to introduce the fermionic worldsheet superpartners of the pure spinor

variables (λα, λα) and their conjugate momenta (w′α, w
′α). The fermionic superpartners of

λα and w′α will be denoted θ̃α and p̃α, and the fermionic superpartners of λα and w′α will

be denoted rα and sα. They are constrained to satisfy

λγm∂θ̃ = 0, λγmr = 0, (4.5)

which will be the worldsheet supersymmetry transformation of the pure spinor constraints

of (4.3). Because of the constraint λγm∂θ̃ = 0, θ̃α is a constrained version of θα which only

contains eleven independent non-zero modes. The corresponding twisted N=2 supercon-

formal generators for these pure spinor multiplets are defined as

Tpure = w′α∂λ
α − p̃α∂θ̃α + w′α∂λα − sα∂rα, (4.6)

G−pure = w′α∂θ̃
α + sα∂λα, G+

pure = λαp̃α − w′αrα,
Jpure = w′αλ

α + rαsα,

which preserve the pure spinor constraints of (4.3) and (4.5).

– 7 –
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Finally, one adds the N=2 superconformal generators of (4.4) and (4.6) in a manner

that preserves the N=2 algebra. This can be done by defining T , J and −G+ +G− as the

sum

T = TRNS + Tpure, J = JRNS + Jpure, (4.7)

−G+ +G− = (−G+ +G−)RNS + (−G+ +G−)pure,

and then defining G+ +G− using the commutator algebra

G+ +G− = [−G+ +G−, J ].

Since G+
pure and G−pure do not commute with JRNS, G++G− is not the sum of (G++G−)RNS

and (G+ +G−)pure.

The resulting N=2 superconformal generators for the dynamically twisted RNS for-

malism are

T = −1

2
∂xm∂xm −

1

2
ψm∂ψm − p̃α∂θ̃α +

1

2
(w′α∂λ

α − λα∂w′α) (4.8)

−1

2
(sα∂rα + rα∂s

α) + w′α∂λα +
1

2
∂J,

−G+ +G− = ψm∂xm − λαp̃α + w′αrα + sα∂λα + w′α∂θ̃
α,

J = −1

2
(λλ)−1(λγmnλ)ψmψn + w′αλ

α + rαs
α,

G+ +G− = [−G+ +G−, J ]

= ψm∂xn(λλ)−1(λγmnλ) + λαp̃α − w′αrα + sα∂λα + w′α∂θ̃
α

+
1

2
ψmψn(λλ)−1

[
(λγmn∂θ̃) + (λλ)−1(λ∂θ̃)(λγmnλ)

+ (rγmnλ) + (λλ)−1(rλ)(λγmnλ)
]
.

The N=2 superconformal generators of (4.8) are obviously closely related to the N=2

generators of (3.14) in the pure spinor formalism, but there are three important differences.

Firstly, the generators of (4.8) are not manifestly spacetime supersymmetric since they

involve ∂xm and p̃α instead of Πm and dα. Secondly, the U(1) generator J of (4.8) does

not include the term 1
12(λλ)−2(λγmnpr)ψ

mψnψp. And thirdly, the θ̃α variable in (4.8) is

constrained to satisfy λγm∂θ̃ = 0.

The first difference is easily removed by performing the similarity transformation O →
eR O e−R on all operators in (4.8) where

R =
1

2

∫
(λγmθ̃)ψm. (4.9)

This similarity transformation does not affect T or J of (4.8) but transforms −G+ + G−

into the manifestly spacetime supersymmetric expression

−G+ +G− = ψmΠ̃m − λαd̃α + w′αrα + sα∂λα + w′α∂θ̃
α (4.10)

where Π̃m = ∂xm+ 1
2(θ̃γm∂θ̃) and d̃α = p̃α− 1

2

(
∂xm + 1

4(θ̃γm∂θ̃)
)

(γmθ̃)α, and transforms

the ψm∂xn(λλ)−1(λγmnλ) term in G+ +G− into ψmΠ̃n(λλ)−1(λγmnλ).

– 8 –
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The second difference in the generators can be removed by modifying the definition

of dynamical twisting in (4.4) so that the appropriate term is added to J . The generator

−G++G− = (−G++G−)RNS+(−G++G−)pure and the untwisted stress tensor T− 1
2∂J =(

T − 1
2∂J

)
RNS

+
(
T − 1

2∂J
)
pure

of (4.8) will be left unchanged. But J will be modified so

that after performing the similarity transformation of (4.9), the new J includes the term
1
12(λλ)−2(λγmnpr)ψ

mψnψp. And to preserve the N=2 algebra, G+ +G− will be defined as

the commutator [−G+ +G−, J ] using the new J .

Since e−R ψm eR = ψm − 1
2(λγmθ̃), this means one should modify J in (4.8) to

J = −1

2
(λλ)−1(λγmnλ)ψmψn + w′αλ

α + rαs
α (4.11)

+
1

12
(λλ)−2(λγmnpr)

(
ψm −

1

2
(λγmθ̃)

)(
ψn −

1

2
(λγnθ̃)

)(
ψp −

1

2
(λγpθ̃)

)
.

Although this modification of J looks unnatural, it has the important consequence of

breaking the abelian shift symmetry θ̃α → θ̃α + cα where cα is any constant. This shift

symmetry leaves invariant the generators of (4.8), but has no corresponding symmetry in

the pure spinor formalism and should not be a physical symmetry.

After modifying J in this manner and performing the similarity transformation of (4.9),

the generators of (4.8) coincide with the generators of (3.14) except for the restriction that

λγm∂θ̃ = 0. This final difference between the generators can be removed by interpreting

λγm∂θ̃ = 0 as a partial gauge-fixing condition for the symmetry generated by the first-

class constraint of (3.13). After relaxing the restriction λγm∂θ̃ = 0 and adding the term

−1
2(λλ)−1(w′γmλ)(λγm∂θ) to G−, the generators of (4.8) coincide with those of (3.14) and

therefore preserve the constraint of (3.13).

Since the generators preserve (3.13), it is consistent to interpret (4.8) as a partially

gauge-fixed version of (3.14) where the symmetry generated by (3.13) is used to gauge-fix

λγm∂θ = 0. On the other hand, the original N=2 generators of (2.7)–(2.10) of the pure

spinor formalism can be interpreted as a gauge-fixed version of (3.14) where the gauge-

fixing condition is (λγmγnλ)ψn = 0. This is easy to see since (λγmγnλ)ψn = 0 implies that

R = 0 in the similarity transformations of (3.5), (3.6) and (3.7).

5 Summary

In section 2, the b ghost of the pure spinor formalism was simplified by introducing the

fermionic vector variable Γ
m

of (3.1). After expressing Γ
m

in terms of the RNS variable

ψm using (3.8), the b ghost and BRST current form a symmetric set of twisted N=2

generators (3.14) which preserve the constraint of (3.13).

In section 3, the corresponding N=2 superconformal field theory was interpreted as a

dynamically twisted version of the RNS formalism in which the pure spinors λα and λα
parameterize the SO(10)/U(5) choices of twisting. The dynamically twisted RNS genera-

tors are obtained from (3.14) using the constraint of (3.13) to gauge-fix λγm∂θ = 0. And

the twisted N=2 generators of the original pure spinor formalism are obtained from (3.14)

using the constraint of (3.13) to gauge-fix (λγmγnλ)ψn = 0.
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