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In the early 1970’s Eisenberg and Hedlund investigated relationships between expan-
sivity and spectrum of operators on Banach spaces. In this paper we establish rela-
tionships between notions of expansivity and hypercyclicity, supercyclicity, Li–Yorke 
chaos and shadowing. In the case that the Banach space is c0 or �p (1 ≤ p < ∞), we 
give complete characterizations of weighted shifts which satisfy various notions of 
expansivity. We also establish new relationships between notions of expansivity and 
spectrum. Moreover, we study various notions of shadowing for operators on Banach 
spaces. In particular, we solve a basic problem in linear dynamics by proving the 
existence of nonhyperbolic invertible operators with the shadowing property. This 
contrasts with the expected results for nonlinear dynamics on compact manifolds, 
illuminating the richness of dynamics of infinite dimensional linear operators.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study of the dynamics of continuous linear operators on infinite dimensional Banach (or Fréchet) 
spaces has witnessed a great development during the last three decades and many links between this area 
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and other areas of mathematics, such as ergodic theory, number theory and geometry of Banach spaces, have 
been established. We refer the reader to the books [3,18] and to the more recent papers [4,7–9,17], where 
many additional references can be found. On the other hand, the notions of expansivity and shadowing 
play important roles in many branches of the area of dynamical systems, including topological dynamics, 
differentiable dynamics and ergodic theory; see [1,23,24,30], for instance. Our goal in this paper is to inves-
tigate the notions of expansivity and shadowing in the context of linear dynamics, thereby complementing 
previous works by various authors. In particular, we give a class of examples of operators exhibiting the 
shadowing property which are not hyperbolic, however they are chaotic. Such examples show the richness 
of linear dynamics and its difference from finite dimensional nonlinear dynamics, yielding counterintuitive 
results to the corresponding ones from finite dimensional smooth dynamics.

Let us now describe the organization of the article.
In Section 2 we fix the notations and recall the definitions and a few results which will be important in 

our work.
In Section 3 we investigate the notions of shadowing, limit shadowing and �p shadowing for invertible 

operators on Banach spaces. It is well-known that invertible hyperbolic operators have the shadowing 
property and that the converse holds for invertible operators on finite dimensional spaces [22] and for 
invertible normal operators on Hilbert spaces [21]. Moreover, the converse also holds for certain sequences 
of finite dimensional operators considered in [25]. This implies that for C1 diffeomorphisms of m-dimensional 
closed smooth manifolds, hyperbolicity is equivalent to Lipschitz shadowing [25]. A basic open problem in 
linear dynamics is whether the shadowing property implies hyperbolicity for invertible operators on Banach 
(or Hilbert) spaces. This problem appeared explicitly in [21, Page 148], for instance. In Theorem B, we solve 
this problem in the negative by proving the existence of operators with the shadowing property that exhibit 
several types of chaotic behaviors (they are simultaneously frequently hypercyclic, Devaney chaotic, mixing 
and densely distributionally chaotic) and, in particular, are not even expansive. We also establish a useful 
sufficient condition for shadowing (Theorem A) and consider the case of noninvertible operators by looking 
at the notion of positive shadowing.

In Section 4 we investigate various notions of expansivity for operators on Banach spaces. We establish 
relationships between these notions and some popular notions in linear dynamics, namely: hypercyclicity, 
supercyclicity and Li–Yorke chaos. In particular, we prove that a uniformly expansive operator cannot be 
Li–Yorke chaotic and hence it cannot be hypercyclic (Theorem C), but we observe that every infinite-
dimensional separable Banach space supports a supercyclic uniformly expansive operator. On the other 
hand, we prove that a hyperbolic operator with nontrivial hyperbolic splitting cannot be supercyclic. We 
also investigate the relationship between expansivity of an operator and its spectrum. In particular, we 
expand earlier results of Eisenberg and Hedlund [15,16,19] and Mazur [21]. In 1966 Eisenberg [15] proved 
that if T is an invertible operator on Cn, then T is expansive if and only if T has no eigenvalue on the 
unit circle T. Subsequently, Eisenberg and Hedlund [16] and Hedlund [19] studied expansive and uniformly 
expansive operators on Banach spaces. They showed that an invertible operator T is uniformly expansive if 
and only if σa(T ), the approximate point spectrum of T , does not intersect T. As a corollary, they obtained 
that invertible hyperbolic operators are uniformly expansive. Mazur [21] proved that an invertible normal 
operator T on a Hilbert space H is expansive if and only if σp(T ∗T ), the point spectrum of T ∗T , does not 
intersect T. We show that an invertible operator T is uniformly positively expansive if and only if σa(T )
does not intersect the closed unit disc D (Theorem D). Moreover, we expand Mazur’s result by giving a 
necessary and sufficient condition for a normal operator to be positively expansive. Our techniques also 
yield a simpler proof of his result. We also prove that every expansive operator with the shadowing property 
is uniformly expansive.

In Section 5 we study weighted shifts. Due to their importance in operator theory and its applications, 
the dynamics of weighted shifts has received special attention from the specialists in linear dynamics. 
Many dynamical properties have been extensively studied and, in many cases, complete characterizations 
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were obtained. For instance, Salas [29] characterized hypercyclicity and weak mixing whereas Costakis 
and Sambarino [12] characterized mixing for unilateral and bilateral weighted shifts on �2(N) and �2(Z), 
respectively. We obtain here complete characterizations of various notions of expansivity for unilateral and 
bilateral weighted shifts on the Banach spaces c0(A) and �p(A) (1 ≤ p < ∞), where A = N or Z (Theorem E). 
As applications we give examples of hypercyclic positively expansive operators and of supercyclic uniformly 
positively expansive operators.

2. Preliminaries

As usual, N denotes the set of all positive integers and N0 = N ∪{0}. Moreover, D and T denote the open 
unit disc and the unit circle in the complex plane C, respectively.

Given a Banach space X, SX = {x ∈ X : ‖x‖ = 1} is the unit sphere of X. Moreover, by an operator on 
X we mean a bounded linear map T : X → X.

If T is an operator on a complex Banach space X, then σ(T ), ρ(T ), σp(T ), σr(T ), σa(T ) and r(T ) denote 
the spectrum, the resolvent set, the point spectrum, the residual spectrum, the approximate point spectrum
and the spectral radius of T , respectively. In the case T is an operator on a real Banach space X, we define 
σ(T ) = σ(TC), ρ(T ) = ρ(TC), and so on, where TC denotes the complexification of T . The spectral radius 
formula asserts that r(T ) = limn→∞ ‖Tn‖ 1

n . Moreover, if T is a self-adjoint operator on a complex Hilbert 
space H and x ∈ H, then there is a unique positive Radon measure μ on σ(T ) such that

〈f(T )x, x〉 =
∫

σ(T )

f(t)dμ(t) for all f ∈ C(σ(T )).

So, μ(σ(T )) = ‖x‖2. The measure μ is called the spectral measure associated to T and x. We refer the reader 
to the books [14,31] for more information concerning spectrum.

Definition 1. An invertible operator T on a Banach space X is said to be expansive (positively expansive) if 
for every z ∈ SX , there exists n ∈ Z (n ∈ N) such that ‖Tnz‖ ≥ 2.

Definition 2. An invertible operator T on a Banach space X is said to be uniformly expansive (uniformly 
positively expansive) if there exists n ∈ N such that

z ∈ SX =⇒ ‖Tnz‖ ≥ 2 or ‖T−nz‖ ≥ 2 (z ∈ SX =⇒ ‖Tnz‖ ≥ 2).

We remark that for the definitions of positive expansivity and uniform positive expansivity, T need not 
be invertible. Also, one can replace the number 2 in the above definitions by any number c > 1. Moreover, 
the above definition of expansivity agrees with the usual one in metric spaces, since it is equivalent to the 
existence of a constant e > 0 such that, for any pair x, y of distinct points in X, there exists n ∈ Z with 
‖Tnx − Tny‖ ≥ e.

Remark 3. In the case T is an operator on a real Banach space X, the (uniform) (positive) expansivity of 
T is equivalent to the corresponding property for its complexification TC.

Definition 4. An operator T is said to be hyperbolic if σ(T ) ∩ T = ∅.

It is classical that T is hyperbolic if and only if there are an equivalent norm ‖ · ‖ on X and a splitting 
X = Xs ⊕ Xu, T = Ts ⊕ Tu (the hyperbolic splitting of T ), where Xs and Xu are closed T -invariant 
subspaces of X (the stable and the unstable subspaces for T ), Ts = T |Xs

is a proper contraction (i.e., 
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‖Ts‖ < 1), Tu = T |Xu
is invertible and is a proper dilation (i.e., ‖T−1

u ‖ < 1), and the identification of X
with the product Xs ×Xu identifies ‖ · ‖ with the max norm on the product.

It is also known [19] that T is uniformly expansive if and only if σa(T ) ∩ T = ∅. Hence, every invertible 
hyperbolic operator is uniformly expansive.

Given a metric space M and a homeomorphism h : M → M , recall that (xn)n∈Z is a δ-pseudotrajectory
of h (δ > 0) if d(h(xn), xn+1) ≤ δ for all n ∈ Z. h has the shadowing property if for every ε > 0 there is 
δ > 0 such that every δ-pseudotrajectory (xn)n∈Z of h is ε-shadowed by a real trajectory of h, that is, there 
is x ∈ M such that d(xn, hn(x)) < ε for all n ∈ Z. Moreover, h has the Lipschitz shadowing property if 
there exists K > 0 such that δ can be chosen satisfying that ε < Kδ. More generally, we call it α-Hölder 
shadowing property, 0 < α ≤ 1, if δ can be chosen so that ε < Kδα.

Remark 5. In the case of operators, it is enough to check the above condition for a single ε > 0. More 
precisely, if T is an invertible operator on a Banach space X and if for some ε > 0 there exists δ > 0 such 
that every δ-pseudotrajectory of T is ε-shadowed by a real trajectory of T , then T has the shadowing prop-
erty. Moreover, any operator satisfying the shadowing property trivially satisfies the Lipschitz shadowing 
property.

We shall also consider here the notions of limit shadowing and �p shadowing. The homeomorphism h
has the limit shadowing property if for every sequence (xn)n∈Z in M with lim|n|→∞ d(h(xn), xn+1) = 0, 
there exists x ∈ M such that lim|n|→∞ d(xn, hn(x)) = 0. Moreover, h has the �p shadowing property
(1 ≤ p < ∞) if for every sequence (xn)n∈Z in M with 

∑
n∈Z

d(h(xn), xn+1)p < ∞, there exists x ∈ M such 
that 

∑
n∈Z

d(xn, hn(x))p < ∞. See [23,24] for more information and additional references on shadowing.
We have the following result, whose simple proof is left to the reader.

Proposition 6. Let T be an invertible operator on a Banach space X. Suppose that X = M ⊕ N , where 
M and N are closed T -invariant subspaces of X. Then T has the shadowing property (the limit shadowing 
property, the �p shadowing property) if and only if so do T |M and T |N .

Corollary 7. If T is an invertible operator on a real Banach space X, then T has the shadowing property 
(the limit shadowing property, the �p shadowing property) if and only if so does its complexification TC.

Let us also recall that an operator T on a Banach space X is Li–Yorke chaotic if it has an uncountable 
scrambled set U , i.e., for all x, y ∈ U with x �= y, we have that

lim inf
n→∞

‖Tnx− Tny‖ = 0 and lim sup
n→∞

‖Tnx− Tny‖ > 0.

We say that T is hypercyclic if it has a dense orbit, i.e., {Tnx : n ≥ 0} is dense in X for some x ∈ X. 
Finally, T is supercyclic if there exists x ∈ X whose projective orbit {λTnx : n ≥ 0, λ scalar} is dense in X. 
We refer the reader to the books [3,18].

If X = �p(Z) (1 ≤ p < ∞) or X = c0(Z), then Fw : X → X (Bw : X → X) denotes the bilateral weighted 
forward (backward) shift on X given by

Fw

(
(xn)n∈Z

)
= (wn−1xn−1)n∈Z

(
Bw

(
(xn)n∈Z

)
= (wn+1xn+1)n∈Z

)
,

where w = (wn)n∈Z is a bounded sequence of scalars, called a weight sequence. Recall that

Fw (Bw) is invertible ⇐⇒ inf |wn| > 0.

n∈Z
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In the case X = �p(N) (1 ≤ p < ∞) or X = c0(N), we also denote by Fw : X → X (Bw : X → X) the 
unilateral weighted forward (backward) shift on X with weight sequence w = (wn)n∈N, which is defined by

Fw

(
(x1, x2, . . .)

)
= (0, w1x1, w2x2, . . .)

(
Bw

(
(x1, x2, . . .)

)
= (w2x2, w3x3, . . .)

)
.

We remark that in this case the weight sequence w is also assumed to be bounded.

3. Shadowing for operators

As mentioned in the Introduction, it is an open problem whether the shadowing property implies hyper-
bolicity for invertible operators on Banach (or Hilbert) spaces. Our main goal in this section is to give a 
negative answer to this problem. We will see in the next section that hyperbolic operators do not exhibit 
chaotic behavior. Indeed, they are not even Li–Yorke chaotic, which is a very weak notion of chaos. Hence, 
in order to give a negative answer to the above problem, it would be enough to find a Li–Yorke chaotic 
operator with the shadowing property. Nevertheless, the example we are going to present is actually much 
better in the sense that it satisfies a very strong chaotic property, called the frequent hypercyclicity criterion, 
which simultaneously implies frequent hypercyclicity, Devaney chaos, mixing and dense distributional chaos; 
see [18, Section 9.2], [2] and [7, Corollary 20].

Theorem A. Let T be an invertible operator on a Banach space X. Suppose that X = M ⊕N , where M and 
N are closed subspaces of X with T (M) ⊂ M and T−1(N) ⊂ N . If σ(T |M ) ⊂ D and σ(T−1|N ) ⊂ D, then T
has the shadowing property, the limit shadowing property and the �p shadowing property for all 1 ≤ p < ∞.

As an immediate consequence, we have the following:

Corollary 8. Every invertible hyperbolic operator T on a Banach space X has the shadowing property, the 
limit shadowing property and the �p shadowing property for all 1 ≤ p < ∞.

We recall that it was already known that invertible hyperbolic operators have the shadowing property 
(see [22], for instance).

We also establish the existence of nonhyperbolic invertible operators with the shadowing property.
Recall that an operator T on a separable Banach space X is said to satisfy the frequent hypercyclicity 

criterion if there are a dense set X0 ⊂ X and a map S : X0 → X0 such that, for all x ∈ X0, the series ∑∞
n=0 T

nx and 
∑∞

n=0 S
nx converge unconditionally and TSx = x.

Theorem B. Let X = �q(Z) (1 ≤ q < ∞) or X = c0(Z). There exists an invertible weighted shift T on 
X which satisfies the frequent hypercyclicity criterion (hence it is not hyperbolic) and has the shadowing 
property, the limit shadowing property and the �p shadowing property for all 1 ≤ p < ∞. Moreover any 
weighted shift operator sufficiently close to T also satisfies the thesis of previous statement.

The next remarks highlight the differences between nonlinear finite dimensional dynamics and infinite 
dimensional linear dynamics, explaining the status of the shadowing property for finite dimensional diffeo-
morphisms and raising a question.

Remark 9.

(a) As commented in the Introduction, for C1 diffeomorphisms on a finite dimensional manifold, Lipschitz 
shadowing is equivalent to hyperbolicity [25]. Our example proves that this is not the case for infinite 
dimensional linear dynamics. In some sense, this shows that when one considers infinite dimensional 
spaces, even linear dynamics is richer than nonlinear finite dimensional dynamics.
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(b) The previous theorem resembles a result in [20] where the existence of a nonhyperbolic yet having the 
shadowing property C∞ diffeomorphism on a surface is exhibited. In view of the results in [25], the 
shadowing property cannot be Lipschitz shadowing. Indeed, in examples provided in [20] the shadowing 
property is only α-Hölder for some α < 1.

(c) It is worth pointing out that finite dimensional diffeomorphisms induce infinite dimensional operators: 
for any diffeomorphism one obtains finite dimensional linear cocycles provided by the derivative of that 
diffeomorphism and those linear cocycles can be recast as an infinite dimensional linear map (see [10]
for discussions of linear cocycles). In particular, the proof in [25] is based on analyzing the dynamics of 
a diffeomorphism as a linear cocycle, showing that the Lipschitz shadowing implies shadowing for the 
cocycle of linear maps and from there concluding hyperbolicity using the results in [26]. On the other 
hand, the spectrum problem related to certain nonlinear infinite dimensional operators, as the discrete 
Schrödinger operator, can be reduced to a linear cocycle (see [13] for instance).

(d) It is shown in Theorem B that the shadowing property is satisfied for an open set of weighted shifts. It 
is natural to wonder if the same holds when one considers open sets of linear operators; in particular, 
is the shadowing property satisfied for any linear operator close to the ones that satisfy Theorem B?

Before we prove Theorems A and B, we will establish two lemmas. In view of Corollary 7, we will tacitly 
assume complex scalars in what follows.

Lemma 10. (see [23]) An invertible operator T on a Banach space X has the shadowing property if and only 
if there is a constant K > 0 such that for every bounded sequence (zn)n∈Z in X, there is a sequence (yn)n∈Z

in X such that

sup
n∈Z

‖yn‖ ≤ K sup
n∈Z

‖zn‖ and yn+1 = Tyn + zn for all n ∈ Z. (1)

Proof. Assume that T has the shadowing property and let δ > 0 be the constant that appears in the 
definition of shadowing associated to ε = 1. Consider a bounded sequence (zn)n∈Z and put L = supn∈Z ‖zn‖. 
Let (xn)n∈Z be such that xn+1 = Txn + δ

Lzn for all n ∈ Z. Observe that (xn)n∈Z is completely determined 
by x0. Then (xn)n∈Z is a δ-pseudotrajectory of T . By hypothesis, there is x ∈ X such that ‖xn − Tnx‖ < 1
for all n ∈ Z. By putting yn = L

δ (xn − Tnx), we have that (1) hold (with K = 1/δ). For the converse, it 
is enough to consider ε = 1 (Remark 5). Put δ = 1

2K and let (xn)n∈Z be a δ-pseudotrajectory of T . Put 
zn = xn+1 − Txn. By hypothesis, there exists (yn)n∈Z such that (1) hold. Since xn+1 − yn+1 = T (xn − yn), 
it follows that xn − yn = Tn(x0 − y0). Thus,

‖xn − Tn(x0 − y0)‖ = ‖yn‖ ≤ K sup
j∈Z

‖zj‖ ≤ Kδ = 1,

for all n ∈ Z. �
Lemma 11. An invertible operator T on a Banach space X has the limit shadowing property (the �p shadowing 
property) if and only if for every sequence (zn)n∈Z in X with

lim
|n|→∞

‖zn‖ = 0
(∑

n∈Z

‖zn‖p < ∞
)
, (2)

there exists a sequence (yn)n∈Z in X such that

lim
|n|→∞

‖yn‖ = 0
(∑

‖yn‖p < ∞
)

(3)

n∈Z
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and

yn+1 = Tyn + zn for all n ∈ Z. (4)

Proof. Assume that T has the limit shadowing property (the �p shadowing property) and consider a sequence 
(zn)n∈Z satisfying (2). Let (xn)n∈Z be such that xn+1 = Txn + zn for all n ∈ Z. Then, by hypothesis, 
there exists x ∈ X such that lim|n|→∞ ‖xn − Tnx‖ = 0

(∑
n∈Z

‖xn − Tnx‖p < ∞
)
. Hence, by putting 

yn = xn − Tnx, we have that (3) and (4) hold. For the converse, consider (xn)n∈Z such that

lim
|n|→∞

‖xn+1 − Txn‖ = 0
(∑

n∈Z

‖xn+1 − Txn‖p < ∞
)
.

Put zn = xn+1 − Txn. Then (zn)n∈Z satisfies (2). Hence, by hypothesis, there is (yn)n∈Z such that (3) and 
(4) hold. Since xn − Tn(x0 − y0) = yn, we are done. �
Proof of Theorem A. For each x ∈ X, take x(1) ∈ M and x(2) ∈ N satisfying x = x(1) + x(2) (note that 
x(1), x(2) are unique). There is a constant β > 0 such that

‖x(1)‖ ≤ β‖x‖ and ‖x(2)‖ ≤ β‖x‖ for all x ∈ X.

By hypothesis, r(T |M ) < 1 and r(T−1|N ) < 1. Choose t ∈ R such that

max{r(T |M ), r(T−1|N )} < t < 1.

It follows from the spectral radius formula that there exists a constant C ≥ 1 such that

‖(T |M )n‖ ≤ C tn and ‖(T−1|N )n‖ ≤ C tn for all n ∈ N0.

Consider a bounded sequence (zn)n∈Z in X. For each n ∈ Z, we define

y(1)
n =

∞∑
k=0

T kz
(1)
n−k−1 ∈ M, y(2)

n = −
∞∑
k=1

T−kz
(2)
n+k−1 ∈ N

and

yn = y(1)
n + y(2)

n ∈ X.

An easy computation shows that second part of (1) (which is the same as (4)) holds. Moreover,

‖y(1)
n ‖ ≤ C

∞∑
k=0

tk‖z(1)
n−k−1‖ and ‖y(2)

n ‖ ≤ C
∞∑
k=1

tk‖z(2)
n+k−1‖. (5)

Hence,

sup
n∈Z

‖yn‖ ≤
( 2βC

1 − t

)
sup
n∈Z

‖zn‖,

which proves that T has the shadowing property by Lemma 10.
Now, assume that (zn)n∈Z satisfies (2). By Lemma 11, it remains to show that (3) holds. By (5), for each 

j ∈ N and each i ∈ {1, 2},
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‖y(i)
n ‖ ≤ C

(
j∑

k=0

tk

)(
sup

0≤k≤j
‖z(i)

n+(−1)ik−1‖
)

+ C

( ∞∑
k=j+1

tk

)(
sup
k∈Z

‖z(i)
k ‖

)
,

which shows that lim|n|→∞ ‖yn‖ = 0 whenever lim|n|→∞ ‖zn‖ = 0. In the case p = 1, it is enough to use the 
estimates

∑
n∈Z

‖y(i)
n ‖ ≤ C

∑
n∈Z

∞∑
k=0

tk‖z(i)
n+(−1)ik−1‖ = C

( ∞∑
k=0

tk

)(∑
n∈Z

‖z(i)
n ‖

)
(i ∈ {1, 2}).

Finally, in the case 1 < p < ∞, we consider its conjugate exponent q (i.e., 1/p +1/q = 1) and apply Hölder’s 
inequality to obtain

‖y(i)
n ‖ ≤ C

( ∞∑
k=0

t
qk
2

) 1
q
( ∞∑

k=0

t
pk
2 ‖z(i)

n+(−1)ik−1‖
p

) 1
p

(i ∈ {1, 2}).

As a consequence,

∑
n∈Z

‖y(i)
n ‖p ≤ Cp

( ∞∑
k=0

t
qk
2

) p
q
( ∞∑

k=0

t
pk
2

)(∑
n∈Z

‖z(i)
n ‖p

)
(i ∈ {1, 2}).

Thus, in all cases, (3) holds. �
Proof of Theorem B. Fix a real number α > 1 and let T be the bilateral weighted forward shift on X whose 
weight sequence (wn)n∈Z is given by wn = α if n < 0 and wn = 1/α if n ≥ 0. By applying Theorem A with

M = {(xn)n∈Z : xn = 0 for all n < 0} and N = {(xn)n∈Z : xn = 0 for all n ≥ 0},

we see that T has all the above-mentioned shadowing properties. Moreover, in order to see that T satisfies 
the frequent hypercyclicity criterion, it is enough to consider X0 as the set of all sequences (xn)n∈Z with 
finite support and S = T−1. To conclude the second part of the thesis, observe that any weighted shift close 
to T also fits in Theorem A (with the same M and N) and satisfies the frequent hypercyclicity criterion. �

In the remark below we note that all notions of shadowing considered here coincide in the finite dimen-
sional setting. As mentioned before the equivalence (i) ⇔ (ii) was already known (see [22], where further 
references can be found). The other equivalences are not so difficult exercises (for instance, we have done 
them on the arXiv version of this paper).

Remark 12. Fix p ∈ [1, ∞). If T is an invertible operator on a finite dimensional Banach space X, then the 
following assertions are equivalent:

(i) T is hyperbolic;
(ii) T has the shadowing property;
(iii) T has the limit shadowing property;
(iv) T has the �p shadowing property.

We now turn our attention to the case of noninvertible maps. If h is a continuous self-map of a metric 
space M , we can define the notion of positive shadowing simply by replacing the set Z by the set N0 in 
the definition of shadowing. Similarly, we can define the notions of positive limit shadowing and positive �p
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shadowing for such a map h. Remark 5, Proposition 6 and Corollary 7 have analogous statements for not 
necessarily invertible operators if we add the word “positive” to the corresponding notions of shadowing.

Theorem 13. Let T be a (not necessarily invertible) operator on a Banach space X. If T is hyperbolic, then 
T has the positive shadowing property, the positive limit shadowing property and the positive �p shadowing 
property for all 1 ≤ p < ∞.

Proof. We divide the proof into three cases.

Case 1. σ(T ) ⊂ D.

There are t ∈ (0, 1) and C ≥ 1 such that ‖Tn‖ ≤ C tn for all n ∈ N0. Given ε > 0, put δ = (1−t)ε
C . Let 

(xn)n∈N0 be a δ-pseudotrajectory of T and define yn = xn − Txn−1. Then

xn = Tnx0 + Tn−1y1 + Tn−2y2 + · · · + Tyn−1 + yn for all n ∈ N. (6)

Since ‖yn‖ ≤ δ for all n ∈ N, we conclude that

‖xn − Tnx0‖ ≤ Ctn−1δ + Ctn−2δ + · · · + Ctδ + δ <
Cδ

1 − t
= ε (n ∈ N).

Hence, (xn)n∈N0 is ε-shadowed by (Tnx0)n∈N0 and T has the positive shadowing property.
Let (xn)n∈N0 be a sequence in X with limn→∞ ‖Txn − xn+1‖ = 0. Let yn be defined as above. By (6),

‖xn − Tnx0‖ ≤ C

(
j∑

k=0

tk

)(
sup

0≤k≤j
‖yn−k‖

)
+ C

(
n−1∑

k=j+1

tk

)(
sup
k∈N

‖yk‖
)
,

whenever 0 < j < n. Since ‖yn‖ → 0, the above estimate implies that ‖xn − Tnx0‖ → 0 as well. Thus, 
T has the positive limit shadowing property.

Now, suppose that 
∑∞

n=0 ‖Txn − xn+1‖ < ∞. Then, by (6),

∞∑
n=0

‖xn − Tnx0‖ ≤ C

∞∑
n=1

n−1∑
k=0

tk‖yn−k‖ = C

( ∞∑
k=0

tk

)( ∞∑
n=1

‖yn‖
)

< ∞.

Finally, suppose that 1 < p < ∞ and that 
∑∞

n=0 ‖Txn − xn+1‖p < ∞. By (6),

‖xn − Tnx0‖ ≤ C

n−1∑
k=0

tk‖yn−k‖ ≤ C

(
n−1∑
k=0

t
qk
2

) 1
q
(

n−1∑
k=0

t
pk
2 ‖yn−k‖p

) 1
p

,

where q is the conjugate exponent to p. Thus,

∞∑
n=0

‖xn − Tnx0‖p ≤ Cp

( ∞∑
k=0

t
qk
2

) p
q
( ∞∑

k=0

t
pk
2

)( ∞∑
n=1

‖yn‖p
)

< ∞.

Therefore, T also has the positive �p shadowing property.

Case 2. σ(T ) ⊂ C\D.

Then T is invertible and we can apply Corollary 8.
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Case 3. σ(T ) ∩ D �= ∅ and σ(T ) ∩ (C\D) �= ∅.

In this case, the sets σ1 = σ(T ) ∩D and σ2 = σ(T ) ∩ (C\D) form a partition of σ(T ) into two nonempty 
closed sets. By the Riesz decomposition theorem [18, Theorem B.9], there are nontrivial T -invariant closed 
subspaces M1 and M2 of X such that

X = M1 ⊕M2, σ(T |M1) = σ1 and σ(T |M2) = σ2.

By Cases 1 and 2, both T |M1 and T |M2 have the positive shadowing property, the positive limit shadowing 
property and the positive �p shadowing property for all 1 ≤ p < ∞, from which it follows easily that T also 
has these properties. �
Remark 14. The converse of Theorem 13 is false in general, the operator constructed in the proof of Theo-
rem B has all the positive shadowing properties, but it is not hyperbolic.

Let us now prove that all notions of positive shadowing considered here coincide with hyperbolicity in 
the case of compact operators.

Theorem 15. Fix p ∈ [1, ∞). If T is a compact operator on a Banach space X, then the following assertions 
are equivalent:

(i) T is hyperbolic;
(ii) T has the positive shadowing property;
(iii) T has the positive limit shadowing property;
(iv) T has the positive �p shadowing property.

Proof. Suppose that T has the positive shadowing property (the positive limit shadowing property, the 
positive �p shadowing property). We have to prove that T is hyperbolic. We may assume that X is infinite 
dimensional (the finite dimensional case is an exercise analogous to that one stated in Remark 12) and that 
σ(T ) is not contained in D. Since T is a compact operator, it follows that the sets σ1 = σ(T ) ∩ D and 
σ2 = σ(T )\D form a partition of σ(T ) into two nonempty closed sets. By the Riesz decomposition theorem, 
there are nontrivial T -invariant closed subspaces M1 and M2 of X such that X = M1 ⊕M2, σ(T |M1) = σ1
and σ(T |M2) = σ2. The compactness of T also implies that M2 is finite dimensional. Hence, since T |M2 has 
the positive shadowing property (the positive limit shadowing property, the positive �p shadowing property), 
we have that σ2 ∩ T = ∅. Thus, σ(T ) ∩ T = ∅. �
4. Expansive operators

We start this section asserting that uniformly expansive operators do not exhibit chaotic behavior.

Theorem C. A uniformly (positively) expansive operator on a Banach space cannot be Li–Yorke chaotic. In 
particular, it cannot be hypercyclic.

We also investigate the relationship between expansivity and spectrum.

Theorem D. If T is an operator on a Banach space X, then

T uniformly positively expansive ⇒ σa(T ) ∩ D = ∅.

The converse holds if ρ(T ) ∩D �= ∅. In particular, the converse holds if T is invertible.
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Before providing the proofs, we state a series of remarks that helps to provide a context to the main 
theorems of the present section.

Remark 16. The fact that uniformly expansive operators cannot be hypercyclic can be seen by means 
of a spectral argument. Indeed, if T is hypercyclic, then σ(T ) ∩ T �= ∅ and σp(T ∗) = ∅ (see [3]). Since 
σr(T ) ⊂ σp(T ∗) and σ(T ) = σr(T ) ∪ σa(T ), we conclude that σa(T ) ∩ T �= ∅ and thus T is not uniformly 
expansive.

On the other hand, there exist supercyclic uniformly expansive operators, as we shall see in the remark 
below. A simple concrete example of such an operator on the Hilbert space �2 will be given in Example 38.

Remark 17. Every infinite dimensional separable Banach space admits an invertible operator which is uni-
formly positively expansive and supercyclic.

Indeed, it is well-known that every infinite dimensional separable Banach space X supports a hypercyclic 
invertible operator S (see [18, Section 8.2]). Since any nonzero scalar multiple of a supercyclic operator is 
a supercyclic operator, T = 2‖S−1‖S is a supercyclic operator on X. Moreover, since ‖T−1‖ = 1

2 < 1, T is 
a proper dilation. In particular, T is uniformly positively expansive.

Remark 18. A positively expansive operator can be Li–Yorke chaotic. For example, Beauzamy [5] and 
Prǎjiturǎ [27] constructed examples of completely irregular operators on the Hilbert space �2. These are 
operators with the property that every nonzero vector is irregular. It follows from Proposition 19(a) and [8, 
Theorem 34] that such operators are simultaneously positively expansive and generically Li–Yorke chaotic. 
Also, Read [28] constructed an operator T on �1 with all nonzero vectors hypercyclic. This operator is 
simultaneously positively expansive, generically Li–Yorke chaotic and hypercyclic. Moreover, we shall see 
later an example of an invertible operator on the Hilbert space �2 which is positively expansive (hence 
expansive) and hypercyclic (Example 34).

In order to prove Theorems C and D we will use the next proposition.

Proposition 19. Let T be an operator on a Banach space X. Then:

(a) T is positively expansive ⇔ supn∈N ‖Tnx‖ = ∞ for every nonzero x ∈ X.
(b) T is uniformly positively expansive ⇔ limn→∞ ‖Tnx‖ = ∞ uniformly on SX .

If, in addition, T is invertible, then:

(c) T is expansive ⇔ supn∈Z ‖Tnx‖ = ∞ for every nonzero x ∈ X.
(d) T is uniformly expansive ⇔ SX = A ∪ B where limn→∞ ‖Tnx‖ = ∞ uniformly on A and 

limn→∞ ‖T−nx‖ = ∞ uniformly on B.

Proof. We will only prove item (d). Since the sufficiency of the condition is clear, let us prove its necessity. 
Assume T uniformly expansive and let n ∈ N be as in Definition 2. Let

A = {x ∈ SX : ‖Tnx‖ ≥ 2} and B = {x ∈ SX : ‖T−nx‖ ≥ 2}.

Then, SX = A ∪ B. We claim that Tnx
‖Tnx‖ ∈ A whenever x ∈ A. Indeed, if x ∈ A and y = Tnx

‖Tnx‖ /∈ A, then 
y ∈ B and so ‖T−ny‖ ≥ 2, implying that ‖x‖ ≥ 2‖Tnx‖ ≥ 4, a contradiction. Hence, given x ∈ A, we can 
define inductively a sequence (xk)k∈N in A by putting x1 = x and xk = Tnxk−1

n for k ≥ 2. Clearly,
‖T xk−1‖
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xk = T (k−1)nx

‖Tnx1‖ · . . . · ‖Tnxk−1‖
for all k ∈ N.

Since ‖Tnxk‖ ≥ 2, we obtain ‖T knx‖ ≥ 2‖Tnx1‖ · . . . · ‖Tnxk−1‖ ≥ 2k for all k ∈ N. Let C =
max0≤j≤n−1 ‖T j‖ ≥ 1. For each m ∈ N, we can write m = kmn − jm with unique km ∈ N and 
jm ∈ {0, . . . , n − 1}, and so ‖Tmx‖ ≥ 2km

‖T jm‖ ≥ 2km

C . Since x ∈ A is arbitrary and km → ∞ as m → ∞, we 
conclude that limm→∞ ‖Tmx‖ = ∞ uniformly on A. The proof that limm→∞ ‖T−mx‖ = ∞ uniformly on 
B is analogous. �
Remark 20. The sets A and B in Proposition 19(d) can be chosen to be disjoint or to be both closed in SX

or to be both open in SX .

As we saw in Remark 17, a uniformly expansive operator can be supercyclic. However, this is not the 
case for hyperbolic operators with nontrivial hyperbolic splittings.

Proposition 21. If T is a hyperbolic operator with nontrivial hyperbolic splitting, then T is not supercyclic.

Proof. By hypothesis, the hyperbolic splitting X = Xs⊕Xu, T = Ts⊕Tu, satisfies Xs �= {0} and Xu �= {0}. 
By renorming X we may assume that ‖Ts‖ < 1 and ‖T−1

u ‖ < 1. Each vector x ∈ X has a unique decom-
position x = xs + xu with xs ∈ Xs and xu ∈ Xu. Moreover, by the open mapping theorem, the mapping 
x ∈ X �→ (xs, xu) ∈ Xs × Xu is an isomorphism. Suppose that T admits a supercyclic vector y ∈ X. It 
must be true that ys �= 0 and yu �= 0. Since ‖Tnys‖ → 0 and ‖Tnyu‖ → ∞, there exists n0 ∈ N such that 
‖Tnyu‖ ≥ 2‖Tnys‖ whenever n ≥ n0. On one hand, the set D = {λTny : λ is a scalar and n ≥ n0} is dense 
in X. But on the other hand, each element z = λTny ∈ D has decomposition z = zs + zu = λTnys +λTnyu
satisfying ‖zu‖ ≥ 2‖zs‖, and so D cannot be dense in X. This contradiction proves the proposition. �
Remark 22. Another way to see the last result in the case of complex scalars comes from the fact that if T
is supercyclic, then there exists R ≥ 0 such that each connected component of σ(T ) intersects the (possibly 
degenerate) circle {z ∈ C : |z| = R} (see [3]). This is impossible if T is a hyperbolic operator with nontrivial 
hyperbolic splitting, since the unit circle separates at least two connected components of σ(T ).

Proof of Theorem C. Let us consider the case of a uniformly expansive (necessarily invertible) operator T
on a Banach space X (the case of a uniformly positively expansive (not necessarily invertible) operator is 
simpler). Write SX = A ∪ B as in Proposition 19(d). It was proved in [6, Theorem 5] that T is Li–Yorke 
chaotic if and only if T admits an irregular vector, that is, a vector x ∈ X such that infn∈N ‖Tnx‖ = 0
and supn∈N ‖Tnx‖ = ∞ (hence every hypercyclic operator is Li–Yorke chaotic). Suppose that T is Li–Yorke 

chaotic and let y ∈ SX be an irregular vector for T . We must have Tky
‖Tky‖ ∈ B for all k ∈ N. Indeed, if 

Tky
‖Tky‖ ∈ A for some k ∈ N, then limn→∞

∥∥Tn
(

Tky
‖Tky‖

)∥∥ = ∞, which implies that limn→∞ ‖Tny‖ = ∞ and 
contradicts the fact that y is an irregular vector for T . Since limn→∞ ‖T−nx‖ = ∞ uniformly on B, there 
exists n0 ∈ N such that

‖T−nx‖ ≥ 2 whenever x ∈ B and n ≥ n0. (7)

Since y is an irregular vector for T , we can choose k0 ≥ n0 such that ‖T k0y‖ ≥ 1. Now, by choosing 

n = k0 ≥ n0 and x = Tk0y
‖Tk0y‖ ∈ B in (7), we obtain ‖y‖ ≥ 2‖T k0y‖ ≥ 2. This contradiction proves the 

theorem. �
Proof of Theorem D. It is enough to consider the case of complex scalars. Suppose that there is a point 
λ ∈ σa(T ) ∩ D. Let (xk)k∈N be a sequence in SX such that limk→∞ ‖λxk − Txk‖ = 0. Since
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‖λnxk − Tnxk‖ ≤ |λ|‖λn−1xk − Tn−1xk‖ + ‖Tn−1‖‖λxk − Txk‖,

it follows by induction that

lim
k→∞

‖λnxk − Tnxk‖ = 0 for all n ∈ N.

Since ‖λnxk‖ ≤ 1 for all k, n ∈ N, we conclude from Proposition 19(b) that T is not uniformly positively 
expansive.

Now, assume that ρ(T ) ∩D �= ∅ and σa(T ) ∩D = ∅. Since σa(T ) contains the boundary of σ(T ), we must 
have σ(T ) ∩ D = ∅. Hence,

σ(T−1) = {λ−1 : λ ∈ σ(T )} ⊂ D,

that is, r(T−1) < 1. Choose R ∈ R such that r(T−1) < R < 1. It follows from the spectral radius formula 
that there exists n0 ∈ N such that

‖Tnx‖ ≥ R−n‖x‖ for all x ∈ X and n ≥ n0,

which implies that T is uniformly positively expansive. �
Mazur’s results revisited: Let us now give short direct proofs of the results obtained in [21]. One of them 
characterizes normal expansive operators in terms of their spectral properties (Theorem 23) and the other 
one shows that for invertible normal operators, shadowing is equivalent to hyperbolicity (Corollary 28). We 
finish the present subsection extending the last result to not necessarily invertible normal operators.

Theorem 23. If T is an invertible normal operator on a Hilbert space H, then T is expansive if and only if 
σp(T ∗T ) ∩ T = ∅.

Proof. We may assume complex scalars. Assume σp(T ∗T ) ∩T �= ∅ and let λ be a point in this intersection. 
There exists x ∈ H\{0} such that T ∗Tx = λx. Hence, for every n ∈ Z, ‖Tnx‖2 = 〈(T ∗T )nx, x〉 = λn‖x‖2, 
implying that ‖Tnx‖ = ‖x‖. Thus, T is not expansive.

Conversely, suppose that T is not expansive and consider the positive operator S = T ∗T . There exists 
x ∈ SH with ‖Tnx‖ < 2 for all n ∈ Z. Since T is normal,

‖Snx‖ = ‖(Tn)∗Tnx‖ = ‖T 2nx‖ < 2 for all n ∈ Z.

Let μ be the spectral measure associated to S and x. Since S is an invertible positive operator, σ(S) ⊂ (0, ∞). 
Thus, by the Cauchy–Schwartz inequality,

0 ≤
∫

σ(S)

tndμ(t) = 〈Snx, x〉 ≤ ‖Snx‖‖x‖ < 2 for all n ∈ Z.

For each α < 1 and each β > 1, let Aα = σ(S) ∩ (0, α] and Bβ = σ(S) ∩ [β, ∞). Since

α−nμ(Aα) ≤
∫

σ(S)

t−ndμ(t) < 2 and βnμ(Bβ) ≤
∫

σ(S)

tndμ(t) < 2,

for all n ∈ N, we conclude that μ(Aα) = μ(Bβ) = 0. This implies that σ(S)\{1} has μ-measure zero. 
Therefore,
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‖Sx− x‖2 = 〈(S − I)2x, x〉 =
∫

σ(S)

(t− 1)2dμ(t) = 0,

and so 1 ∈ σp(S). �
Remark 24. Recall that a Hilbert space operator T is said to be hyponormal if

‖T ∗x‖ ≤ ‖Tx‖ for all x.

It is natural to ask if the previous theorem can be generalized to hyponormal operators. We shall prove in 
the next section that the implication

σp(T ∗T ) ∩ T = ∅ =⇒ T expansive

holds for hyponormal weighted shifts (Proposition 40), but it is not true in general, and that the converse 
may fail even for hyponormal weighted shifts (Remark 41).

Remark 25. Let T be a normal operator on a complex Hilbert space H. In view of the previous theorem, it is 
natural to make the following question: Is it true that T is positively expansive if and only if σp(T ∗T ) ∩D = ∅?

The direct implication is true, since T ∗Tx = λx, with λ ∈ D and x �= 0, implies that ‖Tnx‖2 =
〈(T ∗T )nx, x〉 = λn‖x‖2 ≤ ‖x‖2 (n ∈ N), and so T is not positively expansive.

However, the converse is not true in general, even if T is invertible. Indeed, let T : L2[0, 1] → L2[0, 1] be 
defined by

(Tf)(t) = t + 1
2 f(t) for all f ∈ L2[0, 1].

Then T is invertible, self-adjoint, not positively expansive, and σp(T ∗T ) = ∅.

Nevertheless, we have the following characterization.

Proposition 26. Let T be a normal operator on a complex Hilbert space H. Then, T is positively expansive 
if and only if μ(σ(T ∗T ) ∩ (1, ∞)) > 0 for every spectral measure μ associated to T ∗T .

Proof. Let S = T ∗T . If T is not positively expansive, there is x ∈ SH such that ‖Tnx‖ < 2 for all n ∈ N. 
By letting μ be the spectral measure associated to S and x, we obtain

0 ≤
∫

σ(S)

tndμ(t) = 〈Snx, x〉 < 2 for all n ∈ N,

which implies that μ(σ(S) ∩ (1, ∞)) = 0. Conversely, suppose that for some x �= 0, the spectral measure μ
associated to S and x satisfies μ(σ(S) ∩ (1, ∞)) = 0. Then,

‖T 2nx‖2 = ‖Snx‖2 = 〈S2nx, x〉 =
∫

σ(S)

t2ndμ(t) ≤ ‖x‖2 for all n ∈ N,

implying that T is not positively expansive. �
We say that a sequence (tn)n∈Z of scalars is O(|n|) if there exist α > 0, β > 0 and n0 ∈ N such that 

α|n| ≤ |tn| ≤ β|n| whenever |n| ≥ n0.
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Let us now establish a result which will imply a much simpler and shorter proof of the main result in [21]
(see Corollary 28).

Theorem 27. Let T be an invertible operator on a Banach space X such that for all z ∈ X, the sequence 
(‖Tnz‖)n∈Z is not O(|n|). If T has the shadowing property, then T is uniformly expansive.

Proof. Suppose that T has the shadowing property and let δ > 0 be the constant that appears in the 
definition of shadowing associated to ε = 1. Assume that T is not uniformly expansive. Then, by [19, 
Theorem 1], the intersection σa(T ) ∩T is nonempty. Take a scalar λ in this intersection. Hence, there exists 
x0 ∈ SX such that ‖λx0−Tx0‖ < δ/2. For each n ∈ Z, let yn = 2λnx0. Then (yn)n∈Z is a δ-pseudotrajectory 
of T , and so there exists y ∈ X such that ‖yn − Tny‖ < 1 for all n ∈ Z. Therefore, 1 < ‖Tny‖ < 3 for 
all n ∈ Z. Now, let (zn)n∈Z be defined by zn = nδ

3 Tny. Since (zn)n∈Z is a δ-pseudotrajectory of T , there 

exists z ∈ X such that ‖zn − Tnz‖ < 1 for all n ∈ Z. Thus, |n|δ3 − 1 < ‖Tnz‖ < |n|δ + 1 for all n ∈ Z. This 
contradicts the fact that (‖Tnz‖)n∈Z is not O(|n|). �
Corollary 28. If T is an invertible normal operator on a Hilbert space H, then T has the shadowing property 
if and only if T is hyperbolic.

Proof. Suppose that T has the shadowing property but is not hyperbolic. Since T is normal, σ(T ) = σa(T ), 
and so T is not uniformly expansive. Hence, by Theorem 27, there exists z ∈ H such that (‖Tnz‖)n∈Z is 
O(|n|). Let α > 0, β > 0 and n0 ∈ N be such that

α|n| ≤ ‖Tnz‖ ≤ β|n| whenever |n| ≥ n0. (8)

Consider the invertible positive operator S = T ∗T and let μ be the spectral measure associated to S and z. 
Then,

0 ≤
∫

σ(S)

tndμ(t) = 〈Snz, z〉 = ‖Tnz‖2 ≤ β2|n|2 whenever |n| ≥ n0.

By arguing as in the proof of Theorem 23 (with the sets Aα and Bβ), we see that σ(S)\{1} has μ-measure 
zero and so Sz = z. This implies that ‖Tnz‖ = ‖z‖ for all n ∈ Z, which contradicts the first inequality 
in (8). �
Remark 29. The thesis of Theorem 27 can be also obtained replacing the hypothesis about the norm growth 
on the sequences of iterates by expansiveness. In fact, if T is not uniformly expansive, arguing as in the 
proof of Theorem 27, one obtains a vector y ∈ X such that 1 < ‖Tny‖ < 3 for all n ∈ Z, contradicting the 
hypothesis that T is expansive.

Theorem 30. If T is a (not necessarily invertible) normal operator on a Hilbert space H, then T has the 
positive shadowing property if and only if T is hyperbolic.

Proof. Suppose that T has the positive shadowing property. Assume that T is not hyperbolic and argue as 
in the proof of Theorem 27 to obtain a vector z ∈ H such that

nδ

3 − 1 < ‖Tnz‖ < nδ + 1 for all n ∈ N0. (9)

Let S = T ∗T and let μ be the spectral measure associated to S and z. Since
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0 ≤
∫

σ(S)

tndμ(t) = 〈Snz, z〉 = ‖Tnz‖2 ≤ (nδ + 1)2 for all n ∈ N0,

it follows that σ(S) ∩ (1, ∞) has μ-measure zero. Hence, ‖Tnz‖ ≤ (μ(σ(S))) 1
2 for all n ∈ N0, which contra-

dicts (9). �
5. Expansive weighted shifts

In this section we obtain complete characterizations of the notions of expansivity for weighted shifts by 
looking at their weights.

Theorem E. Let X = �p(Z) (1 ≤ p < ∞) or X = c0(Z), and consider a weight sequence w = (wn)n∈Z with 
infn∈Z |wn| > 0.

(1) The following assertions are equivalent:
(i) Fw : X → X is expansive;
(ii) (a) Fw : X → X or

(b) F−1
w : X → X is positively expansive;

(iii) (a) sup
n∈N

|w1 · . . . · wn| = ∞ or

(b) sup
n∈N

|w−n · . . . · w−1|−1 = ∞.

(2) The following assertions are equivalent:
(i) Fw : X → X is uniformly expansive;
(ii) One of the following conditions holds:

(a) lim
n→∞

(
inf
k∈Z

|wk · . . . · wk+n−1|
)

= ∞,

(b) lim
n→∞

(
inf
k∈Z

|wk−n · . . . · wk−1|−1) = ∞,

(c) lim
n→∞

(
inf
k∈N

|wk · . . . · wk+n−1|
)

= ∞ and lim
n→∞

(
inf

k∈−N

|wk−n · . . . · wk−1|−1) = ∞.

Before proving the above theorem we state a lemma.

Lemma 31. Given a nontrivial partition {I, J} of Z (that is, I ∪ J = Z, I ∩ J = ∅, I �= ∅ and J �= ∅) such 
that there is a map ϕ : Z → [0, ∞) satisfying

lim
n→∞

[
inf
k∈I

(
ϕ(k) · . . . · ϕ(k + n− 1)

)]
> 1 and lim

n→∞

[
sup
k∈J

(
ϕ(k − n) · . . . · ϕ(k − 1)

)]
< 1,

then there exist i, j ∈ Z such that (−∞, j] ∩ Z ⊂ J and [i, ∞) ∩ Z ⊂ I.

Proof. By hypothesis, there exists n0 ∈ N such that ϕ(k) · . . . · ϕ(k + n − 1) > 1 for all k ∈ I, and 
ϕ(k − n) · . . . · ϕ(k − 1) < 1 for all k ∈ J , whenever n ≥ n0. We claim that

k ∈ I ⇒ k + n ∈ I for all n ≥ n0. (10)

Indeed, suppose that k ∈ I but k + n ∈ J for a certain n ≥ n0. Then,

ϕ(k) · . . . · ϕ(k + n− 1) = ϕ((k + n) − n) · . . . · ϕ((k + n) − 1)

is simultaneously > 1 and < 1, because k ∈ I, k + n ∈ J and n ≥ n0. This contradiction proves (10). 
Analogously, we have that
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k ∈ J ⇒ k − n ∈ J for all n ≥ n0. (11)

Since I �= ∅ and J �= ∅, it is clear that (10) and (11) imply the existence of i, j ∈ Z with the desired 
properties. �
Proof of Theorem E. Let ej , j ∈ Z, denote the canonical unit vectors in X.

(1): If Fw is expansive, then Proposition 19(c) implies that

sup
n∈N

‖Fn
w(e1)‖ = ∞ or sup

n∈N

‖F−n
w (e1)‖ = ∞.

The first equality means that supn∈N |w1 · . . . ·wn| = ∞, whereas the second one means that supn∈N |w−n+1 ·
. . .·w0|−1 = ∞, which is clearly equivalent to supn∈N |w−n ·. . .·w−1|−1 = ∞. This shows that (i) implies (iii). 
Now, assume that supn∈N |w1 · . . . ·wn| = ∞. Let x = (xj)j∈Z be any nonzero vector in X and choose k ∈ Z

such that xk �= 0. Then,

sup
n∈N

‖Fn
w(x)‖ ≥

|xk|
∏0

j=k |wj |∏k−1
j=1 |wj |

sup
n∈N

|w1 · . . . · wk+n−1| = ∞,

where a product over an empty set of indices has value 1, by definition. Hence, by Proposition 19(a), Fw is 
positively expansive. Analogously, supn∈N |w−n · . . . ·w−1|−1 = ∞ implies that F−1

w is positively expansive. 
Thus, (iii) implies (ii). Finally, it is trivial that (ii) implies (i).

(2): Suppose that Fw is uniformly expansive. By Proposition 19(d), there is a partition {A, B} of SX

such that limn→∞ cn = ∞ and limn→∞ dn = ∞, where

cn = inf
x∈A

‖Fn
w(x)‖ and dn = inf

x∈B
‖F−n

w (x)‖ (n ∈ N).

We remark that an infimum over an empty set of indices has value ∞, by definition. Let

I = {k ∈ Z : ek ∈ A} and J = {k ∈ Z : ek ∈ B}.

Then {I, J} is a partition of Z. Since, for all n ∈ N,

inf
k∈I

|wk · . . . · wk+n−1| ≥ cn and inf
k∈J

|wk−n · . . . · wk−1|−1 ≥ dn,

we conclude that

lim
n→∞

(
inf
k∈I

|wk · . . . · wk+n−1|
)

= ∞ and lim
n→∞

(
inf
k∈J

|wk−n · . . . · wk−1|−1) = ∞. (12)

Thus, J = ∅ gives the first possibility in (ii) while I = ∅ gives the second one. Assume that I �= ∅ and J �= ∅. 
By Lemma 31, there exist i, j ∈ Z such that

(−∞, j] ∩ Z ⊂ J and [i,∞) ∩ Z ⊂ I. (13)

Since wk �= 0 for all k ∈ Z, (12) and (13) imply the third possibility in (ii).
Conversely, assume that (ii) holds. Let I = Z and J = ∅, or I = ∅ and J = Z, or I = N and J = −N0, 

depending on whether the first, the second, or the third possibility in (ii) holds, respectively. Then, in any 
case, (12) holds. Let n ∈ N be such that

inf |wk · . . . · wk+n−1| ≥ 4 and inf |wk−n · . . . · wk−1|−1 ≥ 4.

k∈I k∈J
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Given x = (xk)k∈Z ∈ SX , we can write x = a +b where a = (ak)k∈Z and b = (bk)k∈Z satisfy ak = 0 whenever 
k ∈ J and bk = 0 whenever k ∈ I. Since 1 = ‖x‖ ≤ ‖a‖ + ‖b‖, we have that ‖a‖ ≥ 1

2 or ‖b‖ ≥ 1
2 . If ‖a‖ ≥ 1

2
then

‖Fn
w(x)‖ ≥ ‖Fn

w(a)‖ =
∥∥((wk · . . . · wk+n−1)ak

)
k∈Z

∥∥ ≥ 4‖a‖ ≥ 2,

and if ‖b‖ ≥ 1
2 then

‖F−n
w (x)‖ ≥ ‖F−n

w (b)‖ =
∥∥((wk−n · . . . · wk−1)−1bk

)
k∈Z

∥∥ ≥ 4‖b‖ ≥ 2.

Hence, by definition, Fw is uniformly expansive. �
Remark 32. In Theorem E, note that (1.ii.a) is equivalent to (1.iii.a), and (1.ii.b) is equivalent to (1.iii.b). In 
particular, a similar formulation of the theorem characterizes the positively expansive weighted shifts, even 
in the case where the underlying space is N. Similarly, uniform positive expansivity is equivalent to (2.ii.a) 
and it is also equivalent to a similar condition where the limit is replaced by the supremum. However, the 
possibility (2.ii.c) can indeed happen, as can be seen by choosing w = (. . . , 12 , 

1
2 , 

1
2 , 2, 2, 2, . . .). This shows 

that Fw can be uniformly expansive without Fw or F−1
w being uniformly positively expansive, in contrast 

to what happens in the case of expansivity. It is clear that a unilateral weighted backward shift cannot 
be positively expansive, but positively expansive bilateral weighted backward shifts are characterized by 
sup
n∈N

|w−n · . . . · w−1| = ∞ and wj �= 0 for all j ≥ 0. In the uniform case, the characterization is given by 

sup
n∈N

(
inf
k∈Z

|wk−n+1 · . . . · wk|
)

= ∞ and similarly replacing the supremum by the limit.

Remark 33. If T is an invertible operator on a Banach space X, it is clear that

T or T−1 positively expansive ⇒ T expansive.

We saw in Theorem E(a) that the converse holds for the operators Fw on the spaces �p(Z) (1 ≤ p < ∞) or 
c0(Z). Of course, the converse is not true in general. For instance, if T is any invertible hyperbolic operator 
with nontrivial hyperbolic splitting, then T is uniformly expansive, but neither T nor T−1 is positively 
expansive.

Let us now see an example of an invertible operator on the Hilbert space �2(Z) which is positively 
expansive and hypercyclic.

Example 34. Fix a real number t > 1 and consider the weight sequence w = (wn)n∈Z given by wn = t for 
all n ≥ 0, and

(w−1, w−2, w−3, . . .) = (t, 1
t
,
1
t
, t, t, t, t,

1
t
, . . . ,

1
t
, t, . . . , t, . . .),

where the successive blocks of t’s and 1
t ’s have lengths 20, 21, 22, . . . . Let

mk = 20 + 21 + · · · + 22k−1 and nk = 20 + 21 + · · · + 22k (k ∈ N).

A simple induction argument shows that w−mk
· . . . · w−1 ≤ 1

tk
and w−nk

· . . . · w−1 ≥ tk for all k ∈ N. 
In particular, supn∈N(w−n · . . . · w−1) = ∞. Hence, the bilateral weighted backward shift Bw : �2(Z) →
�2(Z) is positively expansive. Since infn∈Z wn > 0, Bw is invertible. Hence, Bw is also expansive. By [3, 
Corollary 1.39], Bw is hypercyclic if and only if, for any q ∈ N,
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lim inf
n→∞

max
{
(w1 · . . . · wn+q)−1, (w0 · . . . · w−n+q+1)

}
= 0.

But this condition follows from the fact that

max
{
(w1 · . . . · w(mk+q+1)+q)−1, (w0 · . . . · w−(mk+q+1)+q+1)

}
≤ 1

tk−1 for all k ∈ N.

Thus, the operator Bw is also hypercyclic.

Remark 35.

(a) Let X = �p(Z) (1 ≤ p < ∞) or X = c0(Z), and consider a weight sequence w = (wn)n∈Z with 
infn∈Z |wn| > 0. It is known (see [11]) that the spectrum of the invertible bilateral weighted forward 
shift Fw : X → X is the annulus {λ ∈ C : 1

r(F−1
w ) ≤ |λ| ≤ r(Fw)}. Since ‖Fn

w‖ = supk∈Z |wk · . . . ·wk+n−1|
and ‖F−n

w ‖ = supk∈Z |wk · . . . · wk+n−1|−1, we deduce that the following assertions are equivalent:
(i) Fw is hyperbolic;
(ii) σ(Fw) ⊂ D or σ(F−1

w ) ⊂ D;
(iii) lim

n→∞
sup
k∈Z

|wk · . . . · wk+n−1|
1
n < 1 or lim

n→∞
sup
k∈Z

|wk · . . . · wk+n−1|−
1
n < 1.

(b) Let A = N or A = Z, let X = �p(A) (1 ≤ p < ∞) or X = c0(A), and consider a weight sequence 
w = (wn)n∈A. Let T be either the weighted forward shift Fw : X → X or the weighted backward shift 
Bw : X → X. Assume that T is not invertible (this is automatically the case if A = N). Since σ(T ) is 
equal to the disc {λ ∈ C : |λ| ≤ r(T )} (see [11]), we deduce that the following assertions are equivalent:
(i) T is hyperbolic;
(ii) σ(T ) ⊂ D;
(iii) lim

n→∞
sup
k∈A

|wk · . . . · wk+n−1|
1
n < 1.

Remark 36. The study of expansiveness for invertible bilateral weighted backward shifts can be reduced to 
the corresponding case of forward shifts (see Theorem E and Remark 35(a)).

Remark 37.

(a) As mentioned before, it was proved in [16] that every invertible hyperbolic operator is uniformly expan-
sive. Examples of uniformly expansive nonhyperbolic operators were also obtained in [16]. We observe 
that such examples can be easily obtained by using the characterizations given in Theorem E(2) and 
Remark 35(a).

(b) In the case of noninvertible operators, we observe that there is no relation between hyperbolicity and 
uniform positive expansivity in general. For instance, it follows from Remarks 32 and 35(b) that in the 
class of unilateral weighted forward shifts on �p(N) (1 ≤ p < ∞) or on c0(N), the set of hyperbolic shifts 
is disjoint from the set of positively expansive shifts.

Let us now see a concrete example of an invertible operator on the Hilbert space �2(Z) which is uniformly 
positively expansive and supercyclic.

Example 38. Fix real numbers α > β > 1 and consider the weight sequence

w = (wn)n∈Z = (. . . , β, β, β, α, α, α, . . .),

where the first α appears at position 1. Consider the bilateral weighted backward shift Bw : �2(Z) → �2(Z). 
Since ‖Bw(x)‖ ≥ β‖x‖ for all x ∈ �2(Z), Bw is uniformly positively expansive. Since Bw is invertible, 
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Bw is also uniformly expansive. By [3, Corollary 1], Bw is supercyclic if and only if, for any q ∈ N, 
lim infn→∞

w0·...·w−n+q+1
w1·...·wn+q

= 0. But, by our choice of w,

lim inf
n→∞

w0 · . . . · w−n+q+1

w1 · . . . · wn+q
= lim

n→∞
βn−q

αn+q
= 1

αqβq
lim
n→∞

(β
α

)n = 0.

Thus, the operator Bw is also supercyclic.

We saw in Theorem B that an invertible bilateral weighted shift can have the shadowing property without 
being expansive. The next result presents an additional condition which guarantees expansivity.

Proposition 39. Let X = �p(Z) (1 ≤ p < ∞) or X = c0(Z), and consider a weight sequence w = (wn)n∈Z

with infn∈Z |wn| > 0. If Fw : X → X has the shadowing property and the sequence (nFn
w(e0))n∈Z is not 

bounded, then Fw is uniformly expansive.

Proof. By Proposition 29, it is enough to prove that Fw is expansive. Assume that this is not the case. 
Then, by Theorem E(1),

sup
n∈N

|w1 · . . . · wn| < ∞ and sup
n∈N

|w−n · . . . · w−1|−1 < ∞.

Thus, the sequence (zn)n∈Z given by zn = Fn+1
w (e0) (n ∈ Z) is bounded. Since Fw has the shadowing 

property, Lemma 10 guarantees the existence of a bounded sequence (yn)n∈Z in X such that yn+1 =
Fw(yn) + zn for all n ∈ Z. For each n ∈ N, note that

yn = Fn
w(y0) + Fn−1

w (z0) + · · · + Fw(zn−2) + zn−1 = Fn
w(y0) + nFn

w(e0),
y−n = F−n

w (y0) − F−n
w (z−1) − F−n+1

w (z−2) − . . .− F−1
w (z−n) = F−n

w (y0) − nF−n
w (e0).

Write y0 = (an)n∈Z. Then

‖yn‖ ≥ |a0 + n||w0 · . . . · wn−1| and ‖y−n‖ ≥ |a0 − n||w−n · . . . · w−1|−1,

for every n ∈ N. Since we are assuming that the sequence (nFn
w(e0))n∈Z is not bounded, these estimates 

imply that the sequence (yn)n∈Z is not bounded, a contradiction. �
Proposition 40. Let w = (wn)n∈Z be a weight sequence with infn∈Z |wn| > 0. Assume that Fw : �2(Z) → �2(Z)
is hyponormal. If σp(F ∗

wFw) ∩ T = ∅, then Fw is expansive.

Proof. Since Fw(en) = wnen+1 and F ∗
w(en) = wn−1en, F ∗

wFw(en) = |wn|2en, implying that

σp(F ∗
wFw) ∩ T = ∅ ⇐⇒ |wn| �= 1 for all n ∈ Z. (14)

Since Fw is hyponormal, it is well-known that the sequence (|wn|)n∈Z is increasing. Therefore, supn∈N |w1 ·
. . . · wn| = ∞ if |w0| > 1, while supn∈N |w−n · . . . · w−1|−1 = ∞ if |w0| < 1. Anyway, it follows from 
Theorem E(1) that Fw is expansive. �
Remark 41.

(a) We cannot remove the hyponormality hypothesis in Proposition 40. To see this, it is enough to choose 
w so that |wn| �= 1 for all n ∈ Z, supn∈N |w1 · . . . · wn| < ∞ and supn∈N |w−n · . . . · w−1|−1 < ∞. Then, 
σp(F ∗

wFw) ∩ T = ∅ (by (14)), but Fw is not expansive (by Theorem E(1)).
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(b) The converse of the conclusion of Proposition 40 is not true in general. For instance, if w =
(. . . , 12 , 

1
2 , 

1
2 , 1, 2, 2, 2, . . .) then Fw is hyponormal and uniformly expansive, but σp(F ∗

wFw) ∩ T �= ∅.
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