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RESUMO 

O estudo da fenologia vegetal busca monitorar, compreender e prever os ciclos de vida 

recorrentes das plantas, principalmente influenciados pelo clima. O monitoramento das fenofases 

vegetativas de brotamento e senescência foliar são essências para a compreensão de processos 

ecossistêmicos importantes como, a produtividade primária, as trocas de energia entre atmosfera e 

superfície terrestre, o fluxo de carbono, e a ciclagem de nutrientes. Logo, entender a resposta das 

plantas ao clima e ser capaz de prever alterações em sua fenologia, é essencial para o entendimento 

das dinâmicas de comunidades vegetais e da funcionalidade dos ecossistemas em frente a cenários de 

mudanças climáticas. Nos últimos anos, a busca por novas tecnologias dentro de estudos científicos 

vem crescendo com o intuito de tornar mais viável e amplo o monitoramento fenológico. Neste 

trabalho, buscamos incorporar novas tecnologias de observações fenológicas com o uso de câmeras 

digitais (fenocâmeras) instaladas em campo para o monitoramento de dados fenológicos de 

brotamento e senescência foliar em ambientes tropicais. Os objetivos gerais deste trabalho de tese, 

dividida em quatro seções, foram de : (i) compilar informações sobre conceitos e propriedades da 

técnica de fotografias repetidas (repeated photograph technic), criando um protocolo para o uso de 

câmeras digitais nos trópicos e levantar suas principais contribuições no âmbito na biologia da 

conservação; (ii) monitorar e descrever os padrões da fenologia vegetativa em diferentes comunidades 

vegetais sazonais, através dos dados obtidos de imagens digitais  e investigar os principais gatilhos 

ambientais atuando nas diferentes vegetações; (iii) associar dados de fenologia foliar juntamente com 

dados de produtividade primária bruta dentro de ecossistemas sob diferentes pressões de sazonalidade 

para um melhor entendimento das respostas entre vegetação-atmosfera mediadas pela fenologia foliar; 

e (iv) apresentar resultados das principais iniciativas em análises de imagens digitais para o 

monitoramento da fenologia foliar desenvolvidas dentro da rede de fenocâmeras do projeto e-

phenology, no âmbito da colaboração e-science. As vegetações estudadas neste trabalho estão 

distribuídas ao longo de um gradiente de sazonalidade de distribuição de chuvas e incluem: uma 

vegetação de caatinga; três diferentes fisionomias de cerrado que correspondem a um cerrado campo 

sujo, um cerrado sensu stricto, e um cerrado denso; e uma vegetação de Mata Atlântica. Séries 

temporais relacionadas às fenofases vegetativas foram extraídas do conjunto de imagens digitais 

coletadas em cada uma das áreas e analisadas dentro do contexto de cada um dos objetivos deste 

trabalho. Demonstramos que o estabelecimento de uma rede de fenocâmeras é uma poderosa 

ferramenta para a biologia da conservação, através da capacidade de obtermos dados de alta 

frequência temporal associados a uma ampla gama de dados ambientais monitorados. Através da 

aplicação de fenocâmeras pode-se obter novas informações sobre prática de manejo e restauração de 

ambientes, além de sua potencial contribuição nas esferas de educação ambiental e ciência cidadã. 

Observamos que a disponibilidade de água e luz no ambiente são os fatores mais importantes para o 

desenvolvimento foliar ao longo de diferentes comunidades sazonais. Relações hídricas em plantas 



 

foram mais importantes para vegetações mais áridas, como a caatinga, enquanto que a disponibilidade 

de luz, quantificada através da sazonalidade do comprimento do dia, teve maior influência no gatilho 

do desenvolvimento foliar nas comunidades de cerrado. No âmbito dos ecossistemas, demonstrou-se 

uma nova abordagem ao se relacionar a fenologia foliar derivada de câmeras com a produtividade de 

ecossistemas tropicais. A dinâmica fenológica analisada através da variabilidade de sinais fenológicos 

encontrados dentro das diferentes vegetações, foram importantes para explicar os padrões temporais 

de produtividade dos ecossistemas. A compilação de trabalhos realizados através da colaboração e-

science, apresentados na seção 4, foram de grande importância para o desenvolvimento dos métodos e 

análises, bem como para o alcance dos resultados obtidos dentro desta tese. Este trabalho oferece uma 

nova ferramenta para o monitoramento fenológico em vegetações tropicais, e sugere novos desafios a 

serem desenvolvidos bem como incentiva uma maior abrangência no uso de fenocâmeras a fim de 

cobrir um maior número de áreas e diferentes tipos de vegetação, além de associar estes estudos com 

abordagens desenvolvidas em diferentes escalas como as observações diretas, a aplicação de imagens 

de drones, bem como com as imagens de satélite. A comparação de diferentes escalas espaciais e 

temporais irá nos ajudar a entender melhor a própria escala de informações provenientes das 

fenocâmeras em termos de abrangência e detalhamento dos ecossistemas. 

Palavras-chave: fenocâmeras, sazonalidade, fenologia vegetativa, produtividade do ecossistema, 

imagens digitais



ABSTRACT 

Plant phenology is a traditional science focused on monitoring, understanding, and predicting 

recurrent life cycles events, which are mainly related to climate Leaf development stages are essential 

plant phenophases for the better understanding of ecosystems processes such as carbon and water 

fluxes, regulation of productivity, and nutrient cycling. Through the investigation of plant responses 

to climate and phenological shifts prediction, we can better forecast climatic change effects on 

vegetation dynamics and prevent loss of ecosystems functionalities. Aiming to become the 

phenological collection wider and more feasible worldwide, the seek for new technologies has 

stimulated several research centers of plant phenology monitoring. Here, we incorporated a new 

technology of field phenological observations using digital cameras for the monitoring of leaf 

exchanges in tropical vegetations. On this work, divided into four sections, we aimed to: (i) compile 

information about concepts and properties of the repeated photograph technic, create guidelines for 

the phenocams setup in tropical vegetation sites, and to provide key contributions of daily imagery 

monitoring on biological conservation; (ii) to stablish a monitoring of different seasonal vegetations, 

describing the phenological trends, and identify the environmental cues which are triggering the leaf 

flushing and senescence for each vegetation type; (iii) analyze the canopy greenness obtained from 

digital cameras in relation to gross primary productivity measurements, to better understand the role 

of leaf phenology controlling ecosystem productivity in the tropics; and (iv) present some results of 

phenocam image analysis research initiatives and tools devised in the context of e-Science 

collaborations and built in the framework of the e-phenology project and the e-phenology network of 

phenocams. The selected study sites belong to different seasonal biomes, which comprehends areas 

from caatinga, savanna grasslands, savanna woodlands and Atlantic rainforest. Temporal series 

representing foliar phenology were extracted from the data imagery of each vegetation site and were 

analyzed into the context of each section of this work. We demonstrated that the establishment of 

phenocam networking is a powerful tool for biological conservation through its capability of fine 

temporal resolution data associated with wide spatial monitoring coverage. Besides, phenocams 

applications can bring new information for management and restoration practices at several sites and 

environments and contribute for the education for conservation and citizen science initiatives. We 

observed that water and light were the most important predictors for the leaf phenological patterns 

across seasonal vegetation communities. Water-plant relationships were more important for the 

caatinga community, and light, through day-length seasonality, had more influence in the leafing 

patterns of the cerrado communities. Regarding the ecosystem, we demonstrated a novel approach to 

relate leaf phenology to seasonality of tropical ecosystems productivity. The phenological dynamics 

regarding the variability of species phenological signals, and how they are built in into each 

contrasting vegetation communities explains drivers of leaf phenology and productivity. A 

compilation of articles developed through the e-science collaboration, presented in Section 4, were of 



 

great importance for the generation of methods and analytical work, as well as for the results 

achievements in this thesis. This work will offer a new tool for the phenological monitoring in the 

tropics, and suggests next challenges to be addressed and the continuity of the e-phenology network 

and the spread of new cameras covering new vegetation types; the development of bottom-up studies, 

integrating on-the-ground observations, cameras, drones, and satellites, inter-comparing them and 

placing camera-derived phenology in its own scale, by understanding how much and what kind of 

information can be retrieved from ecosystems.  

Key words: phenocameras, seasonality, leaf phenology, ecosystem productivity, digital images 
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1 INTRODUCTION 

Plant phenology is a traditional science focused on monitoring, understanding, and predicting 

recurrent life cycles events, which are mainly related to climate (Morellato et al., 2016). Leaf 

development stages are plant phenophases responsible for indicating the growth season and for 

controlling crucial ecosystems processes such as carbon and water fluxes, regulation of productivity, 

and nutrient cycling (Reich, 1995; Baldocchi et al., 2005). Tropical ecosystems have significant 

importance in the global carbon budget (Field et al., 1998; Ometto et al., 2005). By understanding 

phenological patterns of tropical vegetations and what drives leaf production seasonality within tropical 

communities, we can better forecast climatic change effects on vegetation dynamics and prevent loss 

of ecosystems functionalities (Polgar and Primack, 2011).  

Phenological studies in the tropics preclude the observation of many species across several sites 

with intense human labor and costs (Alberton et al., 2014; Morellato et al., 2016). The scarcity of long-

term monitoring in tropical regions, necessary to understand the effects of global warming on organisms 

(Abernethy et al., 2018) has stimulated several research centers to seek for new tools of plant phenology 

monitoring. The near-surface remote phenology consists in the application of sensors in the ground for 

the monitoring of plant to ecosystem-scale vegetation changes. The use of digital cameras to track leaf 

exchanges came to fill the gap between the traditional on-the-ground monitoring by human direct 

observation and remote sensing derived land surface phenology (Richardson et al., 2007; Morisette et 

al., 2009; Morellato et al., 2016).   

The technique of repeated photographs using digital cameras for phenology monitoring, or 

phenocams, has increased in the last 10 years due its advantages of low cost investment, reduction in 

size, easy set-up installation, the reduced human labor, increased temporal resolution, and the 

opportunity of simultaneously monitoring several sites improving the spatial resolution of ground-based 

phenology monitoring and offering the possibility of handling high resolution data (Crimmins and 

Crimmins, 2008, Morisette et al., 2009; Graham et al., 2010; Alberton et al., 2017), leading phenocams 

to a widely range of ecological applications worldwide. 

The ongoing addition of new devices, high-resolution data survey, and sensor networks has 

been improving the quality of data collected in biological studies, but at the same time increasing the 
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magnitude of scientific data collected. Near-surface monitoring systems in the tropics, for instance, are 

necessarily complex since the environmental conditions are harsh and the diversity of species is usually 

high. This leads to a next generation of scientific problems, which will require the establishment of 

multidisciplinary teams (Hey and Hey 2006). To the process of data retrieval, management, and analysis 

it will be required the collaboration between ecologists and computer scientists. e-Science is about the 

collaboration of key areas of science, not considered a discipline, but a network of research initiative 

focused on the specification and implementation of a set of tools and technologies capable of 

supporting, improving, and speeding up data analysis, knowledge discovery, and decision making (Hey 

and Hey 2006).  

In Brazil, we have the e-phenology Network (http://www.recod.ic.unicamp.br/ephenology - As 

of June 2018), introduced in this thesis, that comprehends the application of digital cameras as tools to 

detect leaf flushing and senescence across different vegetation types from drylands, grasslands, and 

cerrado savannas to rainforests. This project is innovative and puts Brazil in the state of the art of near-

remote phenology monitoring, already established in areas of temperate forests in northern hemisphere. 

The e-phenology project also integrates the development of computational tools for the methodological 

applications of algorithms for data mining and time series analysis (e.g., Almeida et al., 2014; Almeida 

et al., 2016).  

In this context, the present thesis is divided into four sections that all together, aim to present 

the development of phenocams tools in tropical systems, their application in ecological studies and the 

integration of e-science insights on peripherical approaches that contributed for this work. Sections are 

described below. 

 

Section 1 - Introducing digital cameras to monitor plant phenology in the tropics: applications 

for conservation 

Digital-camera-based monitoring phenology is growing in the tropics (e.g., Alberton et al., 

2014; Nagai et al., 2016; Moore et al., 2017; Lopes et al., 2017), but it is still sparse when compared 

with temperate regions (Brown et al., 2017). Protocols and methodological approaches developed for 

camera systems were launched from networks researchers of these regions. We aimed to spread our 

http://www.recod.ic.unicamp.br/ephenology
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experience of using digital cameras to monitor tropical vegetations across multiple sites to encourage, 

among the scientific community of Brazil and tropics worldwide, their potential usability in a broader 

ecological context.  

This section brings a published article with compiled information about concepts and properties 

of the technic, guidelines for the phenocams setup in tropical vegetation sites, and to provide key 

contributions of daily imagery monitoring on biological conservation (Alberton et al., 2017).  

 

Section 2 - Leafing patterns and drivers across seasonally dry tropical communities 

Investigating the main drivers of plant phenology is of paramount importance for a better 

understanding of plant shifts in response to a changing climate and for effective biodiversity 

conservation from species to ecosystems (Polgar and Primack, 2011; Morellato et al., 2016). As already 

mentioned, plant phenology remains poorly understood for the tropics, and so the triggers of 

phenological transitions (Morellato et al., 2013; Chambers et al., 2013; Abernethy et al., 2018).  

The traditional phenology monitoring, made by direct observations, provides confident data 

from individuals species to vegetation communities that contribute with pattern validation for remote-

monitoring methods such as phenocameras and satellite images. Despite the coarse time-scale of 

observations (monthly), long-term on-the-ground phenology may be used for the investigation of leaf 

development drivers and further analysis of climatic changes impacts. A study using a 7-year on-the-

ground phenological time series, compiled with leaf flushing and senescence monthly data, aimed to 

investigate the main environmental drivers of a cerrado sensu stricto community and their leaf exchange 

strategies species. This work, which I co-authored, was conducted in one of the sites, where an e-

phenology camera was installed and was carried out in parallel along this thesis development (Appendix 

A).  

By tracking daily images combined with environmental measurements, we can fine-tune plant 

color changes to leafing exchange patterns and unravel the influence of climatic variables. A wide range 

of questions might be investigated. In this section, we conducted, for the first time, a phenological 

research across multiple-sites monitoring leafing exchange patterns using phenocams. We aimed to 
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describe the leaf phenological patterns across seasonally dry tropical communities monitored by digital 

cameras, investigating the main environmental factors influencing the timing and length of growing 

seasons, and intercompare vegetations under distinct severity of dry season and across key life forms 

(grassy – woody), regarding their phenological dynamics and drivers of leaf phenology.  

 

Section 3 - Leaf phenology correlates to gross primary productivity: an inter-comparison across 

tropical Biomes.  

Tropical leaf phenology is regarded as a first order mechanism regulating seasonality of carbon 

assimilation in tropical evergreen forests (Restrepo-Coupe et al., 2013; Restrepo-Coupe et al., 2017; 

Wu et al., 2016; Wu et al., 2017). Studies in temperate ecosystems have demonstrated that the camera-

derived Gcc index, a measure of vegetation greenness, is well related to the gross primary productivity 

(GPP) curves (Richardson et al., 2010; Migliavacca et al., 2011; Keenan et al., 2014; Toomey et al., 

2015). Phenocams have played an important role in those ecosystem-scale studies, contributing to link 

ground observed changes to ecosystem scale accessments derived from flux towers and remote sense 

indices (Ahrends et al., 2009; Migliavacca et al., 2011; Tomey et al., 2016). Leaf phenology should also 

be considered on Dynamic Global Vegetation Models (DGVMs). These models are based on coupled 

information between plant biogeography and biogeochemical processes to simulate ecosystem fluxes 

and climate shifts in a climatic change scenario (Foley et al., 1998; Restreppo-Coupe et al., 2017). In 

this context, understanding vegetative phenological transitions is essential to better estimate 

measurements of gross primary productivity (GPP), because there is still a gap of knowledge about the 

drivers of productivity in the tropics (Restreppo-Coupe et al., 2017). In this context, camera-derived 

phenological time series might provide key information to understand the photosynthetic seasonality of 

tropical forests and atmospheric-vegetation feedbacks to a changing climate (Richardson et al., 2013; 

Restreppo-Coupe et al., 2017).  

In this section, we propose to analyze the relationship between the leaf phenology extracted 

from phenocameras and the ecosystem photosynthetic activity from GPP measurements of eddy-

covariance towers across three distinct Neotropical biomes: Caatinga, Cerrado, and Rainforest. We 
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aim to inter-compare the phenology-GPP dynamics across sites belonging to each vegetation domain 

and contrasting seasonality.  

 

Section 4 – e-Science and the multidisciplinary research built on the integrations of big data 

ecological research and computational science 

Throughout this section, we present some results of phenocam image analysis research 

initiatives and tools devised in the context of e-Science collaborations and built in the framework of the 

e-phenology project and the e-phenology network of phenocams. The published papers are presented 

in Section 4 and all are directly connected to the development of this thesis and opened up the possibility 

to explore the results presented in Sections 1 to 3. 
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Article published in the Journal of Perspectives in Ecology and Conservation: 

ALBERTON, B.C. et al. Introducing digital cameras to monitor plant phenology in the tropics: 

Applications for conservation. Perspectives in Ecology and Conservation, v. 15, p. 82-90, 

2017. 
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Abstract 

The application of digital cameras to monitor the environment is becoming global and 

changing the way of phenological data collection. The technique of repeated digital photographs 

to monitor plant phenology (phenocams) has increased due to its low-cost investment, reduced 

size, easy set up installation, and the possibility of handling high-resolution near-remote data.  

Considering the widespread use of phenocams worldwide, our main goals here are: (i) to provide 

a step-by-step guide for phenocam set up in the tropics, reinforce its appliance as an efficient tool 

for monitoring tropical phenology and foster networking, (ii) to discuss phenocam applications 

for biological conservation, management, and ecological restoration. We provide the concepts 

and properties for image analysis which allow representing the phenological status of the 

vegetation. The association of a long-term imagery data with local sensors (e.g., meteorological 

stations and surface-atmosphere flux towers) allows a wide range of studies, especially linking 

phenological patterns to climatic drivers; and the impact of climate changes on plant responses. 

We show phenocams applications for conservation as to document disturbances and changes on 

vegetation structure, such as deforestation, fire events, and flooding and the vegetation recovery. 

Networks of phenocams are growing globally and represent an important tool for conservation 

and restoration, as it provides hourly to daily information of monitored systems spread over 

several sites, ecosystems, and climatic zones. Moreover, websites enriched by vegetation dynamic 

imagery data can promote science knowledge by engaging citizen science participation.
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1 INTRODUCTION 

The use of digital cameras to document plant changes is not novel. Photographs have been 

used to monitor landscape since 1965 by Hastings and Turner to verify changes in the ecosystem 

dynamics and structure of the arid southwest region of the US. Thompson et al. (2002) used 

photographic registers for the long-term study of glacial retreat in the Antarctic ice sheet. 

Repeated digital images have been used to document changes in cultural landscapes (Peñuelas & 

Boada 2003, Webb et al. 2007); to measure vegetation growth and biomass (Crimmins & 

Crimmins 2008, Graham et al. 2009); to detect plant stress and nitrogen status (Wang et al. 2004) 

and to monitor crops (Slaughter et al. 2008). More recently, the application for monitoring leaf 

exchanges patterns or leafing phenology (Richardson et al. 2007, 2009, Nagai et al. 2011) has 

brought the technique to the agenda of global change research and conservation (Richardson et al 

2013, Morellato et al. 2016).  

Phenology is an integrative environmental science focused on monitoring, understanding, 

and predicting recurrent life cycles events of organisms, which are mainly related to climate 

(Morellato et al. 2016). Leafing is the plant phenological event that defines the growth season and 

controls crucial ecosystems processes such as, nutrient cycling, water storage, regulates 

productivity in terrestrial ecosystems, and the dynamics of carbon sequestration (Reich 1995, 

Baldocchi et al. 2005).  

Phenological studies have been efficiently applied to track effects of environmental 

changes on plants and animals in temperate regions, answering questions about the current 

scenario of global climate change and stimulating the search for innovative tools of plant 

monitoring (Polgar & Primack 2011). Detect plant responses to environmental changes across 

tropical systems, especially in the Southern Hemisphere, is an important question on the global 

agenda since few studies have addressed trends related to global warming (Rosenzweig et al. 

2008, Morellato et al. 2013, 2016, Chambers et al. 2013). However, the tropical high diversity of 

species precludes the observation of many species across several sites due to the intense human 

labor and costs (Alberton et al. 2014, Morellato et al. 2016).  
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The technique of repeated photographs to monitor plant phenology may overcome those 

difficulties. The application has increased due to its low-cost, reduced size, easy set up, and the 

possibility of handling high-resolution data, making digital cameras reliable tools for a wide range 

of ecological applications (Crimmins & Crimmins 2008, Morisette et al. 2009, Graham et al. 

2010, Nasahara et al. 2015, Brown et al. 2016). Digital cameras for plant phenology observation, 

also called phenocams, have allowed the detection of leaf phenological events through the 

analysis of color changes along time. By quantifying the red, green, and blue (RGB) color 

channels, it is possible to estimate, for instance, leaf flushing and senescence, using the green and 

red channels, respectively (Ahrends et al. 2009, Morisette et al. 2009, Richardson et al. 2009).  

The term “Near-surface remote phenology” consists in the use of sensors installed on the 

ground, as the phenocams, with the objective of monitoring ecosystem-scale vegetation changes. 

Digital cameras monitoring canopy vegetation has an important role by filling the “gap of 

observations” between satellite monitoring and the traditional on-the-ground phenology 

(Alberton et al. 2014, Brown et al. 2016, Morellato et al. 2016, Morisette et al. 2009). The use of 

imagery data over the traditional phenological observations allows simultaneous multi-sites 

monitoring, long-term monitoring collecting high-frequency data (daily, hourly), and reduced 

human labor fieldwork for data acquisition. Phenocams networks are already covering a wide 

range of ecosystems in the world (Richardson et al. 2013, Brown et al. 2016). The main networks 

websites are the Phenocam Network in the United States (http://phenocam.sr.unh.edu - as of Jan. 

2017), the EuroPhen in Europe (http://european-webcam-network.net - as of Jan. 2017) and the 

Phenological Eyes Network (PEN) in Japan (http://pen.agbi.tsukuba.ac.jp - as of Jan. 2017). 

Together these initiatives combine more than 250 outdoor cameras (Brown et al. 2016, Nasahara 

& Nagai et al. 2015). For the tropics, we have the Tropidry project as a successful example of 

ecological project with intense multidisciplinary data collection, including the use of phenology 

towers with phenocams, covering dry tropical sites (http://tropi-dry.eas.ualberta.ca/ - as of May 

2017). In Brazil, the e-phenology Network (http://www.recod.ic.unicamp.br/ephenology - as of 

Jan. 2017) introduced in this paper, target the challenge of monitoring different vegetation types 

from dry forest, grasslands, and cerrado savannas to rainforests.  

http://tropi-dry.eas.ualberta.ca/


22 
 

Therefore, considering the worldwide applications of phenocams in ecological studies, 

our main goals here are: (i) to provide a step-by-step guide for phenocam set up in the tropics, 

reinforce its appliance as an efficient tool for monitoring tropical phenology, (ii) to show how 

phenocams can provide key contributions to biological conservation, and (iii) to encourage this 

promising research field in Brazil and tropical areas based on the e-phenology project experience, 

and foster networking and e-science collaborative research. 

 

2 PHENOCAMS AS TOOLS FOR THE MONITORING OF PLANT PHENOLOGY 

Digital images are typically based on the RGB color model (red, green, and blue color 

channels). These channels encode the brightness values of the scene and can be combined in more 

than 16 million of colors, representing basically all the colors perceived by humans (Cheng 2001). 

Through the quantification of the RGB color channels, it is possible to calculate vegetation 

indices, which are related to leaf color changes representing the phenological status of the 

vegetation (Richardson et al. 2007, Sonnentag et al. 2012) (Fig. 1). 

By capturing daily digital images of a given site, we derivate time series encoding RGB 

color changes over time. Thus, the leaf patterns can be described based, for instance, on the 

proportion of the green fraction in the images (Richardson et al. 2007). The association of digital 

imagery data with local sensors (e.g., meteorological stations and surface-atmosphere fluxes) 

uncovers a wide range of research opportunities, especially linking phenological patterns to 

climatic drivers, and analyzing long-term data to detect phenological shifts due to the impact of 

anthropogenic changes (Polgar & Primack 2011, Brown et al. 2016, Morellato et al. 2016).  

The collection of daily vegetation color changes has been motivated also by the need to 

understand ecosystem-scale energy fluxes (Baldocchi et al. 2005, Richardson et al. 2007). Studies 

from temperate vegetation have found the start of the vegetation greenness controls the gross 

primary productivity (GPP) curves (Richardson et al. 2010, Migliavacca et al. 2011, Keenan et 

al. 2014). Therefore, temporal changes in the vegetation drive carbon exchange processes via 

influencing the photosynthesis process, respiration, and litter production (Peichl et al. 2014).  
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Most of the studies using phenocams have been developed in the Northern hemisphere, 

covering mainly deciduous forests (Richardson et al. 2007, 2009, Nagai et al. 2011). However, 

the application of repeated digital photographs is also efficient for the phenology monitoring of 

temperate grasslands (Inoue et al. 2015, Julitta et al. 2014), peatland (Peich et al. 2015), and 

evergreen forest (Toomey et al. 2015). Its reliability for tropical vegetation was recently validated 

for woody cerrado savanna (Alberton et al. 2014) and applied for tropical forest (Nagai et al. 

2016, Lopes et al. 2016). The use of camera-derived vegetation indices in association with leaf 

demography-ontogeny models has been recently applied in the Amazon forest to investigate 

ecosystem-scale photosynthetic seasonality (Wu et al. 2016). However, there is still little focus 

on the species level analysis and on grasslands, mountains and other tropical vegetation.  

 

3 PROCEDURES FOR PHENOLOGICAL MONITORING USING DIGITAL CAMERAS  

Digital cameras are reliable tools for the monitoring of vegetation because they have low 

price and easy setup, while providing high frequency and resolution data. Here, we introduce the 

main steps for phenology camera set up and basic information about image processing for data 

analysis (Fig. 1). A detailed protocol is available in the Supplementary Material.  

3.1 Camera set up and image settings 

In general, the camera is placed in a tower built in the middle of vegetation (Fig. 2a and b). The 

choice of the site and the field of view must maximize the vegetation to be monitored. 

Hemispherical lens cameras are reliable for capturing images of the canopy, reducing crown cover 

among individual species (Fig. 2c). Cameras should be positioned facing North - Northeast to 

maximize the light over the canopy and to minimize lens flare. Cameras can be set up on small 

towers, close to the ground, to capture landscape images (Fig. 2d and e) when the focus are 

shrublands, grasslands, or other vegetations with short canopies and across heterogeneous 

landscapes as rupestrian grasslands (Fig. 2f).  

Different digital cameras have been used in repeated photography monitoring (see 

Sonnentag et al. 2012, Steenweg et al. 2017). Internet protocol (IP) cameras are ideal because 

they can be connected to a network and the image download performed remotely. For instance, 
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Stardot IP cameras record landscape images, have been successfully applied in temperate 

ecosystem monitoring, and were chosen as the standard camera for two of the major networks in 

North Hemisphere (Brown et al. 2016). Hemispherical lens (also called fish-eye) have been 

chosen for monitoring tropical vegetation sites (Alberton et al. 2014, Nagai et al. 2016) and by 

PEN (Nasahara & Nagai et al. 2015). The fish-eyes lens (360o) improve the selection of crowns 

with more precision and less covered areas (see Alberton et al. 2014).  

We recommend capturing a high frequency of images (a set of 3-5 images per hour, from 

6 a.m. to 6 p.m.), which provides fine-tuned information about phenology, a confident quality 

data collection, and also a high volume of data for light calibration, smoothing and the 

development of computational tools (Alberton et al. 2014, Almeida et al. 2014, 2015, 2016). 

When it is not possible due to storage constraints, we recommend taking at least one image per 

hour during the midday hours (10 a.m. to 2 p.m., for more details see the SM). A complete 

meteorological station or at least some minimum set of sensors (rain gauge, thermometers, and 

Photosynthetically Active Radiation (PAR) sensors) is an important additional component to 

phenology towers. If not possible, it is important to search for the closest meteorological station 

to the study site.  

3.2 Color information analysis 

The image analysis usually depends on the definition of regions of interest (ROI). The 

ROI is a region within the input images defined for analysis (Fig. S1 and see Alberton et al. 

(2014). After defining a ROI, we can remove irrelevant areas, such as those lacking vegetation or 

depicting the tower structure. Therefore, we define the sample size as ROIs from crowns of 

several species, a population, a portion of the canopy, a community profile, or a habitat or 

vegetation type in a heterogeneous landscape (Fig. S1).  

Several indexes have been applied to detect leaf color changes in time series of digital 

images exploring the RGB color channels (Richardson et al. 2007, Nagai et al. 2011, Sonnentag 

et al. 2012, Zhao et al. 2012, Zhou et al. 2013). Woebbecke (1995) was one of the first to calculate 

several indexes using RGB channels of digital images to evaluate which are better to detect weeds 

considering different types of soil, residue, and light conditions. A normalized index called RGB 
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chromatic coordinates (RGBcc) was developed by Gilespie et al. (1987) and it is considered up to 

now the most efficient to detect the color of plants in relation to their background (Sonnentag et 

al. 2012).  

The RGB chromatic coordinates (Rcc, Gcc, and Bcc) is a normalized index, defined by 

dividing each component (R, G, or B) by the sum of all components (R + G + B): 

(1) 

𝑅𝑐𝑐 =
𝑅

𝑅 + 𝐺 + 𝐵
 

𝐺𝑐𝑐 =
𝐺

𝑅 + 𝐺 + 𝐵
 

𝐵𝑐𝑐 =
𝐵

𝑅 + 𝐺 + 𝐵
 

The Excess Green (ExG) index is also applied in color time series analysis (Sonnentag et 

al. 2012). This metric has proved to be a consistent color index, able to distinguish between green 

plants and their background (soil, residue), as well as to minimize variations in illumination, 

enhancing the green signal of the plants (Woebbecke 1995). 

(2) 

𝐸𝑥𝐺 = 2𝐺 − (𝑅 + 𝐵) 

After performing the RGB color extraction and the vegetation index computation, it is 

necessary a data filtering to minimize noise in the time-series information (RGBcc) caused by 

illumination effects of seasonal changes and time of day (Sonnentag et al. 2012). To that end, the 

90th percentile value is calculated from all daily values in a 3-day window (Sonnentag et al. 2012).  

 

4. PHENOCAMS CONTRIBUTIONS FOR BIOLOGICAL CONSERVATION 

The importance of phenology for biodiversity conservation and ecological restoration has 

been recently explored by Morellato et al. (2016) and Buisson et al. (2017) respectively, with a 

special focus on conservation of tropical systems (Morellato et al. 2016). Phenology is recognized 

as an essential biodiversity variable required for study, report, and manage biodiversity (Pereira 

et al., 2013), pointing out the potential of remote sensing phenology and phenocam networks. 
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Therefore, near-surface phenology with cameras can play a key role for biodiversity conservation 

at several scales. On the other hand, phenology has not yet been included in the formal guidelines 

or recommendations for ecological restoration by SER (Society for Ecological Restoration), but 

Buisson et al. (2017) bring a fresh perspective on why and how phenology should be incorporated 

to ecological restoration guidelines. Systematic, long-term phenological monitoring programs are 

needed at local to large spatial scales to ensure conservation and effective management and for 

the success of ecological restoration programs.  

 

Plant responses to climate 

The search for the main factors triggering plant phenology is of paramount importance 

for better understanding plant responses facing climate changes and the conservation of species 

to ecosystems (Polgar & Primack 2011, Morellato et al. 2016). Plant phenology triggers remain 

poorly understood across the tropics. Therefore, systematic and long-term phenological 

observations are needed at large spatial scales for tropical ecosystems (Morellato et al. 2013, 

Chambers et al. 2013). However, high diversity of species precludes the observation of many 

species across several sites, due to the intense human labor and high costs (Alberton et al. 2014, 

Morellato et al. 2016).  

The e-phenology network was built based first on a core cerrado area where we tested 

and validated all protocols considering the local long-term cerrado phenology project (Alberton 

et al. 2014). We expanded the network, integrating flux measurements towers and larger research 

projects, choosing sites across a seasonality gradient. We are reaching out several key tropical 

vegetations from Amazon forest, Atlantic rainforest, Cerrado, to Caatinga, tracking changes and 

investigating drivers for phenology. Also, within the Amazon-FACE project, we will be able to 

monitor vegetation phenological responses to CO2 enrichment on Amazon forest. Elevated CO2 

(eCO2) would affect photosynthesis biochemistry leading to an increase of productivity for 

tropical ecosystems. (Norby et al. 2016) 

Through daily color changes information in association with daily measurements of 

climatic variables (Fig. 3a and b), a wide range of questions might be investigated. For instance, 
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modeling leaf phenology patterns of multi sites and time series to investigate drivers of leaf 

development and senescence. Another important approach is in the ecosystem scale studies. 

Vegetative phenology has a significant role in the Dynamic Global Vegetation Models (DGVM). 

These models are based on a coupled information between plant biogeography and 

biogeochemical process to simulate ecosystem fluxes and climate shifts in a climatic change 

scenario (Noormets, 2010). In the tropics, understand leaf phenological stages is essential to better 

estimate measurements of gross primary productivity (GPP), because there is a gap of knowledge 

about drivers of carbon fluxes (Restreppo-Coupe 2017). Camera derived color time series might 

provide high frequency and quality information to understand photosynthetic seasonality as the 

vegetation responses and feedbacks to a changing climate (Richardson et al 2013, Restreppro-

Coupe et al 2017). 

 

Beyond phenology: repeated photography monitoring for conservation, management and 

restoration 

Phenocams can monitor one to several tropical vegetation types and species with a 

reduced manpower and high temporal scale (daily basis). Near remote monitoring systems using 

digital repeated photograph can be also one of the most powerful tools to observe and detect shifts 

on vegetation structure to land-use changes, disturbances, climate warming and pre- and post-

restoration of natural and agroecosystem. Changes detected by cameras such as events of 

deforestation, fire, flooding, vegetation recovery after disturbances, and species invasion, likely 

help to take fast and appropriated conservation and management measures.  

For example, digital cameras from e-phenology project have been integrated into the 

Brazilian long-term ecological program (PELD) conducted in the fire-prone vegetation mosaic of 

campo rupestre of Serra do Cipó, Minas Gerais, Southeastern Brazil (PELD CRSC, Fernandes 

2016, http://labs.icb.ufmg.br/leeb/index_peld.html). The resulting time series are the first 

description of the leafing patterns across four campo rupestre vegetations (Borges in prep.). The 

phenocam monitoring system has also allowed detecting the time of fire occurrence and 

vegetation recovery after fire in real time at Serra do Cipó (Fig. 4) (Alberton et al. in prep.). 

http://labs.icb.ufmg.br/leeb/index_peld.html
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Through a set of daily photographs, it is possible to visualize the process of post fire vegetation 

recovery showing the regrowth response of this wet grassland vegetation (Fig. 5, see legend for 

more details), also tracked by the camera derived vegetation index (Fig. 5 a and b). Anthropogenic 

fire may threat even the campo rupestre fire-prone vegetation, since the time, intensity, and 

frequency of human-induced fires impose additional stress on plants (Alvarado et al. 2017). The 

time lapse cameras are therefore accessible tools to monitor, manage and prevent fire. 

Phenological information has a key role in restoration process, such as timing 

improvement for restoration implementation, provides suitable indicator to assess restoration 

success, and allows schedule restoration actions through continuum monitoring (Buisson et 2017). 

Phenocams can improve restoration by matching key steps raised by Buisson et al. (2017) for 

restoration projects, such as: identifying and monitoring fire regime; using phenological metrics 

as indicators of restoration success, optimizing fire management; and improving restoration 

monitoring with continuum vegetation record that might be used to evaluate predefined goals and 

future practices of the restoration process. Successful restoration ideally requires previous 

knowledge of the vegetation structure and species’ phenology, a critical information to define 

restoration practices, access the post-restoration success, plan management actions and improve 

new restoration procedures (e.g., Carter and Blair 2012). 

Biological conservation in a digital world  

Phenocams networks built in interactive websites enriched with dynamic vegetation 

imagery may engage volunteer participation of population to generate science knowledge, playing 

an important role in education for conservation and citizen science programs. One example is the 

project called Season Spotter (Kosmala et al. 2016). Through volunteer participation involving 

tasks as detection of flowers and new leaves in an image database, the project has gained useful 

science knowledge. The main results were related to: detection of reproductive phenophases; 

selection of tree individuals by the users, facilitating the scaling from organisms to ecosystems; 

and the validation of phenological observations by the images, which improves the development 

of new algorithms for automatic detection. Besides, these initiatives go beyond scientific 

knowledge valuing citizen participation and boosting population interest for nature conservation. 
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The growth of cameras sensors technology has the potential to build global networks able 

to monitor not only plants, but also all biodiversity. A worldwide system with standardized 

metadata, field protocols, and databases developed by scientific community and integrated with 

citizen science participation, is one of the actions needed to achieve the objectives of the 

Convention on Biological Diversity’s 2011-2020 plans. Current applications to collect ecological 

data using remote cameras have been used by eMammal and TEAM projects (Steenweg et al. 

2017). Examples of focal species included were: grizzly bear (Ursus arctos), tragopan (Tragopan 

blythii), wolverine (Gulo gulo), mule deer (Odocoileus hemionus), coyote (Canis latrans), 

African bush elephant (Loxodonta Africana), and others. The studies involved not only 

biodiversity measurements, but also the underlying causes of biodiversity changes (e.g., impacts 

of climate change and trophic interactions in a cervid in Brodie et al. 2014; evaluating landscape 

connectivity in Barrueto et al. 2014; camera surveys including large carnivors and herbivores 

communities, and the effects in food webs respectively in Ripple et al. 2014, Hooper et al. 2012; 

and evaluate reproductive success in female grizzly bears in Fisher et al 2014).  

The ongoing addition of new devices, high-resolution data survey, and sensor networks 

has improving the quality of data collected in biological studies, but at the same time increasing 

the magnitude of scientific data collected. Big data is one important challenge for biodiversity 

conservation. This leads to the next generation of scientific problems, which will require the 

establishment of multidisciplinary teams (Hey & Hey 2006). e-Science is about the collaboration 

of key areas of science, as a network of research initiative focused on the specification and 

implementation of a set of tools and technologies capable of supporting, improving, and speeding 

up data analysis, knowledge discovery, and decision making (Hey & Hey 2006). The e-phenology 

was designed as an e-Science project, and we present some examples of our research on digital 

camera image analysis and the tools devised in the context of e-Science collaboration. We use 

machine learning algorithms to plant species identification concerning the identification of each 

tree crown of the vegetation in the image (Almeida et al. 2014). The tool helps important steps 

from plant identification in the field to the definition of new ROIs for the image analysis speeding 

up the process and allowing grouping similar species in an image even with no previous 
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identification, a useful tool for conservation remote monitoring systems. Through the years, 

several approaches have been proposed to support the identification of individuals of particular 

species (Almeida et al. 2015, Almeida el al. 2016, Faria et al. 2016a, Faria et al. 2016b). We 

developed a tool to map the greenness in the image time series, the chronological percent map by 

PhenoVis (Leite et al. 2016). A database specific for phenolgical data was also developed in the 

framework of e-phenology project do deal big-data issues and improve access to information 

(Mariano et al, 2016).    

 

5 Conclusions 

We have presented a first-step protocol with the main information about repeated 

photography method and set up (Supplementary Material), to increase the potential of a new 

tropical phenology research program in this promising area, fostering network and collaboration 

(Box 1).  

Phenology has its well-defined role in conservation biology (Morellato et al. 2016) and, 

in this context, we demonstrate that near-surface remote phenology and phenocam networks are 

powerful tools for conservation. Besides the capability of a fine temporal resolution associated 

with wide spatial monitoring coverage, phenocams can bring new information for management 

and restoration practices at several sites and environments, and can also be applied in education 

for conservation and citizen science through websites with phenological databases enriched by 

imagery data. The creation of phenology networks, still lacking for tropical countries, will broader 

and fine-tune research on phenological drivers and long-term monitoring to investigate and model 

the impacts of climate changes in the tropics. The pioneer e-phenology is the venue to reach those 

goals in Brazil. Lastly, phenocams could be easily integrated as a monitoring tool at any 

conservation unity, aggregating invaluable information of wide use for researchers and managers, 

from phenology to ecosystem dynamics and changes over space and time.  
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8 BOX  

 

  

Recommended Procedures 

• install phenocams in a wide variety of landscapes and ecosystems, taking 

advantage of low-cost cameras when necessary 

• use electricity in the towers whenever it is possible, when setting up powerful 

cameras 

• choose sensors with good seal capability, adopt careful procedures in the 

installation process considering problems as excess of humidity, sun 

exposition, and invasion by bugs 

• standardize images formats and settings for multi-site monitoring 

• integrate your phenocams to a network, facilitating wide-scale collaborative 

research, enabling combine information across biomes and climatic zones, 

and widening the applicability for biodiversity conservation 

• set up new cameras in association with sites where long-term studies are 

being developed, such as the Brazilian Long-term Ecological Research 

PELD (Projetos Ecológicos de Longa Duração) and flux towers 

• explore tools or even create your own software and scripts for images 

processing, to support and facilitate data analysis 

• establish a e-Science collaborative research with computer scientists, 

improving visual and image analysis techniques, big-data management, 

investing in a new generation of “hybrid” scientists with a multidisciplinary 

profile and larger spectrum of actuation. 
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9 FIGURES LEGENDS 

Figure 1 Workflow showing the steps of a protocol for implementation of a repeated 

photograph monitoring system.  

Figure 2 Brazilian sites from e-phenology network and their different phenology monitoring 

setups for woody and open vegetation: (a) sketch of the hemispherical lens camera mounting 

design for forest canopy; (b) camera set up in the field; (c) sample image captured by the 

hemispherical lens digital camera in the cerrado sensu stricto vegetation (Itirapina, SP); (d) sketch 

of the camera mounting design for a landscape perspective; (e) camera set up in the field, (f) 

sample image of the heterogeneous landscape in the Serra do Cipó mountain range (Santana do 

Riacho, Minas Gerais State, Brazil).  

Figure 3 Vegetation canopy greenness, as quantified by green chromatic coordinate (Gcc; green 

dots) using phenocam imagery, in relation to local seasonal patterns of daily precipitation (blue 

bars) and air temperature (black line). In both graphics, Gcc values represent a 3-day window 

filter time-series of the growing season length (from day of the year DOY 152 to 214, 2013-2014) 

of two cerrado physiognomies, a grassland savanna vegetation (a) and a woody savanna (b), both 

in the same location in Itirapina city, São Paulo State, Brazil. 

Figure 4 Sequence of photographs showing timing of burn and the post-fire vegetation recovery 

process in a heterogeneous landscape, Serra do Cipó, Minas Gerais, Southeasten Brazil. 

Figure 5 Visual analysis showing post-fire vegetation recovery scheme of a wet grassland habitat 

(red dots selection) in Serra do Cipó, southern part of the Espinhaço Mountain Range, Minas 

Gerais State, Brazil. The graphic represents a camera derived vegetation index (Excess Green) 

from a set of photographs showing the green curve after a fire event. (a) first day after fire event; 

(b) vegetation recovered after 34 days; Green dots represent Green daily value of the 90th 

percentile of the Excess green index (90th ExcG) from digital images taken every hour (6:00 h to 

18 h) 
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Fig. 1 
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Fig. 2 
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Fig. 3  
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Fig. 4 
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Fig. 5 
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1 ABSTRACT 

The study of phenology is a key component to track vegetation transitions that respond to climate 

changes, since plants are mainly constrained by the environment. Water and light availability are 

considered the main abiotic limitations for leaf production in the tropics. The search for answering 

questions about the environmental triggers of tropical phenology has stimulated the application of new 

tools for plant monitoring. Digital cameras have been applied for the monitoring of leaf temporal 

changes in seasonal tropical environments. We conducted, for the first time, a multi-site phenological 

monitoring across tropical vegetations using leaf phenology derived by digital cameras. An analytical 

procedure was used to unravel the main drivers influencing leaf phenology time series across seasonally 

dry vegetations using digital cameras to describe the leafing patterns of seasonally dry tropical 

vegetation communities. Our main questions are: (i) Can community growing seasons be detected by 

near-surface remote cameras in tropical vegetation sites? (ii) Do the growing seasons vary across 

different seasonality conditions? (iii) Do the environmental factors driving leaf phenology differ and 

how they vary across sites? Growing seasons from each vegetation type were delineated using 

derivatives. From our results, we demonstrated that water and light were the most important predictors 
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for the leaf phenological patterns across the sites. Water-plant relationships were more important for 

the Caatinga community, and light, through day-length seasonality, had more influence in the leafing 

patterns of the cerrado communities. An interesting outcome was the increasing variability of 

phenological signals (leafing behaviors) and predictor-response relationships (distinct smooth 

functions) across sites where seasonality was less pronounced and/or distinct species life-form were 

capable of overcoming drought-effects, such as deep root systems trees from woodland cerrado 

compared to grassy cerrado. 

 

2 INTRODUCTION 

The patterns of temporal leaf replacement or vegetative phenology is of major importance to 

understand ecosystem processes, such as carbon, water, and energy exchanges controlling seasonal 

cycles of photosynthetic activity (REICH, 1995; RÖTZER et al., 2004; RICHARDSON et al., 2013). 

Leafing patterns of plant species define the growing season of a vegetation community, and are mainly 

constrained by environmental cues, from temperature in temperate regions to water in the tropical realm 

(REICH, 1995). Therefore, the study of leaf phenology is a key component to track vegetation 

transitions that respond to climate changes (POLGAR and PRIMACK, 2011; MORELLATO et al., 

2016). There is high heterogeneity among leafing patterns across tropical forests, mostly related to the 

intensity and length of the dry season (REICH, 1995, CAMARGO et al., 2018). A wide range of studies 

are necessary to identify the main factors regulating leaf phenology across the tropics and, therefore, 

understand vegetation dynamics, and efficiently forecast climate change impacts (POLGAR and 

PRIMACK, 2011; CHAMBERS et al., 2013). The majority of phenology studies have accessed 

reproductive and leafing patters through the direct observation of individual trees (MORELLATO et 

al., 2013, 2016; ABERNETHY et al., 2018), and try to access the cues for leaf fall and leaf flushing. 

Water and light availability have been considered the main abiotic cues regulating the time and 

periodicity of leaf production in the tropics (VAN SCHAIK; TERBORGH; WRIGHT, 1993; WRIGHT 

and VAN SCHAIK, 1994; MORELLATO et al., 2000; RIVERA et al., 2002; BORCHERT et al., 2015; 

CAMARGO et al., 2018). A major factor regulating the length of growing season and species 

synchronicity is the seasonal availability of water. Seasonal tropical forests, with increasing dry season 
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severity, present a marked annual periodicity of the community leaf flushing and senescence, and as a 

consequence, a greater proportion of deciduous species (MURPHY and LUGO, 1986; REICH, 1995, 

WILLIAMS et al., 2008). In fact, in the seasonally-dry tropical forests or dry forests, nearly the entire 

assemblage of individuals of their species lose all leaves in a synchronic deciduous behavior during the 

dry season (REICH and BORCHERT, 1984; REICH, 1995; QUESADA et al., 2009; SINGH and 

SINGH, 1992). Under a reduced rainfall seasonality and less pronounced dry season, species and 

individuals may display different degrees of deciduity, forming communities with a widely range of 

leafing behaviors, that may change in proportion according to conditions of soil moisture, topography 

(BORCHERT 1994; RIVERA et al., 2002), and intensity of dry season (CAMARGO et al., 2018 and 

references therein). Regarding light, the consistent signal of day length seasonality in the tropics would 

have a major importance towards higher latitudes, triggering the input of new leaves (WRIGHT and 

VAN SCHAIK 1994; RIVERA et al., 2002). Day length seasonality has also been reported as a trigger 

for the onset of the community early leaf flushing in the dry season, anticipating the rains, in seasonal 

tropical vegetations, as semideciduous forests and savannas (RIVERA ET AL., 2002; MORELLATO 

ET AL., 1989, SINGH and KUSHWAHA, 2005, HIGGINGS et al., 2011; CAMARGO et al., 2018). 

Conversely, in tropical rain or moist forests, where moisture is not a constrain, elevated irradiance due 

reduced cloud cover during the dry season can promote a species synchronicity of leaf production (VAN 

SCHAIK; TERBORGH; WRIGHT, 1993; WRIGHT and VAN SCHAIK, 1994, RIVERA et al., 2002).  

Plant life forms have direct implications on water and light species adaptation and thereby on 

leafing phenology (ARCHIBALD and SCHOLES, 2007, HIGGINGS et al., 2011, WHITECROSS et 

al., 2017). The temporal niche separation hypothesis proposed by Scholes and Walker (1993) indicates 

that trees would deploy leaves earlier than grasses, even before the start of the growing season, given 

trees a competitive advantage over grasses. Trees can input new leaves still in the dry season due to 

stored carbon reserves and their better capacity to access and accumulate groundwater sources (rooting 

depths), allowing plant growth when radiation is maximum (ELLIOTT ET AL., 2006; EAMUS, 1999; 

ARCHIBALD and SCHOLES, 2007). On the contrary, grasses are much more dependent on the rainfall 

seasonality given their shallow root system, and can present multiple peaks of leaf production along the 
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growing season as a fast response to rainfall events in seasonally dry environments (BATALHA and 

MANTOVANI, 2000; ARCHIBALD and SCHOLES, 2007).  

A comprehensive survey of phenology data and trends over the Southern Hemisphere (SH) 

highlights the gaps in the phenology knowledge of tropical species and ecosystems (CHAMBERS et 

al., 2013). The search for answering questions about the environmental triggers of tropical phenology 

and the potential changes in the current scenario of climatic changes has stimulated the application of 

new tools of plant monitoring. Imagery based on satellite and digital cameras imagery has been 

considered alternative methods for successfully monitoring plant greening continuously across the 

landscape (RICHARDSON et al., 2007; MORISETTE et al., 2009). In particular, repeated photographs 

taken by digital cameras (phenocams) have been applied for the monitoring of leafing temporal changes 

in seasonal tropical environments (ALBERTON et al., 2014; ALBERTON et al., 2017; MOORE et al., 

2017). The application of phenocams to monitor leaf phenology reduces human labor, increases 

accuracy by eliminating possible discrepancies related to observer subjectivity, improves temporal 

resolution to hourly/daily basis and the special resolution, allowing simultaneous monitoring of 

different vegetations and sites (CRIMMINS and CRIMMINS, 2008, RICHARDSON et al., 2007; 

BROWN et al., 2016; ALBERTON et al., 2017).  

We conducted, for the first time, a phenological multi-site monitoring across Neotropical 

seasonal vegetations using digital cameras or phenocams to describe the leafing patterns of four 

seasonally dry tropical vegetation communities: three cerrado savanna vegetations and one xeric 

shrubland, the Brazilian Caatinga. We combined the camera-derived phenology with local 

environmental variables to evaluate the constraints imposed by temperature, water, and light on the 

patterns of leaf flushing and senescence across different seasonality condition and vegetation structure. 

Our main questions are: (i) Can we detect distinct community growing seasons across the four tropical 

vegetations? We expect leafing season at caatinga responding to immediate rainfall while cerrado may 

present a more variable response due to mild and shorter dry season; wood cerrado would have reserves 

or access to underground water and may be able to start leafing earlier in the dry season, before the first 

rains; (ii) Do the growing seasons vary according to the vegetation structure (woody-grassy) and degree 

of seasonality? We expect a cerrado vegetation response differs between woody and grassy dominated 
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vegetations in accordance with the temporal niche separation hypothesis (SCHOLES and WALKER, 

1993), while Caatinga response is restricted to the first rains starting the wet season; and (iii) Do the 

main environmental drivers of start and length of growing season differ according to environmental 

seasonality and vegetations? We expect light and accumulated rainfall to be the main drivers for cerrado 

and immediate rainfall the cue for the start of caatinga growing season. The proportion of woody species 

and individuals at each leaf exchange strategy (deciduous, semideciduous, or evergreen) may also vary 

among the vegetations studied and influence the plant responses to environmental cues and were 

considered in our analyses (EAMUS, 1999; WILLIAMS et al., 2008, CAMARGO et al., 2018). 

 

3 METHODS 

3.1 Sites description 

Sites are geographically distributed across two main vegetational domains (VELOSO et al., 

1991) or biomes (OLSON et al., 2001), the Caatinga or desert and xeric shrubland and, the Cerrado or 

grasslands, savannas and shrublands, respectively (see map in Fig. 1). We collected near-surface leaf 

phenology of four sites, one from Caatinga and three belonging to different vegetation types of Cerrado. 

Table 1 summarizes the study sites characteristics and phenocam monitoring period analyzed here. The 

four study sites are part of the e-phenology network 

(http://www.recod.ic.unicamp.br/ephenology/client/index.html#/home - As of June 2018). 

Caatinga - The first site is the exclusive Brazilian vegetation, the caatinga, a xeric, 

sclerophyllous vegetation located in the Semi-Arid region distributed mostly in Northeastern Brazil, 

denominated the xeric shrubland Biome according to Olsen et al., (2001). The area of phenocam 

monitoring has approximately 600 ha, 342 m a.s.l, and belongs to the Reserva Legal da Embrapa 

Semiárido (9°05’S; 40°19’ W), Petrolina municipality, Pernambuco State, Northeastern Brazil. (KILL, 

2017). The climate is classified as semiarid (KÖPPEN, 1931) and, according to the normal climate from 

1970 to 2014 (source: Experimental station of Bebedouro, 10km from the site), the total annual mean 

precipitation is 510 mm distributed mainly from January to April, and the mean annual temperature is 

26.2°C. During our three-years of study, annual mean precipitation was around 260mm, and annual 

mean temperature 27.05°C (Fig. 2A), characterizing a period even drier than usual. Local vegetation is 

http://www.recod.ic.unicamp.br/ephenology/client/index.html#/home
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composed of xerophilous trees and shrubs and a continuous herbaceous layer of species adapted to the 

xeric and harsh conditions. The plant species belong mostly to the Fabaceae, Euphorbiaceae, Poaceae, 

and Cactaceae families, and the discontinuous canopy reaches proximally 5 m high (KILL, 2017).  

Cerrado - The other three sites encompass different vegetation physiognomies of Cerrado, a 

neotropical savanna, from a wooded grassland or scrubland to a dense woodland, all part of the Cerrado 

domain or Cerrado sensu lato classification (OLIVEIRA-FILHO and RATTER, 2002) and included in 

the grasslands, savannas, and shrublands Biome according to Olsen et al., (2001) (Fig. 1). All three sites 

are in the São Paulo state, Southeastern Brazil: the second and third at Itirapina municipality and the 

last one at Santa Rita do Passa Quatro (Fig. 1). Climate classification is humid subtropical (KÖPPEN, 

1931), with a cool dry winter (mean monthly temperature of 18°C) and a hot wet summer (mean 

monthly temperature of 32°C), and a total annual precipitation of 1524 mm. A cluster analysis using 30 

years of climatic data (1982-2012) showed four seasons: a rainy season (November to March), a 

transitional rainy-to-dry season (April), a dry season (May to August), and a transitional dry-to-rainy 

season (September to October) (ESCOBAR et al., 2018). Historic climatic information was made 

available by the Centro de Recursos Hídricos e Estudos Ambientais (CRHEA-EESC/USP), about 15 

km distant from the study sites. Local environmental variables at each site were daily collected from 

meteorological stations (Hobo U30 USB Weather Station Data Logger) set up in the phenological 

towers at each vegetation site. Sensors were connected to a central data logger constantly sending data 

information to a web platform (www.hobolink.com) via GSM. Although cerrado scrubland and cerrado 

woodland sites belong to the same original vegetation patch (see below) and are just about 10km 

distance, a meteorological station was placed within each physiognomy. Gap filling for second and third 

sites were obtained from a nearby meteorological station (CRHEA-EESC/USP). 

Our second monitoring site, the cerrado campo sujo (“dirty grassland”), is a wooded savanna 

or shrubland vegetation physiognomy dominated by an herbaceous layer with scattering shrubs and 

small trees (OLIVEIRA-FILHO and RATTER, 2002, BATALHA and MANTOVANI, 2001). The 

study site is part of the Itirapina Ecological Station (22°13'23"S;47°53'02.67"W), encompassing 2,300 

ha, 700 m a.s.l. A local vegetation survey found a proportion of 79% of species from the herbaceous-

shrubland layer, dominated by Asteraceae, Fabaceae, Poaceae, and Cyperaceae families, and 21% of 

http://www.hobolink.com/


57 
 

small trees species most from families, Fabaceae, Myrtaceae, and Melastomataceae (TANNUS et al., 

2006). During the three years of monitoring, local climatic time series show a mean annual total 

precipitation of 1,272 mm and mean annual temperature of 23.5°C (Fig. 2B).  

The third study site is located in a nearby private area of 260 hectares and 700 m a.s.l. 

(22°10′52″ S, 47°52′25″ W), belonging to the same original “patch” of cerrado that once covered all 

that region. The associated vegetation is a cerrado sensu stricto, a woody cerrado savanna dominated 

by trees and shrubs from 3 to 8 m tall, sometimes reaching up to 12 m, with crowns arranged in a 

discontinuous canopy, and a presence of a fair amount of herbaceous vegetation (REYS et al., 2013). 

From the local 5-year meteorological data (2011 - 2015), mean annual total precipitation was 1,478 mm 

and mean annual temperature 22.9 °C (Fig. 2C). Plant species composition is distributed mostly in the 

Myrtaceae, Fabaceae, and Malpighiaceae families (REYS et al., 2013), and vegetation was classified 

as a semideciduous, according to the species long-term leaf exchange strategies (CAMARGO et al., 

2018).  

The last site it is also a woody cerrado formation that belongs to the Reserva Ecológica Pé-de-

Gigante (PEG), located within the Parque Estadual do Vassununga, at Santa Rita do Passa Quatro 

county. The PEG reserve comprehends a contiguous area of 1,060 ha and 649 m a.s.l. (47° 34’ – 47° 

41’ W; 21° 36’ – 21° 44’ S), covered by a heterogeneous landscape of savanna vegetations, from open 

grasslands to woody dense cerrado. The seasonal humid subtropical climate (KÖPPEN, 1931) presents 

a dry season from May to September and the wet season from October to April, a total annual rainfall 

of 1,499 mm and mean temperature 21.5°C (BATALHA and MANTOVANI, 2000). Our local climatic 

data from 2013 to 2015 shows a total annual average precipitation of 1,150 mm and mean air 

temperature of 22.5°C (Fig. 2D). The study site, where the camera system is located, is a transition 

from woody cerrado to a cerradão (OLIVEIRA-FILHO and RATTER, 2002), that we classified as a 

dense cerrado, characterized by a discontinuous canopy, nearly without an herbaceous layer and high 

density of shrubs and trees (RIBEIRO and WALTER, 1998). The site has a predominant woody layer 

reaching 10m to 15m high, composed mainly of the species Ptedoron pubecens, Copaifera langsdofii, 

and Anadenanthera peregrina var. falcata from the Fabaceae family. The closed canopy results in a 

shading and cooler understory covered by a scattered herbaceous component (PIVELLO et al., 1998).  



58 
 

The vegetation communities studied here differ in their seasonality, from a very constrained 

climate in the Caatinga domain with an 8-month dry season to less restricted conditions of the Cerrado 

domain physiognomies with a 6-month dry season length. Sites also differ in the structure of vegetation, 

from a dominant to equivalent herbaceous component (cerrado campo sujo and caatinga) to woody 

formations of cerrado sensu stricto (woody cerrado and dense cerrado). To facilitate the identification 

of the four studied sites and vegetation, hereafter we will name site one to four according to the 

vegetation monitored, respectively, as follows: caatinga, cerrado shrubland, woody cerrado, and 

dense cerrado. We can order our study sites into a sequence that corresponds to their degree of 

seasonality and woody cover, from caatinga and cerrado shrubland, to woody cerrado and dense 

cerrado. 

3.2 Camera set up and near-surface phenology monitoring 

For each one of the study sites, a digital hemispherical lens camera Mobotix Q 24 (Mobotix 

AG — Germany) was placed at the top of a phenological tower attached to an extension arm facing 

northeast at a mean vertical distance of 10 m from the tree canopy, except for the cerrado shrubland, 

where the camera system is based 3 meters distance from the vegetation in a landscape standing point 

(see ALBERTON et al., 2017). Energy supply is a 12V battery charged by a solar panel. Cameras are 

configured to automatically take a daily sequence of five JPEG images (at 1280 × 960 pixels of 

resolution) in the first 10 min of each hour, from 6:00 to 18:00 h (UC−3; Universal Time Coordinated) 

as described in Alberton et al., (2014). The camera system installation occurred at different times 

among sites (see Table1). For data analysis, we used time series spanning from 2013 to 2015 for all 

sites, with the exceptional of the woody cerrado, where time-series started at 2011. Due to a sequence 

of energy supply issues along the years in the woody cerrado site, we gap filled sequences of more 

than 7 days with no images recorded using an algorithm that we created (see Supplementary material 

for more details) in R language (R CORE TEAM, 2017). 

Raw images were firstly processed with a visual filter to remove interferences, disturbing the 

canopy viewing. Image analysis was conducted as described by Richardson et al., (2009), Ahrends et 

al., (2009) and Alberton et al., (2014). We carried out field trips for plant identification to compile a 

list of the main species captured by the field of view of the cameras (see Supplementary material). 
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Then, we matched the plant identification information with the crowns identified within the images. 

This information, associated with imagery visual inspections, was essential for the classification of 

individual crowns into plant functional groups based on plant leaf exchange strategies.  

Regions of interest (ROIs) were defined for each site considering that time series from the 

whole image can encompass phenological signals from many species with different leafing exchange 

strategies (deciduous, semideciduous, and evergreen) and dominant life forms (woody vs grassy). 

Thus, the ROIs defined for the community took into account the woody and grassy-dominated 

vegetation, and individuals’ crowns of woody species were grouped by leaf exchange strategy 

following Camargo et al., (2018) into deciduous, semideciduous, and evergreen. Since Camargo et al., 

(2018) did not consider in their functional classification the time of leaf flushing, we add that 

information and refine their proposed strategy splitting the deciduous and semideciduous strategies 

into two categories. All ROIs’ names, description, and their coverage (% of pixels) in relation to the 

vegetation community ROI, are follow: community = region representing the community or the 

complete image area, excluding tower and the exposed ground; deciduous = ROIs from crowns that 

represent individuals of deciduous species (caatinga = 19.80% / cerrado shrubland = 16.16% / woody 

cerrado = 5.44% / dense cerrado = 21.5%), fast deciduous = ROIs representing individuals of 

deciduous fast-responsive species (caatinga = 7.20%); semideciduous wet = ROIs representing 

individuals of semideciduous species and start of wet season leaf flushing (woody cerrado = 5.77% / 

dense cerrado = 2.50%); semideciduous dry = ROIs from crowns that represent individuals of 

semideciduous species, and a dry season leaf flushing (woody cerrado = 3.90%); evergreen = ROIs 

from crowns that represent individuals of evergreen species (woody cerrado = 1.15% / dense cerrado 

= 6.17%); and grass = ROIs representing the herbaceous layer of the cerrado scrubland (23.70%).  

We analyzed the ROIs of each image in terms of the contribution of the relative brightness of 

the green, red, and blue color channels (RGB chromatic coordinates in WOEBBECKE et al., (1995)) 

in relation to the primary colors (red, green, and blue). The normalized RGB chromatic coordinate 

(RGBcc) index is referred to as the most suitable index to detect leaf color changes, and the most 

efficient to suppress light variation (GILLESPIE et al., 1987; WOEBBECKE et al., 1995). The Green 

chromatic coordinate (Gcc) index has been applied to relate changes on the vegetation greenness, 
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tracking phenological transitions of leaf development as well as ecosystem photosynthetic dynamics 

and the search for environmental cues (RICHARDSON et al., 2009; AHRENDS et al., 2009; 

MIGLIAVACCA et al., 2011; ALBERTON et al., 2014; MOORE et al., 2017; RICHARDSON et al., 

2018). We calculated the normalized index of the green color channel (Gcc), as: 

𝑇𝑜𝑡𝑎𝑙𝑎𝑣𝑔 = 𝑅𝑒𝑑𝑎𝑣𝑔 +  𝐺𝑟𝑒𝑒𝑛𝑎𝑣𝑔 +  𝐵𝑙𝑢𝑒𝑎𝑣𝑔 

𝐺𝑐𝑐 =
 Greenavg 

Totalavg
 

The Gcc index was calculated for all images taken by the camera at each day. One single 

measurement was extracted by taking the 90th percentile of the values every three days, a procedure that 

has been shown to minimize noise in the color channels series (RGBcc) related to the illumination effects 

of seasonal changes and time of the day (SONNENTAG et al., 2012).  

3.3 Defining the growing season 

We extracted some phenological metrics for the definition of the growing seasons. There are 

several methods for modelling phenological time series (e.g., thresholds, derivatives, smoothing 

algorithms, model fitting) allowing the detection of phenological transitions (DE BEURS and 

HENEBRY, 2010). A critical issue raised for most of the methods is the lack of a statistical error 

structure that promotes an analysis of the significance or robustness of the model (DE BEURS and 

HENEBRY, 2010). Tropical vegetation time series are often more difficult to deal with, because they 

are mostly rain-green systems, where vegetation green-up responses are coupled with precipitation 

events, resulting in noisier observations (DE BEURS and HENEBRY, 2010). In the attempt to 

overcome these problems, we propose an approach for the calculus of derivatives with significant 

chances of occurrence along the time. The first step was the fitting of Generalized Additive models 

(GAM) over the Gcc community time series. Time (sequence of days) was used as a smoother 

independent variable. Assuming that errors are not independent, an inherent condition of time series 

structure, we nested an auto-regressive moving average (ARMA) of order 1, as a correlation structure, 

into our fitting models. Then, we build confidence intervals (95%) for the rate changes along the curve 

applying montecarlo simulations to perform the curve fitting and calculate the time derivatives 

(MOULIN, 1996) that significantly differed from zero, making sure that changes were happening in 
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these particular regions. From the derivatives calculations, we were able to extract phenological metrics 

corresponding to vegetation transitions along the curves. Based on previous classification of land 

surface phenology time series (ZHANG et al., 2003; JONSSON and EKLUNDH, 2004) and to conform 

to the classical nomenclature of direct observation phenological variables (MORELLATO et al., 2000), 

we define the phenological metrics as: 

Start of growing season (SOS) – represents the beginning of the growing season. It is measured 

as the first day detected by the significant derivative from the total seasonal amplitude on the left side 

of the curve. 

End of growing season (EOS) - represents the termination of the growing season. It represents 

the last day detected by the significant derivative from the total seasonal amplitude on the right side of 

the curve. 

Length of growing season (LOS) – represents the duration of growing season and it is calculated 

as the difference SOS and EOS. 

Peak of the growing season (POS) – represents the highest percentage greenness or species 

flushing new leaves. It is measured as the highest value of the seasonal curve. 

3.4 Environmental cues of leafing phenology 

Photoperiod, temperature, water availability, and a water-energy interaction were chosen as the 

potential environmental factors to characterize the leafing phenological patterns across sites. The set of 

explanatory variables was selected based on a priori assumptions and published literature on tropical 

plant leaf phenological responses to seasonal environmental conditions summarized in the introduction. 

Day-length, the number of sunlight hours, was chosen as the variable to represent the seasonality of 

photoperiod and was calculated using the latitude of each location (geosphere package for R). The 

variables of daily maximum and minimum temperature were used to calculate the variation of 

temperature amplitude along the year, as: 

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 = 𝑇𝑎𝑚𝑝 

All other local climatic variables were derived from the weather station at each particular site. 

Rainfall effects were tested using the variables of cumulative precipitation (mm) from the last 30 days 
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(Rainfall_cum30), and lagged rainfall events from the last seven (Rainfall_Lag7) and 30 

(Rainfall_Lag30) days.  

The water and energy interactions were calculated to evaluate the effects of the dry season 

intensity through the Cumulative Water Deficit (CWD) calculation, as: 

𝐶𝑊𝐷𝑛 = 𝐶𝑊𝐷(𝑛−1) + 𝑃𝑛 − 𝐸𝑇𝑛 

The CWDn is the computed cumulative water deficit for a given time n, where Pn is the 

precipitation of the day (mm) and ETn is the evapotranspiration of the day (mm day-1). When a positive 

value of (P-ET) is identified, zero is used to set a starting point. Every time 𝐶𝑊𝐷𝑛 ≥ 0, then CDWn is 

set to zero again (more details in STEPHENSON, 1998; MURRAY-TORTAROLO et al., 2016; 

JAMES et al., 2013). The interactions between the vegetation evapotranspiration demand induced by 

the energy in the system (able to heat and/or stress the plant) and the water availability reaching the soil 

are explained by the climatic water balance (see STEPHENSON, 1990 and STEPHENSON, 1998). 

When the evaporative demand does not meet the available water, a deficit situation occurs, which 

explains the CWD, a measure of absolute drought (STEPHENSON, 1998; MURRAY-TORTAROLO 

et al., 2016; JAMES et al., 2013). 

Environmental variables were aggregated in a three-day 90th percentile window approach 

(SONNENTAG et al., 2012), the same applied for the Gcc time series. 

3.5 Data Analysis  

Phenological metrics extracted from Gcc community time series were identified and compared 

in terms of the growing season dynamics among the different vegetations. To investigate the 

relationship between leafing phenology and environmental cues, we fitted Generalized Additive Mixed 

Models (GAMMs) using the Gcc time series (community, leaf exchange strategy, and dominant life-

form) separately as dependent variables (Y) and the abiotic variables as the explanatory terms (X). The 

main reason for the additive models application in this study is related to its potential of dealing with 

nonlinear functions among multiple covariates and its reliability of handling time-series structural data 

in ecological studies and vegetation modelling analysis (FRESCINO et al., 2001;WOOD, 2011; YANG 

et al., 2012).  
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The general formula of a GAM is: 

𝑔(𝜇) =  𝛼 + ∑ 𝑓𝑗𝑥𝑗

𝑃

𝑗=1

 

where 𝑔 is a specified link function and  (𝜇) the expected mean response, 𝛼 is the linear model 

components, and 𝑓𝑗 are smooth functions of the covariates 𝑥𝑗 (Yang et al. 2012). Basically, generalized 

additive models aim to maximize the quality of prediction of Y, from various exponential families, by 

estimating non-parametric functions of the predictor variables (X), through a connection with the 

dependent variable stablished by a link function (WOOD, 2011, MARRA and WOOD, 2011). The 

degree of smoothing of an additive model is expressed by the effective degrees of freedom (edf), which 

mean that the higher the edf, the lower is the linearity of the curve interaction. 

Initially, scatterplots among covariates were verified for the identification of linear and non-

linear relationships. After running a multicollinearity inspection, we entered all the chosen explanatory 

variables in a full model for each dependent variable. The variable selection, which means a smooth 

component selection when dealing with the additive models, was carried out using a shrinkage 

approach. Shrinkage procedures are considered continuous processes where variable selection is 

running in one single step, opposed to other used algorithms as the subset selection and stepwise 

approaches (MARRA and WOOD, 2011). The method here applied, named double penalty, relies on 

the fact that that the space of the smoother (a spline basis) can be decomposed into the components of 

a range space and a null space. The method penalizes both components shrinking them to zero. By 

introducing a penalty in the null space, the model smoothing parameter estimator is able to select the 

most significant terms from the model (for more details about the method, see MARRA and WOOD, 

2011). By analyzing the approximate smooth estimators from the models, we can verify the terms that 

are not influential, with no significance achieved at P<0.001. Finally, to understand how each term is 

related with the response variable, we plot the partial fits of each smoother parameter and evaluate the 

edf and F-test from the model’s outcomes.  

 

4 RESULTS 

4.1 Growing seasons detection across sites 
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The Gcc index calculated for the community time series tracked the seasonality of leafing 

patterns among all sites (Fig. 3). The timing of vegetation phenological transitions was found for all the 

cycles, using the derivatives (Table 2). In general, growing seasons differed among vegetations in 

relation to initial and end of growing season dates, length of growing season and the shape of the 

growing season curves related to the leafing response of the species community. According to the 

expectations, there was a constraint of leaf production to the wet period for extreme seasonal vegetation 

(caatinga), as well as the grassy dominated vegetation (cerrado shrubland). 

The start of the growing season (SOS) occurred earlier among the cerrado physiognomies, 

ranging from doy 147 to doy 239. The woody cerrado was the vegetation with the earliest SOS (mean 

doy 163), mid of June, in the dry season. The dense cerrado and the cerrado shrubland were more 

similar, with a SOS mean date on doy 221 and doy 233, respectively, but the first with a more marked 

seasonality. The start of the season in the Caatinga occurred by the end of October (mean doy 296), 

only after the first rainfall events. Vegetation biomes reached the peak of season (POS), in the average, 

78 days after the SOS. Caatinga and dense cerrado were the first to reach the highest values of the 

growing season (69 and 67 days, respectively), while for the cerrado shrubland and the woody cerrado 

the average mean was of 80 to 96 days for the POS, respectively. For the two woodland cerrado 

vegetations, POS occurred earlier in the transition from the dry to the wet periods. Conversely, for the 

caatinga and cerrado shrubland, POS dates were within the wet season. 

The end of season (EOS) was faster and earlier in the caatinga vegetation, with just about a 

month of difference (31 days) between the first and the second cycles (2013/2014 = 183, 2014/2015 = 

214). The length of the season (LOS) was also the shortest in caatinga, with a mean LOS of 274 days. 

The green-down was more abrupt in the xeric caatinga, with the EOS right after the end of the wet 

season. The cerrado physiognomies showed a lower transition and extended green-down curve, 

reaching their lowest values from the mid to the end of the dry season (Fig. 3). Woody cerrado presented 

a different EOS among the years, ranging from mid-May (doy134) to mid-June (doy 170), and a LOS 

from 314 to 342 days. There was one LOS registered for the grassland and the dense cerrado sites, 

because there was only one complete year cycle. They presented the longest LOS, with 345 days.  

4.2 Model predictions  



65 
 

Predictor variables entered as smooth terms in most of the models produced. Two of the 

explanatory variables (Rainfall_lag7 and Tamp) showed a linear relationship when modelling ROIs data 

from the caatinga and the woody cerrado, respectively. In general, GAM procedure produced models 

with medium to high explanation (R2 values ranging from 0.29 to 0.88). The variables day-length and 

the cumulative water deficit (CWD) were the most recurrent predictors with the highest significance 

achieved among models across all vegetations (Table 3). All the plots from figures 5 and 6 show the 

significant variables resulted from the GAM models explaining leaf phenology time-series. The most 

important relationships are described with more details below. 

The CWD and rainfall (lag7 and cum_30) showed the main relationships with the caatinga 

community pattern of greening (Fig. 5A). The partial fits between predictors and Gcc demonstrated a 

vegetation sensitive to low values of precipitation rates and increases of Gcc values in a threshold 

between -10 and -5 of CWD values. The day-length, also included in the model as a significant variable 

(edf = 7.83, F-test = 12.324, P<0.001), demonstrated to affect the community Gcc after reaching 12.5 

hours of sunlight.  

Day-length was the variable that best interacted with the community Gcc time series from the 

cerrado physiognomies (Table 3). The same values, ranging from 11.5 and 12.0 hours, were observed 

as a sensitive threshold for Gcc transitions across all vegetations (Fig. 5 B, C and D). CWD presented 

different smooth functions of interaction among the cerrado sites, where we can notice a sensitive point 

of change around values between -150 and -100 more strength for the cerrado shrubland and the dense 

cerrado (Fig. 5B and D) and less for the woody cerrado (Fig. 3C). 

The cumulative rainfall (Rainfall_Cum_30) was significant for the cerrado shrubland and the 

dense cerrado (6.678, 13.189, P<0.001; 7.94, 8.317, P<0.001, respectively). Both demonstrated 

sensitive to changes in Gcc after accumulated precipitation rates of 25 to 30 mm (Fig. 5 B and D). The 

Gcc time-series from the woody cerrado community was the only one to relate with the temperature 

amplitude (Tamp – 3.558, 17.05, P<0.001). The relationship between the covariates was positive and 

linear with Gcc values rising as Tamp increases (Fig. 5 C). 

In general, the ROIs separated according to leaf exchange strategies interacted with different 

variables across vegetations and among groups. The deciduous and fast deciduous species from caatinga 
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demonstrated high similarity to the community pattern, with CWD and the lagged seven days of 

accumulated rainfall (Rainfall_lag7) variables being more important for both ROIs and presenting 

similar thresholds in points of transition (Fig. 5 A and Fig. 6 A). The fast deciduous presented a high 

significant relation to rainfall_lag7 (1.00, 30.309, P<0.001), and demonstrated an oscillated relation 

with the day-length variable (Fig. 6 A). 

The CWD was the most significant smooth term to interact with the leaf phenology of the 

deciduous ROIs (dec = 8.302, 23.169, P<0.001) from caatinga; evergreen (ever = 4.569, 21.991, 

P<0.001) and wet flushing semideciduous (semi = 7.881, 40.59, P<0.001) from the woody cerrado, and 

semideciduous (semi = 8.717, 29.203, P<0.001) and deciduous (dec = 8.264, 28.548, P<0.001) from 

the dense cerrado (Fig. 6 A, C, and D).  

Day-length was more significant for the evergreen (ever – 7.288, 38.316, P<0.001) and dry 

flushing semideciduous (semi dry = 2.693, 32.952, P<0.001) ROIs from the woodland sites of dense 

and woody cerrado, respectively. In the first, curve inflection was sensitive to daylight hours from 12.0 

to 12.5 (Fig. 6 D). In the latter, an inverse relationship was found, with decreasing of Gcc as daylight 

increases, starting from 11.5 hours (Fig. 6 C). Photoperiod also presented positive relationship (5.948, 

41.807, P<0.001) with the deciduous ROI (dec), composed mostly of shrubs, from the cerrado 

shrubland (Fig. 6 B). 

The dominant grassy component (grass) from the cerrado shrubland and deciduous (dec) ROIs 

from the woody cerrado, were significant related to the Tamp (1.00, 19.53, P<0.001; 3.663, 25.49, 

P<0.001, respectively). Grass ROI showed an inverse sigmoid relationship with a range of Tamp values 

increasing from 5 to 10°C (Fig. 6 B), while deciduous crowns (dec) demonstrated a negative linear 

relationship with rising Tamp starting in 10°C (Fig. 6 D). 

 

5 DISCUSSION 

5.1 Leafing phenological patterns across vegetations  

The Gcc index extracted from the digital images allowed tracking the leafing seasonality of the 

vegetations and the definition of the growing seasons through phenological metrics detected from the 

derivatives of generalized additive models fitting. As expected, Gcc curves followed the wet periods 
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fluctuations from their climatic zones, leading to differences on phenological dates and the growing 

seasons among vegetations, mainly between the caatinga vegetation and the three cerrado vegetations.  

Within sites, SOS and EOS presented more discrepancies in the Caatinga (28 and 31 days of 

difference between years, respectively) and the woody cerrado (38 and 36 days difference among years, 

respectively). For the caatinga, the phenomenon of the Atlantic Dipole (a temperature variation of the 

Atlantic Ocean) can cause a high interannual variability in the precipitation rates (GUTIÉRREZ et al., 

2014), which would lead to the seasonality dynamics of the growing seasons among years. Given that 

plant species from this ecosystem are influenced mainly by the water availability, there is an 

immediately response of the reproductive and vegetative phenophases to rainfall events (CARVALHO 

and BARBOSA, 1989; ARAÚJO et al., 2007).  

Despite the differences among years, the woody cerrado site was the more dissimilar to the 

other savanna vegetations regarding the SOS and EOS detected dates. Studies in cerrado vegetations 

usually report the start of the community leaf flushing (SOS) for the transition period from the dry to 

the wet season, around the month of September (e.g., MONASTERIO and SARMIENTO, 1976; 

WILLIAMS et al., 1997; PIRANI et al., 2009; MUNHOZ and FELFILI, 2005, CAMARGO et al., 

2018). We relate the high variations of SOS and EOS among years (from 36 to 38 days) in this 

vegetation to two main reasons. One could be related to the smoothing procedures over parts of the gap-

filled Gcc time series, what could be responsible for the earlier SOS and EOS in the cycles of 2013/2014 

and 2014/2015, while the second to the massive presence, in the camera field of view, of crowns from 

species flushing out the community flushing, during dry season, influencing the overall outcomes of 

Gcc curve patterns. 

The shape of the growing season also differed among vegetations, clearly influenced by the 

LOS, much shorter for the Caatinga and longer for the cerrado vegetations. The green-up and green-

down curves were more abrupt for the caatinga, explained by the predominance and high synchrony of 

strongly seasonal and many fast deciduous species in this vegetation, as pointed out by few dry forest 

studies (MURPHY and LUGO, 1986; PEZZINI et al., 2014). On the other hand, the moister cerrrado 

vegetations were composed of a different proportion of deciduous, semideciduous and evergreen, 

maintaining partially green coverage of the vegetation even during the dry season and smoothing Gcc 
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curve changes along the wet season as supporting direct observations of leaf exchange patterns and the 

definition of the Cerrado as a semideciduous vegetation (MORELLATO et al., 2013; CAMARGO et 

al., 2018). 

5.2 Environmental cues of leafing phenology  

The models’ predictions found non-linear relationships between phenology and the most 

recurrent significant variables, day-length and CWD. Day length was the most present variable to 

explain the Gcc time series of vegetation communities. As expected, daylength was more important for 

the cerrado vegetations than caatinga. In this context, light-related changes that precede the wet season, 

such as the photoperiod seasonality, could be triggering leaf flushing in the cerrado communities. 

Photoperiod has been reported to trigger the start of leaf flushing for seasonal dry tropical vegetations 

(BORCHERT; RIVERA and HAGNAUER, 2002; RIVERA et al., 2002; HIGGINS et al., 2011; 

ROSSATTO et al., 2013; GARCIA et al., 2017). The consistent signal has been suggested to trigger 

and synchronize leaf flushing for tropical seasonal ecosystems despite the species leaf exchange strategy 

(BORCHERT and RIVERA, 2001; RIVERA et al., 2002; ROSSATTO et al., 2013). The peak of the 

community flushing before the onset of the wet season supports the hypothesis that cerrado trees have 

access to underground water due their deep root system or their capability to use the precedent leaf fall 

for rehydration for an early leaf production (EAMUS and PRIOR, 2001; GOLDSTEIN et al., 2008). 

The community leaf flushing before the rainy season would also avoid nutrient loss by leaching during 

leaf development and the threat of high herbivory rates to young leaves (SARMIENTO et al., 1985; 

ROSSATTO et al., 2009).  

The skewness pattern of the Gcc curves from Caatinga indicates a link between time and 

duration of the irregular leafing cycles, restricted within the wet period, following the precipitation 

pulses in the system. A similar pattern has been detected by digital cameras for dry grasslands, 

confirming the high dependency of the interannual precipitation variability (BROWN et al., 2016; 

RICHARDSON et al., 2018). The likely thresholds indicated in the plant-water relationships in the 

catinga community shown low rates of acumulated precipitation stimulating Gcc time series changes, 

what could explain the fast response pattern of leaf flushing, reflected in the growing season curve 

oscillations of this site.  
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The cumulative water deficit (CWD) relationships, explained the seasonality of leaf production 

in the four tropical seasonal vegetations investigated in this study. This variable can be considered of 

major biological meaningful to the understand of physiological plant responses, given that it integrates 

water and energy interactions, primary effects of climate on plants (STEPHENSON, 1998). According 

to our results, CWD influenced leaf phenological responses of all four vegetations. Among the leaf 

exchange strategies groups, CWD was the most recurrent variable to better explain leaf phenology 

patterns.  

Thermal amplitude had a positive relationship with the community pattern of Gcc in the woody 

cerrado. This variable was also positive correlated with the rates of green-up and senescence across a 

gradient of snow-free mountain vegetations (STREHER et al., 2017). The amplitude of temperature at 

the woody cerrado reached 20°C, with high values found in the periods of transition between dry and 

wet seasons. Temperature would play a significant role speeding plant development and their organs 

(KORNER, 2006), what could be influencing the rates of green-up and green-down in the cerrado 

curves.  

Regarding the leafing patterns according to the leaf exchange strategies, variables of day-length 

and CWD were also the most influential factors across sites. Our results indicated that both predictors 

are about the same across the vegetations, except for the short cumulative seven-day rainfall necessary 

for leaf flushing in the caatinga. The relationship between predictors-response varied and became more 

heterogenous from the highest to the least seasonal sites. Woodland cerrado vegetations have shown 

more discrepancies among leaf exchange strategies and predictors in their smooth function. For 

instance, deciduous ROIs from the Dense and Woody cerrado were explained by thermal amplitude, 

but the relationship stablished between the covariates were opposite, one being positive and the other 

negative (Fig. 6 C and D). We could notice that different phenological behaviors presented variations 

on timing and rate of Gcc values among groups and within vegetations (Fig. 4 C and D). This pattern 

was less marked for the caatinga and the cerrado shrubland, where phenological behaviors from ROIs 

groups were more similar in terms of Gcc time series patterns and relationship response to predictors. 

This phenological dynamic can be explained by the fact that high seasonal constrained environments 

tend to be more synchronic, due species (caatinga) or life forms (open cerrado scrubland) adapted to 
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the limited favorable time for plant development (wet season). As long as the environment becomes 

less constrained by the climate, leaf exchange patterns would become more independent from seasonal 

environmental constrains, given that soil water sources availability increases (BORCHERT, 1998), as 

we observed across our four vegetation biomes. 

At the Itirapina Ecological Station (cerrado scrubland site), different physiognomies from open 

grassland to woodland cerrado occur over a groundwater depth lower than 4 m, and a recent study has 

found that soil fertility did not define the occurrence of woody physiognomies (LEITE et al., 2018). 

Besides, grasses typically require rainfall events to start leaf growth after rains (ANDREW and MOTT, 

1983; COOK et al., 2002). However, leaf phenology of the grassland layer (grass ROI) in the cerrado 

shrubland was not significant predicted by water relationships, which contradicted our expectations 

about different response between woody and grassy dominated vegetations in accordance with the 

temporal niche separation hypothesis (SCHOLES and WALKER, 1993). Grass ROI model reached 

around 50% of explanation by day-length and thermal amplitude. The Brazilian cerrado is considered 

a “wet” neotropical savanna, with regions of South America reaching up to 2,500 mean annual 

precipitation (MAP), contrasting in more than 500 mm from the African and Australian savannas, and 

where the influence of fire frequency would be an important determinant of the grasslands and closed 

savannas distribution, besides climate seasonality (LEHMANN et al., 2011). 

Woodland cerrado vegetation communities (woody cerrado and dense cerrado) presented 

discrepancies regarding their leaf phenology patterns and environmental predictors. In fact, dense 

cerrado demonstrated to be more similar with the cerrado shrubland than with the woody cerrado. We 

suggest that this difference may be related to the species composition and the leaf exchange strategies 

predominant within each vegetation community.  

In conclusion, water and light were the most important predictors for the leaf phenological 

patterns across the sites. Water-plant relationships were more important for the caatinga community, 

and light effects, through day-length seasonality, had more influence in the leafing patterns of the 

cerrado communities. The CWD variable appeared as an important predictor for the drought effects on 

the leafing responses, although the previous 30 days of accumulated precipitation and thermal amplitude 

had also significant contributions. Phenological signals and predictor-response relationships have 
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increased in variability across sites, where woodland cerrado physiognomies have shown increased 

capability to sustain a greater complexity in their species leafing strategies than caatinga. One of the 

major benefits that came from the near-surface remote phenology, using digital cameras, is the 

reliability of acquiring continuous good quality phenological data from multiple sites and the potential 

to stablish long-term phenological datasets. Through long-term monitoring, we will be able to consent 

in the main drivers influencing plant communities and forecasting shifts in the face of climate change 

scenarios. For now, with this study, we can collaborate with phenology for seasonal tropical vegetations, 

corroborate hypothesis from literature and have more insights about tropical vegetation dynamics.  
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Figures legends 

Figure 1 Geographic distribution of study sites according to the Biome (following OLSON et al., 2011) 

denoted by the background color, and the vegetation types considered in this study: caatinga, cerrado 

shrubland and woody cerrado: cerrado and dense cerrado. 

Figure 2 Month average of local environmental variables of day-length, maximum and minimum 

temperature (Tmax and Tmin), thermal amplitude (Tamp) and rainfall for each vegetation site of this 

study – A, B and C caatinga; D, E, and F cerrado shrubland; G, H, and I woody cerrado; J, K, and L 

dense cerrado. 

Figure 3 Three-day 90th percentil Gcc time series of the xeric (A) and savanna (B – D) vegetations fitted 

by generalized additive models. (A) caatinga, (B) cerrrado shrubland, (C) woody cerrado and (D) dense 

cerrado. Derivatives were calculated for the growing seasons detection. Green lines represent the start 

of the growing season and red lines the end of the growing season. Black line represents the model 

fitted, gray shadow the confident interval and dark dots the observed data.  

Figure 4 Three-day 90th percentil Gcc time series of the community and the selected ROIs for xeric (A) 

and savanna (B – D) vegetations fitted by generalized additive mixed models (GAMM). (A) caatinga, 

(B) cerrado shrubland, (C) woody cerrado, and (D) dense cerrado. Continuous colored lines represent 

the GAM model fitting, gray shadow represent the confidence interval and dark dots the observed data. 

Light blue lines represent the crowns for woody deciduous ROIs, yellow line for fast-response 

deciduous, green line for evergreen, blue line for spring flushing semideciduous, and dark orange for 

the winter flushing semideciduous; pink line represents the GAMM fit for dominant grassy vegetation, 

and orange for the community ROI of each vegetation site. 

Figure 5 Response of fitted generalized additive mixed models for the three-day 90th percentil Gcc 

community time-series to each environmental variable: day-length, rainfall_lag7 (rainfall of the 

previous seven days), rainfall_cum30 (accumulated precipitation of the last 30 days), CWD (cumulative 

water deficit) and Tamp (thermic amplitude) and vegetation– caatinga (A), cerrado shrubland (B), and 

woody cerrado (C), dense cerrado (D). 

Figure 6 Response of fitted generalized additive mixed models for the three-day 90th percentil Gcc of 

species´ leaf strategies and life-form time-series to the environmental variables: (day-length, 
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rainfall_lag7, rainfall_cum30, CWD and Tamp) of each vegetation site – caatinga (A), cerrado 

shrubland (B), woody cerrado (D), and dense cerrado (C). deciduous = dec; fast-response deciduous = 

dec_fast; wet flushing semideciduous = semi_wet; dry flushing semideciduous = semi_dry; evergreen 

= ever; grassy layer = grass. 
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Table 1 Study sites summary description including the general vegetation name (Name), site 

designation and coordinates, location in Brazil (City, state and region), vegetation type, period of study 

(phenocam monitoring), mean annual total precipitation according to the normal climate and length of 

dry season in months (for estimation, see methods) 

 

Name 
Study site designation 

Lat/Long. 
Location Vegetation type 

Phenocam 

Monitoring 

Mean Annual Total 

Precipitation (mm)  

Dry Season 

Length 

(months) 

caatinga 
Embrapa Semi-árido - 

9°05’S / 40°19’ W 

Petrolina, PE, 

Northeast 

Brazil 

Xeric shrubland 

(Caatinga)  

10/May/2013 

to 

31/Dec/2015 

510 mm 8 

cerrado 

shrubland 

Itirapina Ecological 

Station - 22°13'23"S / 

47°53'02.67"W 

Itirapina, SP, 

Southeastern, 

Brazil 

grasslands, savannas 

and shrublands 

(Cerrado campo 

sujo) 

28/Mar/2013 

to 

28/May/2015 

1,524 mm 6 

woody 

cerrado 

Botelho Farm - 

22°10′49.18″S / 

47°52′16.54″W 

Itirapina, SP, 

Southeastern, 

Brazil 

grasslands, savannas 

and shrublands 

(Cerrado sensu 

stricto) 

02/Sep/2011 

to 

03/Feb/2015 

1,524 mm 6 

dense 

cerrado 

Pé de Gigante - 47° 34’- 

47° 41’ W / 21° 36’- 21° 

44’ S 

Santa Rita do 

Passa Quatro, 

SP, 

Southeastern 

Brazil 

grasslands, savannas 

and shrublands 

(Cerrado sensu 

stricto denso) 

26/Aug/2013 

to 

31/Dec/2015 

1499 mm 6 
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Table 2 Phenological metric dates (day of year) derived from digital cameras Gcc time series for each 

vegetation. SOS = Start of growing season, POS = Peak of growing season, EOS = End of growing 

season and LOS = Length of growing season. 

 

SITE/YEAR SOS POS EOS LOS 

caatinga     

2013/2014 296 6 183 252 

2014/2015 282 360 214 297 

2015/2016 310 364 NA NA 

cerrado shrubland     

2013/2014 NA NA 230 NA 

2014/2015 239 317 219 345 

2015/2016 228 309 NA NA 

woody cerrado     

2011/2012 NA NA 170 NA 

2012/2013 185 284 134 314 

2013/2014 158 254 135 342 

2014/2015 147 240 NA NA 

dense cerrado     

2013/2014 NA 290 204 NA 

2014/2015 213 279 223 345 

2015/2016 229 298 NA NA 
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Table 3 Approximate significance of smooth terms from the generalized additive models (GAM) 

between the Gcc time series from the ROIs of each vegetation and the environmental predictors. 

Effective degrees of freedom (edf) and F-test values are presented for each variable: Day-length, 

Cumulative water deficit (CWD), Precipitation lagged seven days (Raifall_lag7), Cumulative 

precipitation from the last 30 days (Rainfall_Cum30), Temperature amplitude (Tamp), followed by the 

coefficient of determination (R2) of each model. All variables were significant at P values < 0.001. 

deciduous = dec; fast-response deciduous = dec_fast; wet flushing semideciduous = semi_wet; dry 

flushing semideciduous = semi_dry; evergreen = ever; grassy layer = grass. 

 

 

 

 

  

Site location ROI 

Day-length 

(hours) 
CWD (mm) 

Rainfall_ lag7 

(mm) 

Rainfall_Cum_30 

(mm) 
 ampT ( C̊) 

R² 

edf F-test edf F-test edf F-test edf F-test edf F-test 

caatinga 

comu 7.83 12.324 8.559 28.565 1.0 36.02 6.91 16.36 N.S N.S 0.86 

dec 1.599 14.34 8.302 23.169 1.818 18.289 7.681 9.731 N.S N.S 0.79 

dec_fast 7.388 6.045 6.33 15.276 1.0 30.309 7.143 13.125 N.S N.S 0.74 

             

cerrado 

shrubland 

comu 5.726 39.535 6.678 13.189 N.S N.S 3.907 4.617 N.S N.S 0.88 

grass 2.114 9.535 N.S N.S N.S N.S N.S N.S 1.00 19.53 0.56 

dec 5.948 41.807 5.216 7.841 N.S N.S 3.773 6.384 1.434 8.575 0.87 

woody 

cerrado 

            

comu 5.218 22.436 7.097 8.484 N.S N.S N.S N.S 3.558 17.05 0.51 

ever 1.00 7.441 4.569 21.991 N.S N.S N.S N.S N.S N.S 0.29 

semi_wet 3.602 21.105 7.881 40.59 N.S N.S 5.32 12.9 3.7 7.288 0.75 

semi_dry 2.693 32.952 7.309 18.228 N.S N.S N.S N.S 3.184 19.95 0.66 

dec N.S N.S 7.665 5.904 N.S N.S N.S N.S 3.663 25.49 0.42 

            

dense  

cerrado 

comu 7.773 36.383 7.94 8.317 N.S N.S 6.745 3.156 N.S N.S 0.79 

ever 7.288 38.316 8.163 16.224 N.S N.S 5.671 5.699 N.S N.S 0.76 

semi_wet 7.837 19.284 8.717 29.203 N.S N.S 5.138 10.109 1.00 9.502 0.82 

dec 7.144 30.9 8.264 28.548 2.719 6.734 5.884 3.857 1.00 6.772 0.82 
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Figure 1 
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Figure 2  
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Figure 3 
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Figure 4 
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Figure 5  
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Figure 6 
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Supplementary Material 

LEAFING PATTERNS AND ENVIRONMENTAL DRIVERS ACROSS SEASONAL 

TROPICAL COMMUNITIES 

Bruna Alberton, L. Humberto Rocha, Magna Soelma, Thiago S. F. Silva, Ricardo S. Torres, Patricia 

C. Morellato 

 

Figure S1 Performance of the gap-filling algorithm on the daily Gcc time-series of the woody cerrado 

site. The algorithm created, based on an Auto-regressive moving average model (ARMA) fitting over 

the Gcc time-series, consists of three steps: first, the optimal order of the ARMA model is chosen based 

on physical principles; secondly, data segments before and after a given gap are fitted using an ARMA 

model of the order selected in the first step; and next, the gap is interpolated using a weighted function 

of a forward and a backward prediction based on the models of the selected data segments. The second 

and third steps are repeated for each gap contained in the entire time series.  
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Table S1 List of plant species identified in the field of view of the digital camera from the Dry forest 

vegetation site. 

Family Scientific name Life form 

Anacardiaceae Spondias tuberosa Arruda Shrub|Tree 

Anacardiaceae Myracrodruon urundeuva Allemão Tree 

Anacardiaceae Schinopsis brasiliensis Engl. Tree 

Apocynaceae Aspidosperma pyrifolium Mart. & Zucc. Tree 

Bignoniaceae Handroanthus spongiosus (Rizzini) S.Grose Tree 

Burseraceae Commiphora leptophloeos (Mart.) J.B.Gillett Shrub|Tree 

Cactaceae Pilosocereus Byles & Rowley NA 

Euphorbiaceae Sapium argutum (Müll.Arg.) Huber Shrub|Tree 

Euphorbiaceae Sapium glandulosum (L.) Morong Shrub|Tree 

Euphorbiaceae Cnidoscolus quercifolius Pohl Shrub|Tree 

Euphorbiaceae Manihot pseudoglaziovii Pax & K.Hoffm. NA 

Euphorbiaceae Croton conduplicatus Kunth Shrub|Sub-Shrub 

Fabaceae Mimosa tenuiflora (Willd.) Poir. Shrub|Tree|Sub-Shrub 

Fabaceae Poincianella microphylla (Mart. ex G.Don) L.P.Queiroz Shrub|Tree 

Fabaceae Senegalia piauhiensis (Benth.) Seigler & Ebinger Shrub|Tree 

Fabaceae Poincianella pyramidalis (Tul.) L.P.Queiroz Tree 

Malvaceae Pseudobombax simplicifolium A.Robyns Tree 
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Table S2 List of plant species identified in the field of view of the digital camera from the Grassland 

savanna vegetation site. 

 

Family Scientific name Life form   

Apocynaceae Aspidosperma tomentosum Mart. Tree 

Asteraceae Gochnatia pulchra Cabrera Schrub | Tree 

Bignoniaceae Jacaranda decurrens Cham. Schrub 

Caryocaraceae Caryocar brasiliense Cambess. Tree 

Cyperaceae Bulbostylis Kunth Herb 

Erythroxylaceae Erythroxylum suberosum A.St.-Hil. Schrub|Tree|Sub-Schrub 

Fabaceae Machaerium acutifolium Vogel Tree 

Fabaceae Andira humilis Mart. ex Benth. Schrub|Tree 

Lamiaceae Aegiphila verticillata Vell. Schrub|Tree|Sub-Schrub 

Malpighiaceae Byrsonima intermedia A.Juss. Schrub 

Myrtaceae Eugenia pyriformis Cambess. Schrub|Tree|Sub-Schrub 

Myrtaceae Campomanesia pubescens (Mart. ex DC.) O.Berg Schrub|Tree 

Arecaceae Syagrus petraea (Mart.) Becc. Herb | Palm 

Poaceae Andropogon L. Herb 

Poaceae Loudetiopsis Conert Herb 

Poaceae Trachypogon spicatus (L.f.) Kuntze Herb 

Sapotaceae Pouteria torta (Mart.) Radlk. Schrub|Tree 

Sapotaceae Pradosia brevipes (Pierre) T.D.Penn. SubSchrub 

Verbenaceae Lippia origanoides Kunth Schrub|Sub-Schrub 

Vochysiaceae Qualea grandiflora Mart. Schrub|Tree 

Vochysiaceae Vochysia tucanorum Mart. Tree 
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Table S3 List of plant species identified in the field of view of the digital camera from the PDG 

woodland savanna site. 

Family Scientific name Life form 

Annonaceae Xylopia aromatica (Lam.) Mart. Schrub|Tree 

Caryocaraceae Caryocar brasiliense Cambess. Tree 

Fabaceae Pterodon pubescens (Benth.) Benth. Tree 

Fabaceae Leptolobium dasycarpum Vogel Tree 

Fabaceae Diptychandra aurantiaca Tul. Tree 

Fabaceae Anadenanthera peregrina var. falcata (Benth.) Altschul Schrub|Tree 

Fabaceae Copaifera langsdorffii Desf. Tree 

Fabaceae Vatairea macrocarpa (Benth.) Ducke Tree 

Sapotaceae Pouteria ramiflora (Mart.) Radlk. Schrub|Tree 
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Table S4 List of plant species identified in the field of view of the digital camera from the CORE woodland 

savanna site. 

 

Family Scientific name Life form 

Annonaceae Xylopia aromatica (Lam.) Mart. Schrub|Tree 

Apocynaceae Aspidosperma tomentosum Mart. Tree 

Caryocaraceae Caryocar brasiliense Cambess. Tree 

Fabaceae Pterodon pubescens (Benth.) Benth. Tree 

Fabaceae Bowdichia virgilioides Kunth Schrub|Tree 

Melastomataceae Miconia rubiginosa (Bonpl.) DC. Schrub|Tree 

Myrtaceae Myrcia splendens (Sw.) DC. Tree 

Myrtaceae Myrcia guianensis (Aubl.) DC. Tree 

Sapotaceae Pouteria torta (Mart.) Radlk. Schrub|Tree 

Sapotaceae Pouteria ramiflora (Mart.) Radlk. Schrub|Tree 

Vochysiaceae Qualea grandiflora Mart. Schrub|Tree 
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1 ABSTRACT 

Tropical forests play a key role in the global carbon budget, but temporal patterns of productivity, their 

drivers, and constrains remain under discussion. Leaf phenology, the temporal patterns of leaf flushing 

and senescence, is essential to the understanding of ecosystems processes and has a key role in the 

seasonality of ecosystems productivity. Understanding the interplay of water and light, the main 

climatic drivers over tropical vegetation, and the importance of leaf phenology controlling ecosystem 

productivity under seasonal climates are still on debate. Monitoring phenology over multi-sites may be 

infeasible, especially for high diverse tropical sites, what motivated the search for new tools. The use 

of phenocams has been proven an accurate method to monitor leaf phenology continuously over time 

and simultaneously at different sites or vegetations, tracking vegetation greenness seasonality through 

mailto:bru.alberton@gmail.com
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vegetation indices extracted from repeated photographs. Recent studies have reported the correlation 

between greenness index with GPP curves. Here we proposed a study to investigate the key role of leaf 

phenology defining temporal patterns of gross primary productivity across contrasting seasonal tropical 

extra-Amazonian vegetations: the nearly non-seasonal, light limited, evergreen Atlantic Forest; the 

Cerrado, a neotropical savanna under a wet – dry alternated seasons and; the Caatinga, a xeric vegetation 

exclusive from Brazil, representing a water-limited, extreme seasonally dry ecosystem. Our main 

questions are: (i) Does leaf phenology explain GPP patterns across seasonally contrasting biomes? (ii) 

what is the relative importance of water and light over leaf phenology controlling GPP seasonality? and 

(iii) How can spatial-temporal dynamics of crown’s leafing behaviors contribute to the community 

leafing patterns? Do these relationships change over contrasting environments that are under different 

seasonality constraints? We monitored temporal patterns of leaf phenology (leaf flushing and 

senescence phenophases) derived from digital repeated photograph and partitioned gross primary 

productivity (GPP) from eddy covariance measurements of CO2 fluxes. We describe the temporal 

patterns of leaf production and ecosystem productivity of the three biomes and modeled the relative 

importance of phenology and the environmental factors over the productivity across sites. The 

significance of phenology, water and light cues, changes across biomes. Coupled effects of phenology 

and water availability are observed on the caatinga, while environmental variability and phenology are 

equally contributing in the cerrado productivity, and phenology is the better explaining factor of GPP 

in the rainforest vegetation. Through this inter-comparison analysis, we could uncover temporal patterns 

and drivers of ecosystem productivity across seasonal tropical biomes and disentangle the interplay 

between phenology and water relations across contrasting seasonal sites, with phenology imposing 

different influences on vegetations according to their dominant leafing exchange strategies.  

 

2 INTRODUCTION 

Tropical forests play a key role in the global carbon budget, but we still need to understand 

some uncertainties regarding the temporal patterns, drivers, and constraints of tropical forests 

photosynthetic seasonality, a topmost issue in the climate change research agenda, essential to forecast 

and mitigate effects of the changing climate on carbon cycles. Temporal patterns of leaf development 
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and senescence are essential to the understanding of ecosystems processes and how the global carbon 

balance may respond to shifts in climate and atmospheric composition (WILLIAMS et al., 1998; GASH 

et al., 2004; POLGAR and PRIMACK, 2011; RICHARDSON et al., 2013). 

Plant leaf exchange patterns define the seasonality of vegetation communities, which is evident 

in the proportion of deciduous and evergreen species (REICH, 1995; CAMARGO et al., 2018). 

Furthermore, leaf phenology, can be related to the vegetation physiology, temporal variations of 

biomass, leaf area index (LAI), leaf age, deciduousness, length of growing season (LOS), 

(MIGLIAVACCA et al., 2011; RICHARDSON et al., 2013; PEICHL; SONNENTAG; NILSSON, 

2014) and ultimately, driving ecosystem photosynthetic metabolism and carbon budget (RESTREPO-

COUPE et al., 2013; SALESKA et al., 2003; WU et al., 2016).  

Light and water are the key factors related to the control of photosynthetic seasonality and 

primary production in the tropics (SALESKA et al., 2003; HUETE et al., 2006; MYNENI et al., 2007; 

BRANDO et al., 2010), generating a debate around the interplay between water and light limitations 

depending on the duration and intensity of the dry season. Spatial analysis reported water supply 

demands as the main constrain controlling seasonal productivity in tropical vegetations globally 

(KANNIAH et al., 2011; GUAN et al., 2015; WAGNER et al., 2016), and across biomes (ROCHA et 

al., 2009; RESTREPO-COUPE et al., 2013), defining the boundaries of ecosystems and the transition 

zones between wet and drylands (OLSON et al., 2001; OLIVEIRAS and MAHLI, 2017). A mean annual 

precipitation around 2,000 mm yr-1 was proposed as a threshold that would distinguish water limited 

systems from those responsive to daylength or other non-environmental cues (GUAN et al., 2015; 

WAGNER et al., 2016). The importance of leaf phenology controlling ecosystem productivity under 

seasonal climates are still on debate, since plants respond mainly to climatic variability, but leaf 

exchange strategies combined with plant functional adaptations, rather than their physiology, are 

capable of dominating plant-water-carbon relations (VICO et al., 2015).    

Near-surface phenology, the use of repeated photographs taken by digital cameras to track 

vegetation greenness, has been proven an accurate method to monitor leaf phenology continuously 

over time and simultaneously at different sites or vegetations (RICHARDSON et al., 2007; 

RICHARDSON et al., 2009; AHRENDS et al., 2009; MORISETTE et al., 2009; MIGLIAVACCA et 
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al., 2011; ALBERTON et al., 2017). A handful of studies have demonstrated that camera-derived Gcc 

index, a measure of vegetation greenness, characterizes the changes in canopy leaf phenology and are 

temporally related to the ecosystem gross primary productivity (GPP) curves estimated from local 

eddy flux measurements in temperate forests and grasslands (RICHARDSON et al., 2010; 

MIGLIAVACCA et al., 2011; KLOSTERMAN et al., 2014; KEENAN et al., 2014; TOOMEY et al., 

2015). Leaf phenology has therefore been regarded as the main driver of ecosystem gross primary 

productivity (GPP) but, contrasting to temperate zones, for high-diverse tropical vegetations the 

seasonality of photosynthetic activity is not always evident, and environmental drivers and cues for 

leaf flush and senescence are still unclear and may not be related only to the environmental variability 

(BORCHERT, 1998; WRIGHT and VAN SCHAIK, 1994; RESTREPO-COUPE et al., 2013; 

MORTON et al., 2014; CAMARGO et al., 2018). 

Phenocams monitoring tropical ecosystems are still sparse when compared with temperate 

zones, but its use is growing widely. For studies in seasonally dry tropical ecosystems, camera-derived 

information was able to track leaf seasonal changes for the community and individual species of 

savanna vegetations (ALBERTON et al., 2014; MOORE et al., 2017). For low seasonal tropical areas 

as the rainforests of Borneo (NAGAI et al., 2016) or Amazon basin in Brazil (LOPES et al., 2016), 

Gcc index was less sensitive at the whole community level, but instead, was able to track seasonal 

vegetation changes when each individual crown at a time were analyzed (LOPES et al., 2016; NAGAI 

et al., 2016).  

 Here we proposed a study to investigate the key role of leaf phenology defining temporal 

patterns of gross primary productivity across contrasting seasonal tropical extra-Amazonian 

vegetations. Study sites represent three tropical biomes contrasting in the amount and distribution of 

precipitation along the year, with marked differences regarding the wet and dry season intensity and 

duration (Fig. 1). Therefore, sites may characterize well the hydroclimate control on tropical vegetations 

(GUAN et al., 2015) and were used to verify the relative importance of the interplay water and light 

defining seasonal patterns of gross primary productivity. They are (Fig. 1): the nearly non-seasonal, 

light limited evergreen Atlantic Forest; the Cerrado, a neotropical savanna under a wet – dry alternated 

seasons and; the Caatinga, a xeric vegetation exclusive from Brazil, representing a water-limited, 
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extreme seasonally dry ecosystem (Fig. 1) (OLSON et al., 2001; VELOSO et al., 1991). Since we are 

analyzing three high diverse vegetations under distinct climatic pressures, we also investigated the role 

of the crowns leafing behaviors that compose the plant community patterns, by assessing their spatial-

temporal dynamics during leafing season. 

We monitored temporal patterns of leaf phenology (leaf flushing and senescence phenophases) 

derived from digital repeated photograph and performed eddy covariance measurements of CO2 fluxes 

at three sites of caatinga vegetation, cerrado woodland, and Atlantic rainforest. Our main questions 

are: (i) Does leaf phenology explain GPP patterns across seasonally contrasting biomes? We expect 

that camera-derived pattern of leaf production and senescence would be the primary factors explaining 

ecosystem productivity (GPP) across all sites despite their seasonal status. (ii) what is the relative 

importance of water and light over leaf phenology controlling GPP seasonality? We expect a light 

demand response and dry season leaf flush in the rainforest and an increasing water limitation towards 

cerrado and caatinga. The hydroclimate constrains would interact more with the GPP patterns from 

the driest to the wettest ecosystems; and (iii) How can spatial-temporal dynamics of crown’s leafing 

behaviors contribute to the community leafing patterns? Do these relationships change over contrasting 

environments that are under different seasonality constraints? We expect high synchronicity among 

Caatinga species under extreme water-limited climate and a lower degree of synchrony towards 

cerrado and rainforest; we aimed to incorporate this approach into the context of the ecosystem 

productivity patterns, evaluating how phenological dynamics among tropical communities can 

influence the relationship between Gcc and GPP. 

 

1 METHODS 

Sites description 

Sites belong to different vegetation types geographically distributed across three main tropical 

biomes (VELOSO et al., 1991; OLSON et al., 2001): the Caatinga or the desert and xeric shrubland 

biome, the Cerrado or the grasslands, savannas and shrublands biome, and the tropical rainforest or 

the moist broadleaf forests biome (Fig. 1). Camera-derived monitoring were conducted in thee extra-

Amazonian sites, where flux towers with ongoing eddy covariance measurements were placed (Table 
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1) measuring leaf phenology and carbon fluxes: caatinga, cerrado woodland, and rainforest.  

Caatinga – the first site is the exclusive Brazilian vegetation named caatinga, a xeric 

sclerophyllous vegetation from the Semi-Arid region, mostly distributed in the Northeastern Brazil. 

The study area has approximately 600 ha, at 342 m a.s.l, and belongs to the Reserva Legal da Embrapa 

Semiárido (9°05’S; 40°19’ W), Petrolina municipality, Pernambuco State, Northeastern Brazil (KILL, 

2017). According to the 30 years of normal climate data (from 1960 to 1990), compiled from the 

WorldClim database v.1.0, mean temperature is 24.7°C with minimum of 15.9°C and maximum 

temperature of 32.9°C, and a mean annual precipitation of 566 mm. Dry season extends along 8 months 

(May to December), and the wet season is usually from January to April, when precipitation surpass 

100 mm (Fig.1). Local vegetation presents a 5 m high canopy composed by xerophilous trees and 

shrubs and a continuous herbaceous layer adapted to the xeric and harsh conditions, and the richest 

botanical families are Fabaceae, Euphorbiaceae, Poaceae and Cactaceae (KILL, 2017).  

Cerrado – the second site is a woody cerrado formation located in the Reserva Ecológica Pé-

de-Gigante (PEG) (47° 34’ – 47° 41’ W; 21° 36’ – 21° 44’ S) at 649 m a.s.l. The area belongs to the 

Parque Estadual do Vassununga, at Santa Rita do Passa Quatro county, São Paulo State, Southeastern 

Brazil. According to the 30 years of normal climate data (1960-1990), mean annual temperature is of 

21.1°C, with minimum and maximum ranges of 10.7°C and 29.0°C, respectively. Mean annual 

precipitation is of 1421 mm, with a wet season extended from October to March (precipitation above 

100 mm), and a dry season from April to September (Fig. 1). The PEG Reserve comprehends a 

heterogenous landscape, covered by open grasslands to woody dense cerrado formations. The 

vegetation where the flux tower in installed along with the phenocamera system corresponds to the 

physiognomy classified as a dense cerrado (LATANSIO-AIDAR et al., 2010). This formation is 

characterized by a dense, dominant woody component, with a high density of shrubs and trees, a 

discontinuous canopy and a sparse herbaceous layer (RIBEIRO and WALTER, 1998). The dense 

cerrado dominant woody layer reaches 10 m to 15 m high and are composed mainly of the species 

Ptedoron pubescens (Benth.) Benth., Copaifera langsdorffii Desf., and Anadenanthera peregrina var. 

falcata (Benth.) Altschul from the Fabaceae family. The nearly-closed canopy results in a shaded and 

cooler understory and the scattered herbaceous component (PIVELLO et al., 1998; LATANSIO-
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AIDAR et al., 2010).  

Rainforest – the last site belongs to the Atlantic Forest or moist broadleaf biome (OLSON et 

al., 2001; VELOSO et al., 1991; OLIVEIRA-FILHO and FONTES, 2000). Site is located at the Núcleo 

Santa Virginia (SVG) (coordinates between 23º17'-23º24'S and 45º03'-45º11'W), 1056 m a.s.l, within 

the area of the Parque Estadual da Serra do Mar, São Paulo State, Southeastern Brazil. The 30-year 

normal climate data (1960-1990) show a mean annual temperature of 16°C, with minimum of 5.8°C 

and maximum temperature of 23.8°C, and a mean annual precipitation of 1,692 mm. There is an 8-

month wet season extended from September to April and a 4-month drier and colder season from May 

to August (Fig. 1) but accompanied by a constant mist the stays late in the morning, up to 9:00-10:00 

hs and is back around 16:00 – 17:00 hs in the afternoon (pers. obs.). According to the phytosociological 

survey carried out in the footprint area of the flux tower where phenocamera is installed, the study site 

is characterized as a mature vegetation, preserved from disturbances for the last 35 years, and under 

the influence of fog events. The closed canopy is about 20 to 30 m high, Lauraceae and Myrtaceae are 

the richest plant families, with the occurrence of a high percentage of palm trees represented only by 

Euterpe edulis Mart. species and ferns from the Cyatheaceae family and a rich, dense, herbaceous 

understory (MARCHIORI et al., 2016).  

 

Local climate and environmental variables 

For the local climate description, we collected three years of data (2013-2015) from sensors 

of the meteorological stations located at the flux towers of each site. Environmental variables 

summarized or extracted from local meteorological sensors were: mean air temperature (Tair), 

cumulative precipitation (P), photosynthetically active radiation (PAR), evapotranspiration (ET), and 

vapor pressure deficit (VPD). To evaluate dry season intensity, we calculated the cumulative water 

deficit (CWD), based on the cumulative difference of ET-P. Every time the result from ET-P is 

positive,  CWD is set to zero (more details in JAMES et al., 2013; MURRAY-TORTAROLO et al., 

2016). Time series of environmental variables were weekly aggregated for data analysis. 

To further characterize the dry season experienced by each ecosystem studied, we calculated 

the dry season precipitation (DSP), as the three-year average of total accumulated precipitation along 
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the dry season months; and the dry season length (DSL), defined as the consecutive number of months 

where evapotranspiration (ET) surpass the precipitation (P) (Table 1). Three -year monthly average of 

environmental variables presented in Figure 2 were confronted with the 30-year normal climate data 

across each site and were used in the models.  

The three-year monthly average of local climatic data from the caatinga vegetation were hotter 

and drier than the 30-year normal climate (Fig. S 1A E 2A). Local annual mean precipitation was 260 

mm and annual mean temperature 27,05°C (Fig. 2 A). Interannual variability of precipitation in the 

semi-arid region tends to be very high and is mainly attributed to the temperature variation of the 

Atlantic Ocean, caused by the Atlantic Dipole. This phenomenon can lead to a displacement of the 

Intertropical Convergence Zone (ITCZ), responsible for the rainfall regime of this region 

(GUTIÉRREZ et al., 2014). For the cerrado site, local climate data presented a mean annual 

temperature of 22.5°C and a lower mean annual precipitation of 1,150 mm, when compared with the 

30-year normal climate (1,421 mm). The year 2014 was atypical, with a summer much drier than usual, 

with precipitation reaching just 152 mm between January to February, substantially below the same 

months during the years of 2013 and 2015 (374 mm and 403 mm, respectively) or the normal 

precipitation. Dry season length (DSL) extended from May to October. The tree-year monthly average 

of local climatic data from the rainforest site presented an expected mean annual temperature of 16.7°C 

but a higher mean annual precipitation of 1,800 mm than the 30-year normal climate (1,692 mm). The 

2014 was the rainiest year with 1,965 mm of accumulated precipitation. In addition, DSL was only 1 

month long, with August as the driest month (annual average of 45 mm).  

 

Eddy covariance measurements 

At each one of the study sites previously described, we have a flux tower with an instrumental 

platform including automatic measurements of climate variables and turbulent atmospheric fluxes. An 

eddy covariance device measures the atmospheric turbulent fluxes of sensible heat, evapotranspiration, 

momentum flux, and total CO2 flux. The eddy correlation method calculates the vertical flux of 

atmospheric carbon dioxide, a term usually referred to as the net ecosystem exchange (NEE), which 

in theory means the sum of gross primary productivity, plant respiration, and soil respiration. With 
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half-hourly data provided from each site´s operators, we calculated NEE (in mol CO2m−2 s−1). The 

partitioning of the CO2 NEE flux measurements into Respiration and Gross Primary Productivity 

(GPP) was calculated following the nighttime approach using the Loyd-Taylor function 

(REICHSTEIN et al., 2005). The MDS algorithm (REICHSTEIN et al., 2005) was applied for gap-

filling of the variables: net ecosystem exchange (NEE), air temperature (Tair), and vapor pressure 

deficit (VPD). All the eddy covariance data processing and analysis were developed in R (R CORE 

TEAM, 2017), using the package ReddyProc (REICHSTEIN et al., 2016). Daily sum of GPP time-

series were weekly aggregated.  

 

Digital camera monitoring  

For each one of the study sites, a digital hemispherical lens camera Mobotix Q 24 (Mobotix 

AG —Germany) was placed at the top of the Flux Tower attached to an extension arm facing northeast 

at a mean vertical distance of 10 m from the tree canopy. Energy supply is a 12V battery charged by a 

solar panel. Cameras were configured to automatically take a daily sequence of five JPEG images (at 

1280 × 960 pixels of resolution) in the first 10 min of each hour, from 6:00 to 18:00 h (UTC−3; 

Universal Time Coordinated). The installation of each camera occurred at different times (see Table1). 

For data analysis, we used a time series spanning from 2013 to 2015 for the caatinga and the cerrado 

sites. Due to a sequence of gaps in data collection since camera setup, we decided to use only one year 

and three months of data from the rainforest site. We filled gap sequences of more than 7 days with no 

images recorded using the StructTS algorithm with a structure model fitted by maximum likelihood 

(see HYNDMAN and KHANDAKAR, 2008) in R language (R CORE TEAM, 2017) with package 

imputeTS.  

Image data analysis was conducted by defining regions of interest (ROI), as described by 

Richardson et al. (2007, 2009) and Alberton et al. (2014). For our main analysis, ROIs were based on a 

community approach, which encompasses the entire image excluding the portion of the field of view 

obstructed by the tower. A second approach was used to select our ROIs based on the trees crowns 

within the community ROI (see ALBERTON et al., 2014, 2017). Each individual crown selected from 

the original image was processed separately (Fig. S1). As high diverse tropical ecosystems may 
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encompass dozens of species in one single image, we aimed with this approach to verify and scrutinize 

the greening signals or the crows leafing behaviors within the community pattern among sites. The 

spatial and temporal variation of the crowns leafing behavior was considered to evaluate their influence 

in the camera-derived phenological pattern and in the context of the GPP analysis among sites. Time 

series associated with crowns (ROIs within the images) belonging to a given vegetation domain were 

analyzed in function of time, by evaluating their synchronicity, and rate of the Gcc curve values. We 

highlight that this perspective is based on analyzing tree crowns for the understanding of the overall 

community pattern. We did not examine species by species, since high diverse tropical forests may have 

not sufficient replicates for a meaningful interpretation of species behavior in the community fraction 

represented by the single image. 

 

Vegetation index time-series 

ROIs were analyzed in terms of the contribution of the relative brightness of the green, red, 

and blue color channels (RGB chromatic coordinates in WOEBBECKE et al., 1995) in relation to the 

primary colors (red, green, and blue). The normalized RGB chromatic coordinate (RGBcc) index is 

referred to as the most suitable index to detect leaf color changes, and the most efficient to suppress 

light variation (GILLESPIE et al., 1987; WOEBBECKE et al., 1995). We calculate the normalized 

index of the green and red color channels (Gcc and Rcc), as: 

𝑇𝑜𝑡𝑎𝑙𝑎𝑣𝑔 = 𝑅𝑒𝑑𝑎𝑣𝑔 +  𝐺𝑟𝑒𝑒𝑛𝑎𝑣𝑔 +  𝐵𝑙𝑢𝑒𝑎𝑣𝑔 

% 𝑜𝑓 𝐺𝑟𝑒𝑒𝑛 =
 Greenavg 

Totalavg
 

% 𝑜𝑓 𝑅𝑒𝑑 =
 Redavg 

Totalavg
 

Vegetation indexes were calculated for each of the five hourly images taken by the camera at 

each day, with a daily measurement extracted by taking the 90th percentile of all calculated daytime 

values. This procedure has been shown to minimize noise in the color channels series (RGBcc) related 

to the illumination effects of seasonal changes and time of the day (adapted by SONNENTAG et al., 

2012). Finally, time series were weekly aggregated. 
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Data Analysis 

Temporal models  

We examined temporal dynamics of leaf phenology and productivity, as well the effects 

between them and with the environmental factors, using additive mixed models (GAMM), applying a 

normal distribution, and an identity-link function. As initial scatterplots indicated, response variables 

GPP and Gcc (y-axis) presented multiple non-linear relationships with the covariates (time and 

environmental cues). As inherent to time series structure, we tested our data for some temporal 

autocorrelation among observations. Then, we nest our models with an Auto-Regressive Moving 

Average (ARMA) time series model, meaning that instead of assuming that errors are independently 

distributed, we assume that they are indeed correlated. Importantly, generalized additive models 

(GAM) or smoothing models are considered highly useful for modelling nonparametric responses. 

Their main assumption is that additive functions can be of smoothing, linear, step, quadratic or other 

function (HASTIE and TIBSHIRANI, 1990). We did not presume an a priori model for the association 

between response and predictors but instead allowed the data to inform this relationship. Also, the 

degree of smoothing of an additive model is expressed by the effective degrees of freedom (edf), which 

mean that the higher the edf, the lower is the linearity of the curve interaction.  

To describe the temporal patterns of the variables representing leaf phenology (Gcc and Rcc) 

and productivity (GPP) across the biomes, we fitted models using time as the smooth explanatory term.  

To investigate our main question, we first fitted single-variable models between GPP and the biotic 

(Gcc and Rcc) and abiotic (precipitation, CWD, PAR, and Tair) explanatory variables to evaluate the 

contribution of each factor separated on the productivity. Then, to understand the relative importance 

of phenology and the environmental variability over GPP across contrasting seasonal biomes, we fitted 

two multivariate full models: an abiotic model using the explanatory terms related to water (P and 

CWD), light demands (PAR), and mean air temperature (Tair), and a biotic-abiotic model by adding 

phenology as an explanatory term. All terms included in the multivariate models were previously 

checked for multicollinearity. By assessing the approximate significance parameters of the smooth 

and/or linear terms and the coefficient of determination from the models, we could compare the 
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performance between the single-variable, abiotic, and the biotic-abiotic models. All analysis were run 

in R language (R CORE TEAM, 2017) using base package mgcv (WOOD, 2006) for the generalized 

additive models. 

 

Spatial-temporal phenological dynamics 

To answer our third question, we carried out a visual analysis into the complete set of crowns 

ROIs in order to extract the onset date of phenological stages transitions. We select the leaf flushing 

onset as the phenophase to test the degree of synchrony of the crowns time series greening, and we 

analyze all the ROIs crows in function of time to evaluate timing and rate of the Gcc time series within 

each vegetation site. We applied circular statistics to calculate the mean angle or date correspondent to 

the most frequent date of leaf flushing onset (see MORELLATO et al., 2000; MORELLATO et al., 

2010). We divided the 360o of a circumference by 12 and each month of the year is represented by a 

range of 30o starting on January (midpoint 15o, see MORELLATO et al., 2010 for details). Then, we 

tested whether the mean onset data are significantly concentrated around the mean angle or date, as a 

proxy of seasonality by applying the Rayleigh test (Z), as suggested by Morellato et al. (2000, 2010). If 

the mean onset data are significantly concentrated around the mean angle or date, we consider the 

leafing pattern seasonal. The degree of synchrony represented by the length of the vector r has no unity 

and ranges from 0 (no synchronicity) to 1 (perfect synchrony). We performed circular analyses per 

study site, for all the crowns using Oriana 4.0 (Kovach Computing Services). 

 

3 RESULTS 

3.1 Temporal patterns of phenology and productivity across sites  

Phenocam indices revealed seasonal patterns for all sites despite their degree of seasonality 

(Fig. 3). In general, Gcc and Rcc indexes showed inverse relationship, with Gcc presenting higher values 

from the late dry season towards the wettest months, which are related to the leaf flushing of the 

vegetation community, while Rcc highest values were prevalent along the driest periods, which are 

mainly related to the process of senescence and the decrease of green biomass. Curve oscillations, 

which means the peaks and valleys of Gcc and Rcc values along time, presented different patterns across 
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sites.   

The Gcc pattern for the caatinga vegetation presented marked seasonality, with an abrupt green-

up precisely at the beginning of the wet season and a relatively abrupt green-down starting at the end 

of the wet season. During the dry season, low values of Gcc were nearly constant giving a flat pattern 

to the curve. Within the wet period, Gcc showed oscillations with peaks and valleys that followed 

precipitation events (Fig 3 A). The rest season corresponding to the driest months was long (from April 

to November) presenting few or none Gcc oscillations, but not reaching zero, which indicates the 

presence of some green biomass. Cactaceae family species as the Facheiro (Pilosocereus pachycladus 

F.Ritter) can be found through all the year in the images and are likely responsible for sustaining Gcc 

values during dry season. In the cerrado vegetation, Gcc presented a market green-up earlier, yet in the 

dry season, and a slower green-down, in comparison to the caatinga site. The cerrado green-down 

started by the end of the wet season and extended until the end of the dry season (Fig. 3 C). For the 

rainforest, green-up started right in the driest month with a progressive increase towards the wet period 

(Fig. 3 E). Green-down started from the middle of the wet season and was less abrupt than the caatinga 

but with a higher decrease in a shorter time if compared with the cerrado site.  

Rcc curves demonstrated an inverse pattern to Gcc in the wet seasons across all sites. Within 

the dry periods, Rcc for the caatinga peaked at the beginning of the dry season followed by a linear 

decrease towards the mid to the end of the dry season (Fig. 3 B). Inversely, in the cerrado site, Rcc time 

series increased by the end of the wet season peaking by the end of the dry season (Fig. 3D). In the 

late dry season (August), red increasing did not follow the inverse pattern with Gcc; in fact, they 

increased together (Fig.2C and D). This pattern is linked to the colorful, reddish new leaves, produced 

right at the start of the community leaf flushing. Rcc curve from rainforest site was higher for winter 

time, just when Gcc scores have decreased, and showed the lowest range of values of all sites (min= 

0.3074/max= 0.3176). This may indicate an absence of a massive leaf senescence in the community. 

Instead, species leaf turnover may be occurring along the all year.  

As occurred for the camera-vegetation indices, sites also presented differences regarding GPP 

seasonality (Fig. S4). Productivity started to increase within the wet season in the caatinga and cerrado 

sites (Fig. S4 A and B), while in the rainforest GPP, curve oscillations did not present a tightly link 
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with the precipitation events (Fig. S4 C). There were discrepancies regarding amplitude and range of 

GPP values among sites, with caatinga presenting the lowest values (min=0/max=5.88 umol CO2 m-2 

s-1), followed by cerrado (min=0.40 umol CO2 m-2 s-1 / max=11.00 umol CO2 m-2 s-1) and rainforest 

(min=2.39 umol CO2 m-2 s-1/max=11.02 umol CO2 m-2 s-1). The cerrado vegetation presented the 

highest range of productivity (10.60 umol CO2 m-2 s-1).   

 

3.2 Camera-derived phenology and GPP relationships 

Temporal models were significant between GPP and Gcc for all vegetations, and between GPP 

and Rcc for the cerrado and rainforest sites (Table 2). Gcc and GPP from the caatinga site presented the 

most coincident pattern, with both time series demonstrating similar oscillations during growing 

season, but with Gcc never reaching zero (Fig. 4 A). Single variable model fitted between GPP and Gcc 

in the caatinga site showed an exponential high relationship (R2 = 0.70), while the relationship between 

GPP and Rcc was not significant (Fig. 5A and B). In the cerrado, there was a displacement between 

GPP and Gcc curves (Fig. 4B). While Gcc presented its marked green-up and peak in the transition from 

dry to the wet season, GPP started increasing within the wet season, reaching its peak in the mid of the 

wet period. Green-down and decreasing of productivity were less coincident during the year cycle of 

2014/2015 than the ones observed for previous years (Fig. 4B). GPP and Gcc presented a sigmoidal 

function relationship (R2 = 0.30) and the strongest relationship with Rcc (R2 = 0.44) among all sites 

(Fig. 5 C and D). Gcc green-down pattern in the rainforest occurred in delay when compared to the 

GPP curve, and the green-up started ahead to the productivity increases (Fig. 4C). GPP pattern was 

significantly explained through sigmoid curves (Fig. 5 E and F) by Gcc (R2 = 0.40) and Rcc (R2 = 0.36).  

 

3.2 Environmental cues and GPP relationships 

Among all sites, GPP presented significant relationships with environmental cues (Table 2). In 

the caatinga, significant relationships were found only for water related variables. The cumulative water 

deficit (CDW) was the most important climatic factor (R2 = 0.32), showing an inverse sigmoid 

interaction with decline values of GPP (Fig. 6A), followed by the precipitation (R2 = 0.24). Between 

the two multivariate models, biotic-abiotic performed better (R2 = 0.78) than the abiotic model (R2 = 
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0.67). In the cerrado, precipitation was the best predictor of GPP (R2 = 0.36) with a polynomial function 

and a low threshold of precipitation values (until 10 mm) for GPP increase (Fig. 6B), followed by Tair 

(R2 = 0.19), PAR (R2 = 0.17), and CWD (R2 = 0.15). The biotic-abiotic model obtained the best 

performance in predicting GPP (R2 = 0.76). GPP patterns from the rainforest site presented significant 

interactions only with the variable mean air temperature (Tair – R2 = 0.25) that showed a sigmoidal curve 

of interaction with GPP reaching highest values above 17.5 °C (Fig. 6C) and, like the other sites, the 

biotic-abiotic models had the best relationship with productivity (R2 = 0.40).  

 

3.3 Spatial-temporal crowns greening dynamics  

A total of 212 ROIs representing plant crowns from the images were selected among all sites, 

distributed along 35 ROIs for the caatinga, 72 ROIs for the cerrado and 105 ROIs for the rainforest 

(Fig. S1). From these number of ROIs, we were able to extract the onset day of the leaf flushing 

phenophase for a reduced number, due the loss of plant individuals for mortality and coverage by 

nearby crowns or lianas across the years. At the end, visual inspection was carried out for 31 ROIs 

from caatinga, 46 ROIs from the cerrado and 94 ROIs from the rainforest. Onset dates from these 

individuals generated the synchronicity index represented by the Rayleigh test (Fig. S2). Caatinga was 

the vegetation community that reached the highest synchronicity among their ROIs crowns leafing 

behaviors (r = 0.98, mean angle = 334°), followed by the cerrado (r = 0.89, mean angle = 261°) and 

the rainforest (r = 0.37, mean angle = 333°). 

The high degree of synchrony by the caatinga and the cerrado vegetations is demonstrated by 

the temporal patterns of crowns ROIs greening signals in Figure 7. Nearly all crowns from the caatinga 

presented similar timing regarding leaf phenological transitions, with coincident greening patterns by 

the start and end of the wet period (Fig. 7 A). In the cerrado site, Gcc crowns green-up were 

concentrated at the end of the dry season, and with groups of individuals green-up entering the wet 

period, demonstrating groups flushing at different times along the wet season (Fig. 7B). Greening 

signals related to crowns from the rainforest showed the less synchronic patterns, with not 

concentrations of marked Gcc transitions along the period. Instead, Gcc curves presented a flatter shape 

or seasonal changes more distributed at different times of the year, not only during dry season (Fig. 
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7C). 

 

4 DISCUSSION 

4.1 Leaf phenology, water/light relationship and the GPP across contrasting tropical biomes  

Temporal patterns of tropical ecosystem productivity and leaf phenology production were 

significant correlated across all vegetations studied, and presented the strongest relationships, when 

compared with the GPP and environmental variables interactions. Across our contrasting biomes, we 

reported a much stronger coupled relation between GPP and Gcc for the caatinga site (R2 = 0.70), when 

compared to the cerrado (R2 = 0.30) and rainforest (R2 = 0.40). The only comparable study on seasonal 

tropics reporting GPP-Gcc relationships for an Australian savanna (MOORE et al., 2017) showed that 

community Gcc had different performances for understory and overstory layers, with the grasslands 

component better coupled with carbon fluxes (R2 = 0.65) than shrubs and trees (R2 = 0.23). Studies 

investigating GPP prediction by camera-derived indices are concentrated on the north hemisphere (e.g.: 

RICHARDSON et al., 2007; AHRENDS et al., 2009; MIGLIAVACCA et al., 2011; PEICHL et al., 

2014). Gcc index performed well by correlating with GPP across temperate deciduous forests, explaining 

over 80% of the carbon fluxes seasonality (RICHARDSON et al., 2007; AHRENDS et al., 2009; 

TOOMEY et al., 2015).  

We confirmed the strong relationships between GPP and phenology in our results. In spite of 

that, there was also an important influence of climatic constrains over productivity on the seasonal 

ecosystems of caatinga and cerrado. In fact, when we compared abiotic (just environmental factors) and 

biotic-abiotic models (environmental factors and greening), we notice an improvement of explanation 

when phenology and environmental terms are added together in the model. For the caatinga vegetation, 

the GPP patterns closely following the precipitation presented similarity to the few records of 

productivity rates derived from MODIS products, also characterized by the fast vegetation response to 

moisture pulses (SILVA et al., 2013; MORAIS et al., 2017). The caatinga greening and GPP curve 

oscillations during the wet season have been also described for carbon fluxes from other high seasonal 

ecosystems, such as temperate grasslands (BROWN et al., 2016; MURRAY-TORTAROLO et al., 

2016).  



111 
 

The cerrado productivity observed here followed the expected pattern for wet savannas 

(MIRANDA et al., 1997; CHEN et al., 2003), with GPP likely constrained by a wet-dry climate, high 

rates of GPP along the wet season, and a steep decrease in the driest months. For savannas, seasonal 

patterns of rainfall and changes in soil water content have been tightly coupled with productivity indices 

as GPP (CHEN et al., 2003). Rainfall plays a critical role in determining the distribution of GPP of 

distinct tropical vegetation types, ranging from rainforests to arid grasslands (KANNIAH et al., 2010).  

We did not find any previous publications reporting GPP patterns from Atlantic Forest. 

However, for evergreen tropical sites across the world as well as Central Amazon forests, seasonality 

increases photosynthetic capacity during dry season, indicating not prevalent climatic constrains 

(BRANDO et al., 2010; GUAN et al., 2015; WU et al., 2016). In the case of our Atlantic rainforest, we 

notice a decrease of ecosystem photosynthesis during the coldest and driest months, characterized by a 

lowest mean air temperature when compared with other tropical evergreen forests, which are explained 

by the local elevated altitude of 1,056 m a.s.l (MARCHIORI et al., 2016). Ground biomass studies 

carried out in the same site indicated an increase in the stocks of carbon and nitrogen along a gradient 

of elevation, suggesting a relationship of decreasing temperature with reduced photosynthetic activity, 

since colder soil temperatures would tend to lose less carbon to the atmosphere (RAICH et al., 2002; 

VIEIRA et al., 2011; MARCHIORI et al., 2016). Also, temperature has been reported as an important 

factor influencing several biogeochemical terrestrial processes (WU et al., 2011). The interaction of 

temperature and rainfall and its influence on tropical productivity has been recently reported, where 

high rainfall can decrease C cycling rates when interacting with cool temperatures (< 20°C), while in 

warm forests (> 20°C), rainfall and temperature interaction produces the opposite effect (TAYLOR et 

al., 2017). 

 

4.2 Leaf phenology spatiotemporal dynamics and ecosystem productivity across seasonal biomes 

Through the crowns greening analysis carried out in the present study, we teased apart the 

composite greening signals of the vegetation communities and indicated, for each vegetation, the 

dominant patterns that represent the community and affect carbon fluxes, providing us insights about 

how phenological dynamics were triggering or dampening photosynthesis dynamics of each 
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ecosystems. The evaluation of the spatial and temporal phenological dynamics from individual crowns 

greening patterns within digital images have been reported for other studies involving camera-derived 

leafing patterns description and spatial variability (RICHARDSON, 2009; LOPES et al., 2016; 

NAGAI et al., 2016), as well as to investigate GPP patterns (AHRENDS et al., 2009).  

Caatinga and cerrado, the most seasonal sites, presented higher synchronicity in terms of time 

and rate of crowns greening signals, while rainforest has demonstrated a non-seasonal pattern with 

crowns Gcc curves distributed along the all period or with no marked seasonality and synchronicity 

among crowns. Based on theories of community and phenology dynamics, we made inferences 

regarding the synchronicity dynamics across sites. Shorter growing seasons would concentrate species 

occurrence at the same time, while longer growing seasons would facilitate species life cycles to 

different times of the year. This could affect the way competition influence species dynamics as well, 

swinging from a relative strength of interspecific competition in the first case, to a intraspecific 

competition in the latter (see more in MITTELBACH, 2017). Climatic constrains appear to underlie 

this effect with more strength from the Equator towards higher latitudes (USINOWICZ et al., 2017).  

Due the high variation of seasonal and inter-annual climatic conditions in tropical vegetations, 

there is a high diversity of physiological and phenological strategies of plants to cope with changes in 

water availability (MURPHY and LUGO, 1986; LEHMANN et al., 2009; VICO et al., 2015). While 

evergreen species would be favored by short dry seasons length or by the ability to access groundwater 

or water stores, on the other hand, high inter-annual seasonality of wetter periods would be favoring 

the occurrence of different deciduous phenological strategies (REICH, 1995; RIVERA et al., 2002; 

VICO et al., 2015; CAMARGO et al., 2018).  

There is a lack of knowledge regarding the mechanisms controlling leaf phenology strategies 

of individual plants due their complexity (BORCHERT and RIVERA, 2001; CAMARGO et al., 2018) 

and the high diversity of plant species and strategies in the tropics. Nevertheless, we can classify our 

plants into three main leaf phenological strategies (EAMUS and PRIOR, 2001; SINGH and 

KUSHWAHA, 2005; ELLIOT et al., 2006): (i) opportunistic drought deciduous species, mainly driven 

by water availability and leaf flushing following the first rainfall events indicating the start of the wet 

season; (ii) schedule drought deciduous species, independent of water availability and mainly driven 
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by photoperiod, temperature, or radiation, with leaf flushing before or early the wet season; and (iii) 

evergreen species, able to shed new leaves asynchronously throughout the year. Each strategy imposes 

its own risks to plants given the ecological tradeoffs of each case. That is why a nuanced of species 

strategies may be found in the tropics rather than the prevalence of one, given the variation in changes 

of rainfall availability and predictability (VICO et al., 2015; CAMARGO et al., 2018).   

Hereafter, we discuss based on the climatic seasonality imposed on each biome and by 

assessing the crows leafing behavior within the vegetation communities, how leaf phenology 

controlling productivity may change across the biomes.  

 

4.2.1 High synchronic leaf phenology and productivity in seasonally constrained vegetation: the 

caatinga case 

The temporal patterns of leaf production and ecosystem productivity in the caatinga were very 

coincident with both presenting multiple seasonal cycles within the wet period. This irregular pattern 

visually followed shortly the moisture pulses) or tracked the reduced deficit of water as by the temporal 

models. Similar patterns were detected by cameras across other ecosystems such as the grasslands, 

where there is a vegetation dependent on the inter-annual variation of precipitation rates (BROWN et 

al., 2016; RICHARDSON et al., 2018). Phenological direct observations of caatinga commonly 

recorded flowering and flushing phenophases as a consequence of precipitation with formation of new 

leaves immediately after the rainfall event (CARVALHO and BARBOSA, 1989; MACHADO et al., 

1997; ARAÚJO; CASTRO; ALBUQUERQUE, 2007).  

High synchronicity among crowns leafing behaviors suggests a common high influence of 

climatic factors triggering leaf phenophases. The harsh seasonal conditions lead the caatinga to be 

mainly composed of opportunistic drought deciduous species described above, avoiding dry season 

stress and constrained their leafing to periods of water availability (see VICO et al., 2015). Leaf flushing 

in opportunistic drought deciduous species are usually synchronous and responsive to water availability. 

There are cases, where species may respond to other precedent cues such as atmospheric water 

decreases, but in general still associated with small rainfall events (MURPHY and LUGO, 1986; 

BORCHERT, 1994; WILLIAMS et al., 1997). Year-to-year high interannual variability in the 



114 
 

precipitation rates contribute to the variability of the onset community leaf flushing and occasionally to 

be more or less intense (MACHADO et al., 1997). Thus, climatic constrains in the caatinga and leaf 

phenology are tightly coupled and then varying together, what mostly explains the high correlation 

between phenology and GPP in a very water dependent ecosystem. Despite that, we highlight the model 

improvement when phenology is added in the biotic-abiotic model (R2 = 0.78).  

 

4.2.2 Leaf phenology synchronicity and productivity in a mid-seasonal ecosystem  

The woodland cerrado temporal patterns of leaf production and productivity demonstrated a 

marked seasonality with a lower degree of asynchrony between crowns compared to caatinga. Green-

up onset occurred yet in the late dry season, a pattern shared by savannas, with the input of new leaves 

preceding the massive rainfall events (e.g.: MONASTERIO and SARMIENTO, 1976; WILLIAMS et 

al., 1999; PIRANI et al., 2009; MUNHOZ and FELFILI, 2005; RYAN et al., 2016; ADOLE et al., 

2016). The onset of GPP occurred after entering the wet season and demonstrated to be mainly 

correlated with the seasonal patterns of precipitation, following the leaf flushing. 

Plant species from less harsh climatic conditions, as our study cerrado, may be able to cope 

with water limitations and find longer and wetter periods to produce new leaves still during the dry 

season (BORCHERT, 1998). Cerrado trees, for example, may use deep roots to exploit deeper soil 

water sources and be able to flush new leaves in the late dry season (EAMUS, 1999; SCHOLZ et al., 

2008; ROSSATO et al., 2012). A high synchronic pattern was demonstrated by the crowns greening 

behaviors from the studied cerrado community and a timing concentration of leafing onset at the end of 

the dry season in September. This behavior characterizes schedule drought deciduous species, or those 

capable of enduring droughts by developing adaptations to maximize their carbon gains without 

experiencing stress (SCHOLZ et al., 2002; VICO et al., 2015; ELLIOT et al., 2006). Schedule drought 

deciduous are mainly driven by consistent factors such as photoperiod and demonstrate high 

interspecific synchronicity and low inter-annual variability on the leaf flushing dates (VICO et al., 2015; 

CAMARGO et al., 2018).  

 We conclude from our results that both: climate, mainly through water relations, and 

phenology, represented by a larger range of leaf strategies including schedule drought deciduous 



115 
 

species, contribute to the seasonal patterns of GPP in the cerrado. Our finding concurs with general   

expectation that savanna productivity would be predicted by a complex interaction of climatic and 

phenological factors (KANNIAH et al., 2011; WHITLEY et al., 2011; MA et al., 2013, 2014; MOORE 

et al., 2017). 

 

4.2.3 Leaf phenology asynchrony explains productivity of less seasonal ecosystems  

The degree of synchronicity of rainforest crowns greening, calculated based on the visual 

inspection of the crowns greening signals was the lowest among the three ecosystems studied, typical 

for a non-seasonal vegetation. In fact, leaf flushing dates were concentrated in two main periods 

(December and March), demonstrating a bimodal pattern. The production of new leaves slowed down 

during the colder and driest months, with most of Gcc curves presented a flat pattern in the driest month 

(August). Seasonality in the phenological transitions of leafing and flowering were demonstrated by 

other Atlantic Rainforest locations, belonging to the same latitude of our study site (e.g.: 

MORELLATO et al., 2000; BENCKE and MORELLATO, 2002; PEREIRA et al., 2008). The driest 

months are also the colder ones, concentrated in June, July, and August, and the community leaf 

flushing increase is marked in the transition from the driest to the wettest months, during September 

and October (MORELLATO et al., 2000), which coincides with the pattern tracked by the cameras in 

our study.  

The Gcc and Rcc values detected for our rainforest were the highest and lowest, respectively, 

among our three vegetations. This outcome, in association with the low degree of synchronicity of the 

crowns greening are explained by the predominance of evergreen species in this vegetation biome 

(MORELLATO et al., 2000; BENCKE and MORELLATO, 2002). The dominance of evergreen 

species strategists, or plants retaining their foliage year-round and simultaneously exchanging new 

foliage and senescing old ones, may sustain vegetation indices values due persistent green biomass 

along the all year (see RICHARDSON et al., 2018). The evergreen species show asynchronous activity 

throughout the year, without apparent seasonal changes in their leaf are index (LAI) and, therefore, 

endure drought by physiological adaptations that are not yet well clear in the literature (BORCHERT, 

1994; NEPSTAD et al., 1994; REICH, 1995; BORCHERT, 1998). 
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Despite the influence of low temperatures in the GPP patterns, the Atlantic rainforest showed 

a reduced influence of environmental factors. Given that evergreen species tend to be more 

independent from seasonal environmental constrains (BORCHERT, 1998), we suggest that leafing 

phenology is exerting the main control over the temporal patterns of ecosystem productivity in the less 

seasonal biome of Atlantic rainforest.  

We also suggest that the moderate effect between phenology and GPP in the rainforest 

vegetation is partially influenced by the seasonal low ranges of temperature during dryer months. We 

also recognize the fact that evergreen phenological patterns may be underestimated for being more 

complicated to be tracked by camera-derived indices (TOOMEY et al., 2015; NAGAI et al., 2016; 

LOPES et al., 2016; RICHARDSON et al., 2018). Also, the vegetation index here applied, derived 

from RGB color channels sensors as the phenocams, may not be able to follow the stages of leaf 

maturation precisely, since that the chromatic coordinates are more sensitive to light colors and would 

better indicate the seasonality of leaf production (see LOPES et al., 2016). The importance to consider 

leaf aging stages on the response of productivity has been reported for tropical evergreen forests (WU 

et al., 2016).  

 

5 CONCLUSIONS 

A fine-scale phenological monitoring using the repeated photograph technic is unprecedent 

for the Caatinga dry forest, Brazilian savanna and the Atlantic Rainforest. In the case of the Cerrado, 

cameras have already been applied for species and community levels of tropical savannas, used in the 

context of method validation with ground observations for woody cerrado (ALBERTON et al., 2014) 

and in ecosystem productivity studies in Australian savannas (MOORE et al., 2017). The addressed 

questions in this study, involving tropical sites under different seasonality constraints, are a significant 

step towards the understanding of ecosystem functionality. Accordingly, phenology and its confident 

representation is a key parameter to be considered in climate e biogeochemical cycle models (MA et 

al., 2013). Carbon fluxes relationships with the canopy development are still underexplored and not 

well described for the tropics. Despite the existence of record from GPP seasonality and dynamics for 

tropical seasonal sites, the actual knowledge about how phenology and GPP covary is still limited, and 
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we offer the first strong evidence of leafing phenology shaping GPP patters across seasonally dry 

tropical biomes. Even considering GPP patterns and controls still need further investigation, the data 

analyzed here, combining hourly digital images and high frequency eddy covariance measurements, 

is unprecedent for the tropics and brings the first modeling of biotic and abiotic controls of productivity 

and photosynthesis seasonality.  

We bring evidences of a complex interaction of both environmental and phenology controlling 

productivity in tropical ecosystems. Temporal patterns of GPP across biomes varied and presented 

distinct differences that at some extent confirmed the hydroclimate hypothesis initially proposed. 

Caatinga vegetation was constrained by the strong dry season and leafing and GPP patterns were 

coupled in a climatic-phenological interaction, while reduced influence of climatic and phenological 

seasonality defined GPP seasonality for the cerrado, and a strong relation of GPP and phenology in 

the less seasonal rainforest. Camera-derive phenology is, therefore, a good proxy for productivity in 

high synchronic and seasonal tropical ecosystems, as the caatinga.  

Importantly, the outcomes reported on this study were only possible due a multi-site 

comparison analysis, enabling the observation of the nuances of the leaf phenology dynamics and GPP 

patterns across biomes. We highlight the impacts of future changes on water regimes for the tropics 

over the productivity of seasonal vegetations, also affecting phenological responses of species, on 

seasonal tropical ecosystems (VICO et al., 2015; MORELLATO et al., 2016, RESTREPPO-COUPE 

et al., 2017).  
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Figure legends 

 
Figure1 Map showing the location of the study sites and flux towers (circles) of each vegetation type 

belonging to a biome (following of Olson et a. 2001 classification) with its respective Walter & Lieth 

climate diagram. A) caatinga; B) cerrado; C) rainforest 

Figure 2 Mean monthly time series across the ecosystem sites with contrasting seasonality conditions. 

From upper to bottom panels: Photosynthetic Active Radiation (PAR umol m-2 s-1) on the primary y 

axis, with mean air temperature (Tair °C) and vapor pressure deficit (VPD kPa) on the secondary y 

axis; followed by, on the primary y axis, cumulative precipitation (Precipitation mm/mo-1), 

Evapotranspiration (ET mm/mo-1), and cumulative water deficit (CWD mm). 

Figure 3 Weekly time series of the camera-derived color indices, Gcc and Rcc, for each vegetation 

community site: caatinga (A and B panels), cerrado (C and D panels) and rainforest (D and E panels). 

Blue bars represent weekly cumulative precipitation time series (Precipitation mm), and gray shaded 

areas, the dry season length. 

Figure 4. Weekly Time series of gross primary productivity (GPP - black circles, umol CO2 m-2 s-1) 

and Gcc (green chromatic coordinate, green circles) for the (a) caatinga; (b) cerrado; and (c) rainforest. 

All data period of measurements of each variable is featured in each plot.  

Figure 5 Partial fits of the temporal additive mixed models between the GPP and the explanatory 

variables of Gcc and Rcc across the vegetation sites with contrasting seasonality conditions: caatinga 

(A and B), cerrado (C and D), rainforest (D and E). 

Figure 6 Partial fits of the temporal additive mixed models from the best relationships between GPP 

and the environmental terms of CWD, Precipitation and mean air temperature (Tair) across the 

vegetation sites with contrasting seasonality conditions: caatinga (A and B), cerrado (C and D), 

rainforest (D and E). 

Figure 7 Temporal additive mixed models representing the crowns ROIs Gcc time series of each 

vegetation site: caatinga (A); cerrado (B); and rainforest (C).  
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Table 1 Sites descriptions. 

 

Vegetation 

type 

Site name – 

Lat/Long. 

Location Canopy 

height 

Biome  

Measurement period Mean 

Annual 

Precipitation 

(MAP) (mm 

year -1) 

Dry 

Season 

Precipita

tion 

(DSP) 

(mm 

month -1) 

Dry 

Seaso

n 

Lengt

h 

(DSL) 

(mont

hs) 

Eddy 

Covariance  

Phenocam 

 

Caatinga 

Embrapa 

Semi-árido 

- 9°05’S; 

40°19’ W 

Petrolina

, PE, 

Northeas

t Brazil 

 

5 m 

 

desert 

and 

xeric 

shrubl

and 

 

01/Jan/2013 

to 

31/Dec/2015 

 

10/May/20

13 to 

31/Dec/201

5 

 

260 mm 

 

75 mm 

 

8 

 

Cerrado 

 

Pé de 

Gigante - 

47° 34’ – 

47° 41’ W, 

21° 36’ – 

21° 44’ S 

Santa 

Rita do 

Passa 

Quatro, 

SP, 

Southeas

tern 

Brazil 

 

12 m 

 

grassla

nds, 

savann

as & 

shrubl

ands 

 

01/Jan/2013 

to 

31/Dec/2015 

 

26/Aug/201

3 to 

31/Dec/201

5 

 

1,150 mm 

 

289 mm 

 

6 

 

Rainforest 

Santa 

Virgínia - 

23º17'-

23º24'S; 

45º03'-

45º11'W 

São Luiz 

do 

Paraiting

a, SP 

 

30 m 

Moist 

broadl

eaf 

forest 

01/Jan/2013 

to 

31/Dec/2015 

17/Out/201

4 to 

31/Dec/201

5 

1,800 mm 45 mm 1 
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Table 2 Temporal additive mixed models analysis of variables (that is, Green chromatic coordinate, 

Gcc; Red chromatic coordinate, Rcc; Cumulative Precipitation, Rain; Cumulative water deficit, CWD; 

Photosynthetic active radiation, PAR; mean air temperature, Tair) explaining Gross Primary Productivity 

(GPP) for each ecosystem site. All the p values were < 0.001. 

 

 

Models 

Sites 

caatinga cerrado rainforest 

edf F test Adj. R² edf F test Adj. R² edf F test Adj. R² 

Single-variable model 
         

GPP = s(Gcc) 3.57 65.91 0.71 2.90 14.84 0.30 3.18 10.44 0.40 

GPP = s(Rcc) n.s n.s n.s 3.14 25.02 0.45 2.77 3.90 0.36 

GPP = s(Rain) 3.79 10.75 0.25 3.24 7.84 0.37 n.s n.s n.s 

GPP = s(CWD) 3.46 16.22 0.32 2.89 2.44 0.15 n.s n.s n.s 

GPP = s(Tair) n.s n.s n.s 2.69 3.19 0.19 2.21 2.30 0.25 

GPP = s(PAR) n.s n.s n.s 2.93 2.52 0.18 n.s n.s n.s 
          

Abiotic model - - 0.67 - - 0.57 - - 0.25 
          

Biotic-abiotic model - - 0.78 - - 0.76 - - 0.40 

                    

Adj. R2 = adjusted coefficient of determination; n.s = not significant at P < 0.001 
Abiotic final models: caatinga, GPP = s(CWD) + s(rain); cerrado, GPP = s(rain) + s(PAR) + s(Tair); rainforest, GPP = s(Tair). 

Biotic-abiotic final models: caatinga, GPP = s(Gcc) + s(rain); cerrado, GPP = s(Gcc) + s(Rcc) + s(rain) + s(Tair); rainforest, GPP = s(Gcc) + 
s(Rcc) + s(Tair). 
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Fig. 1 
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Fig.2  
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Fig.3  
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Fig. 4 
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Fig. 5 
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Fig.6  
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Fig. 7 
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Supplementary Material 

 

LEAF PHENOLOGY CORRELATES TO GROSS PRIMARY PRODUCTIVITY: AN INTER-

COMPARISON ACROSS SEASONALLY CONTRASTING TROPICAL BIOMES 

Bruna Alberton
1*

, Andrew Richardson
2,3

, Ricardo Torres
4

, Humberto Rocha
5

, Magna S. B. De 

Moura
6

, Leonor Patricia Cerdeira Morellato
1 

 

Figure S1 Original hemispherical images showing the single crowns manually selected within each one 

of the vegetation sites. A - caatinga with 31 crowns ROIs selected; B - cerrado with 46 crowns ROIs 

selected; and C -rainforest with 94 crowns ROIS selected in the image. 

  



136 
 

 

Figure S2 Circular histograms of leaf flushing onset for the years of study from the crowns ROIs 

selected within the images of each site: a) caatinga; b) cerrado; and c) rainforest. The arrows point to 

the mean angle or date (ᾱ) where most of the crows’ ROIs were considering flushing new leaves from 

the visual inspection; the length of the arrow indicates the value of the r vector and represents the 

synchronicity of the crowns ROIs leafing around the mean date. The r variable has no units and varies 

from zero to one (when all the data are concentrated at the same direction or angle; see Methods for 

details). N represents the number of crowns ROIs observed during visual inspection. 
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Figure S3 A sample of the original hemispherical images taken during wet (upper panels) and dry season 

(below panels) for each vegetation site representing a different biome – A Caatinga – B Cerrado – C 

Atlantic Rainforest. 
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Figure S4 Weekly time series of daily sums of Gross Primary Productivity (GPP umol CO2 m-2 s-1) 

patterns for the ecosystem sites of caatinga (A), cerrado (b) and rainforest (C). Blue bars represent 

weekly cumulative precipitation time series (Rainfall mm), and gray shaded areas, the dry season length. 
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Figure S5 Temporal additive mixed models of the crowns ROIs daily Gcc time series from the caatinga 

vegetation site. 
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Figure S6 Temporal additive mixed models of the crowns ROIs daily Gcc time series from the cerrado 

vegetation site. 
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Figure S7 Temporal additive mixed models of the crowns ROIs daily Gcc time series from the rainforest 

site. 
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Section 4 
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Here, I present the key results, developed during my doctoral thesis, related to the e-science 

framework where my thesis was developed. Our studies were conducted in the context of the e-

phenology project (see Mariano et al., 2016) and were associated with the e-phenology phenocam 

network.  

First, the development of a phenological database was one of the first devised goals, due to the 

need of organize the enormous bulk of information generated and aggregated to the e-phenology project. 

The database was delineated in the context of the e-phenology network and it is the starting point of the 

management of our high-volume imagery and ecological and phenological associated dataset (Mariano 

et al. 2016). It integrates the ground-based direct phenological observations carried out in a long-term 

monitoring program (Long-term Cerrado Phenology project – 

http://www.recod.ic.unicamp.br/ephenology/) and the repeated daily imagery from the digital cameras. 

It also includes site base information, sensor derived-data from the site´s weather stations and plant 

ecological traits from individuals and species.  

The automatization of data processing was also an important step to make analysis of thousands 

of hundreds of images faster and to create a standard protocol of image processing. A Java interface, 

called PhenoViewer (unpublished software), was created by the computer scientists team (J. Almeida 

Jr and collaborators) and optimized by the user group according to the user’s feedbacks and tasks needed 

along the last years. The image processing tool was developed with the purpose of pre-processing 

(organization with unfolder and renaming tasks) and processing (vegetative indexes calculation) the 

high volume of images of the e-phenology network.  

The further steps relate to several analytical tool explored to the analyses of phenocam images. 

The use of machine learning algorithms to plant species identification in the image data provides 

important steps of image analysis, which is the automatic identification of each plant crown of the within 

the vegetation image (Almeida et al., 2014). Through the years, several approaches have been proposed 

to support the identification of individuals of particular species from phenocam imagery (Almeida et 

al., 2014; Almeida et al., 2015, Almeida et al., 2016; Faria et al., 2016a; Faria et al., 2016b). Works 

related to this task can be divided into two main groups: those based on the use of machine learning 

fusion approaches, and those based on time series representations. Examples of initiatives of the first 
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group are the works of Almeida et al., (2014) and Faria et al., (2016a). Almeida et al., (2014), for 

example, proposed an Adaboost-based framework for combining multiscale classifiers with the 

objective of recognizing plant species within vegetation images. The other trend is focused on time 

series representations (Almeida et al., 2016, Faria et al., 2016b). Almeida et al., (2016), for example, 

proposed two different time-series-based visual rhythm representations to support plant species 

identification. These representations are more efficient to be processed and yielded effective results in 

plant species identification tasks. All those works use general-purpose color and texture descriptors to 

represent image regions. 

Regarding the visualization of phenological time-series, the PhenoVis, a visual analytics tool, 

was developed to provide a more insightful way to deal with camera-derived phenological time-series. 

Its application is based on the problematization of using average pixels values for the vegetation index 

(e.g.: Gcc) calculated from a given Region of interest (ROI) in the image. Different images representing 

distinct phenological stages of the vegetation may share the same average of Gcc values. In the work of 

Leite et al., (2016), we introduced the Chronological Percentage Maps (CPMs), a visual mapping 

technique that combines pixels derived distribution from all images of a given time period to create a 

normalized stacked bar chart. Thus, the PhenoVis tool encompasses the CPMs, designed for a more 

expressive representation of phenological time series combined with a color-coded information, and 

supports comparative analysis of phenological data for multiple years with algorithms allowing search 

for phenological patterns similarity and filters for specific time periods or regions. 

List of published articles originated from the e-science collaborations described above: 

ALMEIDA J., SANTOS, JA, ALBERTON, B., MORELLATO, L.P.C., TORRES, R.S. Phenological 

visual rhythms: compact representations for fine-grained plant species Identification. Pattern 

Recognition Letters, v. 81, p. 90-100, 2016. (APPENDIX B) 

 

FARIA F. A., ALMEIDA, J., ALBERTON, B., MORELLATO, L.P.C., ROCHA, A., TORRES, R.S. 

Time series-based classifier fusion for fine-grained plant species recognition. Pattern Recognition 

Letters, v. 81, p. 101-109, 2016. (APPENDIX C) 
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FARIA F. A., ALMEIDA, J., ALBERTON, B., MORELLATO, L.P.C., TORRES, R.S. Fusion of 

Time Series Representations for Plant Recognition in Phenology Studies. Pattern Recognition 

Letters, v. 83, p. 205-214, 2016. (APPENDIX D) 

 

LEITE, R.A., SCHNORR, L, ALMEIDA JR, TORRES, R.S., ALBERTON, B., MORELLATO, LPC, 

COMBA, J. PhenoVis – Visual Phenological Analysis of Forest Ecosystems. Information Sciences, 

v. 372, p. 181-195, 2016. (APPENDIX E)  

 

ALMEIDA, J., PEDRONETTE, D., ALBERTON, B., MORELLATO, L.P.C., TORRES, R.S. 

Unsupervised distance learning for plant species identification. JSTARS Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, v. 9 (12), p. 5325-5338, 2016. (APPENDIX F) 
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CONCLUSIONS 

In the present thesis, I intended to incorporate a novel approach as a consistent tool for the 

monitoring of the vegetative phenology in tropical ecosystems. In the first section, I established a first-

step protocol with main guidelines for the camera system method and setup in the tropics. We 

demonstrated that the establishment of phenocam networking is a powerful tool for biological 

conservation through its capability of fine temporal resolution data associated with wide spatial 

monitoring coverage. Besides, phenocams applications can bring new information for management and 

restoration practices at several sites and environments and contribute for the education for conservation 

and citizen science initiatives.  

Next sections (2 and 3), I approached ecological questions to be tested applying repeated digital 

photographs on tropical ecosystems. In section 2, leaf phenology derived by digital cameras were used 

in an analytical procedure to unravel the main drivers influencing Gcc time series across seasonally dry 

vegetations. Water and light were the most important predictors for the leaf phenological patterns across 

the sites. Water-plant relationships were more important for the Caatinga community, and light, through 

day-length seasonality, had more influence in the leafing patterns of the cerrado communities. An 

interesting outcome was the increasing variability of phenological signals (leafing behaviors) and 

predictor-response relationships (distinct smooth functions) across sites where seasonality was less 

pronounced and/or distinct species life-form were capable of overcoming drought-effects, such as deep 

root systems trees from woodland cerrado compared to grassy cerrado. Following this idea, section 3 

has shown a novel approach to relate leaf phenology to seasonality of ecosystems productivity. The 

phenological dynamics regarding the variability of species phenological signals, and how they are built 

in into each contrasting vegetation communities explains drivers of leaf phenology and productivity. 

Besides, the comparison of tropical biomes under different hydroclimatic conditions is essential to the 

understanding of ecosystem functionality and access future responses to climate change.  

The so-called near-surface remote phenology using digital cameras is an opportunity to obtain 

an impartial and comparable assessment of leaf seasonal changes in tropical environments and has 

becoming more and more common for phenological research. The arrivals of novel technologies 

followed by the advance of e-science methods for dealing with large data sets are changing the scenario 
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of plant ecology studies, from species to ecosystems. Next challenges to be addressed are the continuity 

of the e-phenology network and the spread of new cameras covering new vegetation types; and the 

development of bottom-up studies, integrating on-the-ground observations, cameras, drones, and 

satellites, inter-comparing them and placing camera-derived phenology in its own scale, by 

understanding how much and what kind of information can be retrieved from ecosystems. I believe the 

thesis innovates by providing original ecological research outcomes from an e-science perspective, 

which led to a unique research profile for a young scientist.  
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Appendix A 

Article published in the Journal Biotropica: 

CAMARGO, M.G.G. et al. Leafing patterns and leaf exchange strategies of a cerrado woody 

community. Biotropica, v. 50 (3), p.442–454, 2018. 
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ABSTRACT 

The deciduousness of tropical trees and communities depend on ecosystems characteristics 

such as plant species diversity, and strength of the dry season. Based on seven-years of 

phenological observations we provide the first long-term description of leafing patterns of a 

woody cerrado community, aiming to investigate: (i) the leaf exchange strategies considering 

the inter-annual variation on the degree of deciduousness of individuals and species and 

quantify the community deciduousness; (ii) the relationship between inter-annual patterns of 

leaf fall and leaf flush according to the species` leaf exchange strategies and climate; (iii) the 

onset of cerrado growing season and its relation to climate seasonality. To detect seasonality 

and leafing onset we applied circular statistics and to understand the relationships between 

environmental predictors and leaf exchange strategies, we used generalized additive models. 

From 106 species observed, we classified 69 as deciduous (26 species), semi-deciduous (25) 

or evergreen (18) and defined the studied cerrado as a semi-deciduous vegetation. Leaf 

phenology was markedly seasonal, and similar among years. Leaf fall peaked in the dry 

season, and leaf flush in the dry-to-wet transition. Leaf fall patterns related to temperature 

and leaf flush to day length and rainfall. Semi-deciduous and deciduous species were more 

constrained by climate then the evergreen ones. The cerrado growing season started in the 

dry-to-wet season transition. Inter-annual variations in rainfall and temperature affected the 

individuals’ and, consequently, species’ degree of deciduousness, highlighting individual and 

species variability, and suggesting that cerrado leafing patterns is likely susceptible to future 

climate change scenarios. 

Key-words: climatic drivers; deciduous; evergreen; generalized additive models; growing 

season; leaf phenology; savanna; seasonality; semi-deciduous.  
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A deciduidade das árvores e comunidades tropicais depende de características do ecossistema 

como a diversidade de espécies de plantas e a intensidade da estação seca. Baseados em sete 

anos de observações fenológicas, apresentamos uma descrição de longo prazo de padrões 

vegetativos de uma comunidade lenhosa de cerrado com o objetivo de investigar: (i) as 

estratégias de trocas foliares considerando a variação interanual no grau de deciduidade dos 

indivíduos e espécies e quantificar a deciduidade da comunidade; (ii) as relações entre 

padrões interanuais de queda e brotamento foliar conforme a estratégia de trocas foliares das 

espécies e o clima; (iii) o início da estação de crescimento da comunidade de cerrado 

estudada e sua relação com a sazonalidade climática. Utilizamos estatística circular para 

analisar a sazonalidade fenológica e o início do brotamento foliar na comunidade, e modelos 

aditivos generalizados para entender as relações entre variáveis ambientais e as estratégias de 

trocas foliares. Dentre as 106 espécies observadas, 69 foram classificadas como decíduas (26 

espécies), semi-decíduas (25) ou sempre-verdes (18) e definimos o cerrado estudado como 

uma vegetação semi-decídua. A fenologia vegetativa foi marcadamente sazonal e similar 

entre anos. O pico de queda foliar ocorreu na estação seca e o de brotamento na transição 

entre as estações seca e chuvosa. O padrão de queda de folhas foi relacionado à temperatura e 

o de brotamento ao comprimento do dia e pluviosidade. As espécies decíduas e semi-

decíduas foram mais afetadas pelo clima do que as sempre-verdes. A estação de crescimento 

no cerrado começou na transição entre as estações seca e úmida. As variações interanuais na 

precipitação e temperatura afetaram o grau de deciduidade de indivíduos e consequentemente 

das espécies, ressaltando a alta variabilidade individual e específica, sugerindo que os 

padrões de troca foliar das espécies do cerrado podem ser afetados por mudanças climáticas 

futuras. 

DECIDUOUSNESS, DEFINED AS EITHER A PARTIAL OR A FULL LOSS OF LEAVES, IS A KEY 

FUNCTIONAL trait dependent on ecosystems characteristics such as soils and species diversity, 
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essential for estimating dry season length and intensity in tropical ecosystems (Condit et al. 

2000). Leaf development and senescence, as well as leaf exchange strategies of plant species, 

are recognized to have important effects at the ecosystem scale because they are linked to a 

range of processes, including carbon uptake, water and energy fluxes, resource availability, 

and nutrient cycling (Reich 1995, Lavorel et al. 2007, Polgar & Primack 2011, Richardson et 

al. 2013). Additionally, the degree of deciduousness of a community is an indicator of shifts 

in the intensity and timing of species activities due to inter-annual shifts in the weather, for 

instance, leaf loss can be more intense during severe dry seasons (Reich 1995, Condit et al. 

2000, Williams et al. 1997). Since savannas are the world’s second most important type of 

vegetation, contributing to carbon flux and storage (Archibald & Scholes 2007), studies of 

the vegetative phenology in these ecosystems have a global reach. 

The Brazilian Cerrado, a neotropical savanna, is the second largest vegetation type in 

the Brazilian territory and presents a gradient of physiognomies, ranging from grasslands to 

tall woodlands (Overbeck et al. 2015, Durigan & Ratter 2016, Coutinho 2006). The cerrado 

harbors the world’s highest woody plant diversity among savannas (Ratter et al. 1996, 

Sarmiento 1984, Munhoz & Felfili 2006), and is generally under a seasonal climate with 

well-defined wet and dry seasons (Ratter et al. 1996). The seasonal climate is known to 

influence the phenology of plant populations and communities (Monasterio & Sarmiento 

1976, Morellato et al. 2013, 2016). To reduce transpiration and avoid plant collapse related to 

water status, plants subjected to seasonal climates tend to lose their leaves during the dry 

season, facilitating the re-hydration process for the growing season (Reich & Borchert 1984, 

Franco et al. 2005). Most cerrado trees produce new leaves and flowers at the end of the dry 

season, just before the start of the raining season, indicating that individuals have access to 

water at greater depth to permit their maintenance even when rainfall is low (Monasterio & 

Sarmiento 1976, Williams et al. 1997, Jackson et al. 1999, Batalha & Mantovani 2000, 



 

 

155 

 

 

Batalha & Martins 2004, Lenza & Klink 2006, Tannus et al. 2006, Pirani et al. 2009). 

Few studies have addressed leaf exchange patterns in cerrado communities (Miranda 

1995, Munhoz & Felfili 2005, Lenza & Klink 2006, Alberton et al. 2014, Pirani et al. 2009). 

Most of them either focused on reproductive phenophases or in describing general aspects of 

the community phenology, providing only inferences about the relationship between leafing 

patterns and environmental cues (e.g. Mantovani & Martins 1988, Batalha et al. 1997, 

Batalha & Mantovani 2000, Batalha & Martins 2004, Damascos et al. 2005, Tannus et al. 

2006, Bulhão & Figueiredo 2002, Dalmolin et al. 2015). Others, however, have found 

negative correlations between leaf fall and precipitation (Munhoz & Felfili 2005, Pirani et al. 

2009). The investigation of vegetative phenology, its causes, and the quantification of leaf 

exchange strategies at a community level in the cerrado are, thus, still missing. In addition, 

leaf exchange strategies in communities are mainly defined based on the leafing patterns of 

few species and in short-term phenological observations (Franco et al. 2005, Lenza & Klink 

2006), which may include bias related to some punctual plant response to local weather 

conditions. Therefore, the use of long-term phenology leafing data series is essential to the 

definition of the species’ leaf exchange strategies. 

 Here, we describe, for the first time, the seven-year long leaf phenology of a cerrado 

community, aiming to (i) identify the leaf exchange strategies considering the inter-annual 

variation in the degree of deciduousness of individuals and species and quantify the 

community deciduousness; (ii) investigate the relationship between inter-annual patterns of 

leaf fall and leaf flush according to the species` leaf exchange strategies and the climate 

conditions; (iii) uncover the onset of the cerrado growing season and the relation to climate 

seasonality.  

 We expect to find a dominance of leaf-exchange species (deciduous and semi-

deciduous)  and a higher deciduousness degree over years due to the length and severity of 
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the dry season (Reich & Borchert 1984, Franco et al. 2005, Reich 1995, Condit et al. 2000, 

Williams et al. 1997). Based on few short-term phenology studies describing leaf exchange 

strategies of woody cerrado species (Alberton et al. 2014, Pirani et al. 2009, Lenza & Klink 

2006), we expected leaf fall during the dry season and leaf flush peaking in the transition 

between dry and wet seasons, defining the onset of the growing season. We also expected 

rainfall and day length as the main environmental factors related to leafing seasonality, as 

previously suggested for tropical seasonal vegetations (Condit et al. 2000, Borchert & Rivera 

2001). 

  

METHODS 

STUDY SITE — We developed our study in an area of woody cerrado in the municipality of 

Itirapina, São Paulo state, Southeastern Brazil (22°10′31″S; 47°52′26″W). The study site is 

located 770 m above sea level and covers an area of 260 ha. The climate is characterized by 

two markedly regular seasons: a dry (winter) season from April to September and a wet 

(summer) season from October to March (Fig. 1). Average annual total rainfall was 1524 mm 

and the mean annual temperature was 20.7 °C between 1972 and 2011 (Camargo et al. 2011). 

The vegetation is a woody savanna classified as a cerrado sensu stricto (Coutinho 1978), with 

a discontinuous woody layer reaching 6 to 8 m high and a continuous herbaceous stratum. A 

woody species survey in the area indicated that Myrtaceae, Fabaceae, and Malpighiaceae are 

the richest families and Bauhinia rufa, Xylopia aromatica, Miconia rubiginosa, Virola 

sebifera, and Myrcia guianensis the most abundant species (Reys et al. 2013). 

PHENOLOGICAL DATA — To describe and analyze woody species leafing patterns we used a 

phenological dataset of monthly surveys conducted from January 2005 to December 2011. 

During this period, we directly observed leaf fall and leaf flush (following Morellato et al. 

1989) in 2112 marked individuals with at least 30 cm of stem circumference on the ground 
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level, sampled over 36 transects (25 m x 2 m) (see Reys et al. 2013, Vogado et al. 2016). We 

took circumference and height measurements of all individuals sampled. 

To estimate leaf fall and leaf flush phenophases, we monthly recorded the 

phenological activity of each individual in a qualitative binary scale, with “0” indicating 

absence of the phenophase and “1” the phenophase presence. We also estimated the intensity 

of leaf fall and flush based on a semi-quantitative scale with three classes in which “0” 

indicates the absence of a phenophase, “1” indicates the presence of a phenophase with low 

to intermediate intensity (up to 50% of the crown flushing new leaves or of the crown with no 

leaves or senescent leaves) and “2” the presence of a phenophase with high intensity (more 

than 50% of the crown flushing new leaves or with senescent leaves) (Opler et al. 1980, 

Morellato et al. 2000, Vogado et al. 2016). Despite the use of a monthly frequency of 

observations to record and classify the leaf exchange strategies in this study, it is unlikely that 

we have missed the occurrence of the total absence of leaves in an individual (a 100% 

deciduous event, see below) or a leaf fall increase from one month to another that, of course, 

we could also infer from the coverage of newly emerged leaves. We recorded for all years of 

observations when individuals were totally leafless (100% of leaf fall). The definition of 

100% fall category also helped us to define the occurrence of leaf flush, since sometimes one 

month of leaf fall was followed by new young leaves on the subsequent month. From March 

2007 to December 2008, we did not score leafing intensity; we only recorded phenological 

activity using the qualitative scale. The qualitative and semi-quantitative individual 

observations were independently collected and provide complementary information which 

improve the analyses of phenological patterns (Bencke & Morellato 2002).  

 To calculate the intensity index, we adapted the Fournier index (Fournier 1974), 

considering “2” as the class of maximum intensity (Vogado et al. 2016). We choose to use 

only three intensity classes instead of five, as suggested by Fournier (1974), and commonly 
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used in tropical plant phenology, to facilitate the definition of phenological changes at 

monthly intervals.  

 

LEAF EXCHANGE STRATEGIES AND THE DEGREE OF DECIDUOUSNESS — We classified 

the individual and species leaf exchange strategy for each of the five years we scored leaf fall 

intensity (2005, 2006, 2009 to 2011). For each individual, we classified as deciduous the 

individual recorded with no leaves (100% leaf fall) in at least one month, in a year. We 

classified as semi-deciduous the individual recorded with more than half of the branches 

without leaves (intensity score “2”) in at least one month in a year. Finally, we classified as 

evergreen the individual observed with up to half of the branches without leaves (“0” or “1” 

intensity score) throughout a given year. To estimate de degree of deciduousness, we 

calculated the proportion of deciduous, semi-deciduous and evergreen individuals in the 

community in each of the five years we evaluated leaf fall intensity. 

We classified all species with more than five individuals sampled as deciduous, semi-

deciduous, or evergreen based on the above individual’s annual leaf exchange strategies. A 

species was classified as deciduous if more than half of all individuals sampled were 

classified as deciduous in at least one of the five years; semi-deciduous if more than half of 

all individuals were classified as semi-deciduous in at least one of the five years; and as 

evergreen all the remaining species. 

 

DATA ANALYSES — Since we scored the intensity of phenology using an ordinal scale 

ranging from 0 to 2, we applied ordinal multinomial regressions to assess the drivers of leaf 

fall and flush. We fitted two models (leaf fall and flush) for species grouped according with 

leaf exchange strategies, analyzing the number of individuals with 0, 1, 2, and 100% of leaf 

fall intensities and and 0, 1, and 2 of leaf flush intensities. We also fitted multinomial models 
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for the whole community, regardless of leaf strategies. All models had monthly rainfall, mean 

temperature, monthly day length difference (longest minus shortest day within the month), 

and an interaction between rainfall and temperature as predictors. Monthly rainfall, 

maximum, mean, and minimum temperatures for the study period (January 2005 to 

December 2011) were obtained from the climatic station at Estação Climatológica do Centro 

de Recursos Hídricos e Ecologia Aplicada (CRHEA – Universidade de São Paulo), 4 km 

from the study site. We used day length data for the latitude -22°17’S; -47°87’W (maptools 

package for R).  

To better understand the nature of the relationships between predictors and leaf 

exchange strategies, we further fitted generalized additive models (GAM) using intensity 

data. These models allowed us to identify threshold regions in environmental variables and 

long-term trends for leaf fall (number of individuals with 100% leaf fall) and presenting leaf 

flushing. We fitted all additive models with a correlation structure based on years. We 

evaluated the ordinal models by looking at the significance of each variable and the 

generalized additive models with R2 and variable significance. We carried out all analyses in 

R (R Core Team 2017) using base packages ordinal (Christensen 2016) for the ordinal 

regressions and mgcv (Wood 2011) for the generalized additive models.  

Considering that recurrent temporal events, such as phenological data, are circular in 

nature, with no true starting point (Zar 1999), to infer the beginning of the growing season, 

we applied circular statistics to the individuals’ onset month of leaf flush following Morellato 

et al. (2000, 2010). To do that, first we define the start of leafing season of each individual 

and year as the first month we recorded leaf flush in each year. Then we divided the 360o of a 

circumference by 12 and each month of the year is represented by a range of 30o starting on 

January (mid point 15o, see Morellato et al. 2010, for details). Then we calculate the angle or 

date (month) correspondent to the most frequent leaf flush onset (circular mode), the mean 
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angle or onset date (the mean angle or mean onset data of the frequency distribution of 

individuals around the circle). Finally, we tested whether the mean onset data are 

significantly concentrated around the mean angle or date, as a proxy of seasonality by 

applying the Rayleigh test (Z) as suggested by Morellato et al. 2000, 2010. If the mean onset 

data is significantly concentrated around the mean angle or date, we consider the leafing 

pattern seasonal and the degree of synchrony or seasonality is represented by the length of the 

vector r. The vector r has no unity and ranges from 0 (no seasonality or synchronicity) to 1 

(perfect seasonal or synchronous),(Morellato et al. 2010). We performed circular analyses per 

study year, for all the community, and by leaf exchange strategies using Oriana 4.0 (Kovach 

Computing Services). 

 

RESULTS 

We sampled 2112 individuals and 106 species (Table S1). Over the seven years of 

observations, some individuals died or were lost, leading to the final sample of 1651 

individuals and 102 species. The community phenological patterns were described based on 

the total number of individuals observed per month, in each year. 

Out of the 106 species initially surveyed, 69 species presented more than five 

individuals and were classified as deciduous (26 species; total basal area= 1.46 m2), semi-

deciduous (25 species; total basal area= 6.10 m2) and evergreen (18 species; total basal area= 

2.29 m2) (Fig. 2; Table S1). Species and individual’s degree of deciduousness varied among 

years (Fig. 2). Only five species presented the same deciduousness degree over the five years: 

Jacaranda caroba, which reached deciduity in all the years (most of individuals with no 

leaves or 100% leaf fall) and, Anadenanthera peregrina var. falcata, Byrsonima 

coccolobifolia, Campomanesia pubescens and Dalbergia miscolobium, which reached semi-

deciduity in all the years (most individuals lose more than half of their leaves). Individuals 
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and consequently, the species, rarely lose all their leaves, maintaining at least half of the 

leaves in most of the years (Fig. 2). We observed the lowest deciduousness degree in the 

community in 2005 and the highest one in 2010, (Fig. 2). The number of deciduous 

individuals responded to both: mean temperature and total rainfall when intra and inter-

annual seasonality components were considered (R2=0.70; P<0,01). 

Leafing patterns were seasonal and similar among years and within leaf exchange 

strategies (Fig. 3 and 4). Leaf fall predominated in the dry season, peaking in July (Fig. 3), 

while leaf flush was concentrated in the transition between dry to wet seasons, peaking in 

September (Fig. 4). We observed an unexpected increase of leaf fall on December 2009 and, 

on 2010 mainly in the middle of the wet season, related to a larger number of individuals 

losing leaves but at a low intensity (Fig. 3). 

 Leafing patterns according to the leaf exchange strategies were similar among years, 

overlapping during the periods of higher activity and intensity in the community (Fig. 3 and 

4). Deciduous species presented a seasonal leaf exchange patterns highly constricted to the 

one period of the year, concurrent with the highest phenological activity and intensity in the 

community (Fig. 3 and 4). During the peaks of leaf fall and leaf flush in the community, 

deciduous species presented the highest synchrony among individuals and phenophases 

intensity followed by semi-deciduous and evergreen species. Conversely, semi-deciduous, 

and mainly evergreen species, presented more individual's activity outwith the community 

peaks of leaf exchange (Fig. 3 and 4). 

In general, for both phenophases, leaf fall and flush, the effects of abiotic variables 

increased from evergreen to deciduous species (Table 1). The exceptions were the influence 

of the day length difference on the leaf fall, almost the same for all leaf exchange strategies; 

and the rainfall on the leaf flush, similar between evergreen and semi-deciduous species, but 

higher for deciduous species (Table 1). Leaf fall patterns of all strategies were negatively 
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related to the rainfall and temperature, and positively related to the day length difference 

(Table 1). The strongest relations were among leaf fall and temperature and temperature-

rainfall interaction (Table 1). 

When analyzing the variables separately with generalized additive models, we 

confirm a higher climatic influence and seasonality in the deciduity of semi and, mainly, 

deciduous species (Fig.5). All leaf fall models had high coefficients of determination 

(evergreen R2 = 0.53; semi-deciduous R2 = 0.70; deciduous R2 = 0.77). Similarly, all variables 

but rainfall in the evergreen model presented a significant nonlinear effect on leaf fall. A 

higher proportion of individuals lost leaves when the rainfall was around 50 mm, the 

temperature between 16 and 19oC and the day length between 11 and 11.5 h (Fig. 5), which 

corresponds to the dry season conditions (see Fig. 1). Individuals deciduity decreased when 

precipitation was around 100 mm, the temperature 22oC and the day length 12 h (Fig. 5), 

corresponding to the transition from dry to wet seasons.  

Leaf flush patterns were positively related to the day length difference, but also to the 

rainfall, and negatively related to the temperature (Table 1). Even with a stronger effect of 

abiotic variables on deciduous and semi-deciduous species (Table 1), when analyzed 

separately with generalized additive models, individuals of species with different leaf 

exchange strategies responded in a similar way to the environmental variables, showing 

seasonality over the 7 y of observations. Leaf flush for all strategies responded non-linearly 

to the abiotic variables (evergreen R2 = 0.55; semi-deciduous R2 = 0.56; deciduous R2 = 0.62; 

Fig. 6). We observed the first increase in leaf flush activity when precipitation was around 

100 mm, and the day length about 11.5 h, in the transition from dry to wet season. The 

proportion of individuals flushing peaked at around 200 mm, 19oC and a day length close to 

12 h (Fig. 6), which corresponds, to the middle of the wet season, when the differences in the 

amount of sunlight are highest (see Fig. 1). Particularly, rainy months (> 300mm) also seem 
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to trigger flushing, although months with such amounts of accumulated rain are rare (Fig. 

6A). 

We determined the leaf flush onset for half of the individuals observed (Table 2), with 

no evident onset for all remaining trees. The community growing season started in early 

September in four out the seven years and otherwise in late August, with the mean angle 

between 20 August and 10 September (Table 2). When analyzed by leaf exchange strategy, 

the beginning of the growing season was observed mainly on September for deciduous 

species and between August and September for semi-deciduous and evergreen species (Table 

S2). Individuals synchronicity or concentration around the mean onset date were higher for 

deciduous species, with r vector around 0.82, followed by semi-deciduous and evergreen 

species, with the length of vector r around 0.69 and 0.62, respectively (Table S2). 

 

DISCUSSION 

Cerrado is the most species-rich savanna in the world and second largest Brazilian 

vegetation type, after Amazonia (Overbeck et al. 2015, Durigan & Ratter 2016, Coutinho 

2006). However, the studies investigating cerrado seasonal patterns are still sparse, 

representing less than 10% of the phenological studies surveyed for neotropical region 

(Mendoza et al. 2017), and less than half of those include leafing phenology (Morellato et al. 

2013, unpublished data). Based on our unique seven-year phenological data we showed the 

predominance of deciduous and semi-deciduous leaf exchange strategies and established the 

woody cerrado as an overall seasonal, semi-deciduous vegetation. The individual's degree of 

deciduousness was highly explained by the climate conditions, with individuals rarely 

reaching the full deciduity. The cerrado leaf exchanging patterns were consistently seasonal 

and similar among the years, confirming the expected seasonality described by short-term 

studies on savannas and other tropical seasonal vegetation (Miranda 1995, Williams et al. 
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1999, Munhoz & Felfili 2005, Lenza & Klink 2006, Pirani et al. 2009). Leaf fall and flush of 

cerrado species were related to all abiotic variables, but mainly to temperature and day length 

difference, and semi-deciduous and deciduous species were the most constrained by the 

climate. The onset of the community growing season, here defined based on a subset of the 

species, started in the transition from dry to wet season (August-September), and it is 

sustained by the overall larger number of individuals putting out new leaves at this time in the 

community.  

In the cerrado community studied, the predominance of deciduous or semi-deciduous 

species (74%), in relation to the evergreen ones (26%), was related to the climate seasonality 

with a marked dry season, and has also been associated to soil properties and species’ leaf-

economy strategies (Franco et al. 2005, Souza, Franco, et al. 2015). Studies in cerrado sensu 

stricto sites in Brazil Central, also found a high proportion of deciduous and semi-deciduous 

woody species (Rossatto et al. 2009, Pirani et al. 2009), while in West African and Australian 

savannas the strategies are more evenly distributed in the community (Eamus & Prior 2001). 

Semi-deciduous species predominate in Australia, and evergreen and semi-deciduous species 

in West Africa, (Williams et al. 1997, De Bie et al. 1998). Different definitions have been 

used to classify leaf exchange strategies, constraining the comparisons regarding to the 

amount of deciduity of cerrado savanna and other seasonal dry vegetation (e.g. Reich 1995, 

Eamus & Prior 2001). A common definition brings deciduous, brevi-deciduous (differing in 

the length of total leafless period) and evergreen with short or long leaf flush strategies or low 

or no deciduity (Williams et al. 1997, Franco et al. 2005, Lenza & Klink 2006), but their 

analyses are usually performed contrasting deciduous and evergreens. Reich (1995) propose 

deciduous with synchronous leaf flush, deciduous with asynchronous leaf flush and 

evergreens. We chose the large accepted, more inclusive, deciduous class including both, 

brevi- and deciduous species, all losing all leaves or 100% regardless the length of leafless 
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phase and leaf flushing at the end of dry season; a semi-deciduous strategy that implies in the 

loss of a representative amount of leaves, never above a 50% canopy cover, and evergreens 

that retain all or almost all leaves year round (Eamus and Prior 2001). That choice facilitates 

our comparisons and fit well to our monthly direct observations (see also Williams et al. 

1997). 

Here we demonstrated, based on our long-term phenology data, that independently of 

the leaf exchange strategy, individuals and, consequently, species’ deciduousness degree vary 

among years according to the climate conditions, mostly the inter-annual rainfall variability. 

That variability is expected for seasonally dry forest and savannas (Reich 1995, Eamus & 

Prior 2001, Goldstein et al. 2008), but has never been demonstrated for tropical savannas 

based on individual long-term leaf exchange patterns. Therefore, it is necessary exercise 

caution when classification of species leaf exchange strategies is derived from short-term 

observation of vegetative phenology, since it can be underestimated whether the survey is 

conducted in a “wet” year. Considering the number of leaf exchangers species, their basal 

area and on the fact that individuals’ deciduousness degrees rarely reached100% leaf fall, we 

classified the studied cerrado community as a semi-deciduous vegetation and that assumption 

might apply for general cerrado woodlands (cerrado sensu stricto). 

The consistent seasonal leafing patterns observed over seven years for the studied 

cerrado community substantiated the patterns described for other cerrado vegetation based on 

short-term observations, with leaf fall largely in the middle of the dry season and the leaf 

flush in the transition from dry to wet season, beginning at the end of dry season, after the 

first shower rains, but before the period of high rainfall intensity (Lenza & Klink 2006, 

Rossatto et al. 2009, Silvério & Lenza 2010, Alberton et al. 2014, Pirani et al. 2009). This 

leafing pattern is also found for the Australian savannas (Prior et al. 2004, Williams et al. 

1997). The observed peak of leaf fall in the dry season is expected for seasonally dry 
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vegetations and species, since it is a strategy to improve water use and avoid water losses by 

transpiration (Monasterio & Sarmiento 1976, Reich & Borchert 1984, Reich 1995, Pedroni et 

al. 2002, Lenza & Klink 2006, Goldstein et al. 2008). Other effects acting as drivers of leaf 

fall such as seasonal dust accumulation and herbivory, were not assessed in this study. 

Despite this being a less explores topic, a few studies investigated the effects of biomass 

harvesting by leaf-cutter ants, showing partial or total defoliation in some cerrado’s plant 

species (Costa et al. 2008, Mundim et al. 2012). Also, the damage by insects was also more 

intense in young leaves during the late dry season, corresponding to the main period of leaf 

flushing in the cerrado (Marquis et al. 2001). Therefore, herbivory might change leaves 

exchanges patterns by accelerating leaf aging due to damage or reducing photosynthetic 

activity. Moreover, insect-related damage and parasitism have negative effects on plant 

reproduction (Marquis et al. 2002, Franco 1998), factors that could lead to changes on 

cerrado phenological dynamics. 

The peak of leaf flush preceding the start of the rainy season, observed in cerrado 

woody plants, is still an intriguing pattern. The predominance of species flushing at the end 

of the dry season supports the hypothesis that cerrado trees have constant access to the water 

in the soil due to the deep root system of most species, and that the preceding leaf fall 

contributes to rehydration and the early production of new leaves (Goldstein et al. 2008, 

Eamus & Prior 2001). The positive correlations with the rainfall and day length difference 

may indicate the favorable conditions in the transition season to the production of cerrado 

new leaves. Day length difference was the main factor positively predicting the leaf flushing 

pattern of cerrado, mainly for deciduous species, and explains the certainty of the leafing 

season. For tropical seasonal dry vegetation, day length is suggested as the main trigger for 

leaf flush, independently of the leaf exchange strategy (Borchert 2000, Borchert & Rivera 

2001, Rivera et al. 2002, Higgins et al. 2011, Rossatto et al. 2013, but see Reich 1995, 
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Goldstein et al. 2008). Flushing before the more intense rainfall can also avoid loss of 

nutrient by leaching during the leaf development and favor nutrient uptake before the rainy 

season, the flowering and fruiting time of many species, due to the high luminance and 

photosynthetic activity of emerging new leaves (Rossatto et al. 2009, Sarmiento et al. 1985). 

Deciduous species presented leaf fall mostly constrained to the middle of the dry 

season and leaf flush to the transition between dry to wet seasons. Although semi-deciduous 

and evergreen species also presented a seasonal leafing pattern, some individuals showed leaf 

exchange activity out of these periods. These results agree with the individual’s response to 

abiotic variables, since we found a gradual response from deciduous to evergreen species, 

with evergreens significantly, but less constrained, by the climate and day length difference, 

mainly for leaf fall. Leaf fall restricted to the dry season has been described for several short-

term savanna studies (e.g. Lenza & Klink 2006, Williams et al. 1997, Pirani et al. 2009). 

Rossatto et al. (2013) also observed a coincident leaf flush onset in cerrado species, but with 

an extended leaf flush into the wet season for cerrado evergreen species. At some savannas, 

the evergreen species seem to have a more diversified leaf exchange strategy, some flushing 

new leaves all year long while others concentrating the leaf production in the dry-to-wet 

season transition (Reich 1995, Franco et al. 2005). 

Independent of the leaf strategy, if we simulate the GAM analyses with abiotic 

variables constant over time, the cerrado leafing pattern is still seasonal (Fig. 5 D and 6 D). 

This resilient seasonal pattern in addition to the high correlation with all the abiotic variables, 

makes it hard to establish the triggers and constraints of vegetative patterns in cerrado, as for 

other savanna communities (Higgins et al. 2011). Some authors suggest that the 

predominance of woody deciduous or semi-deciduous species, that seasonally change 

completely or partially their leaves, is an adaptation to the seasonal water restrictions, not 

directly related to the rainfall but also to the soil water availability and air humidity (Borchert 
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1994a, 1994b, Reich 1995, Eamus and Prior 2001, Franco et al. 2005a). Apart from abiotic 

factors, the cerrado woody species leafing patterns have been related to herbivory avoidance 

strategies and plant physiology, according to the different leaf exchange strategies or for 

aluminum accumulating or non-accumulating species (Franco et al. 2005, Borges & Prado 

2014, Souza et al. 2015b). 

We defined the community growing season onset as the dry to wet season, transition 

(August-September). This finding was based on a subset of the community’ species showing 

a well-defined rest season and flushing onset, but also in the overall community significant 

seasonality and, increase of leaf flushing on early September. The observed decrease in the 

leaf fall activity, mainly for deciduous and semi-deciduous species, and the peak of leaf flush 

activity, for all strategies, when the climatic conditions corresponds to the dry-to-wet season 

transition also indicates the end of the cerrado resting season and start of the growing season 

(Table 1; Fig. 5). The absence of a marked resting season for half of the species was related 

to the fact that, even for deciduous species, individuals rarely lose all their leaves (100% leaf 

fall), and that leaf fall, for some semi-deciduous and mainly evergreen species, is observed in 

small intensities all year long. Another point is that, the absence of a community wide, well-

defined leaf flush onset for all species is not expected for tropical communities, due to the 

high diversity of species and phenological patterns (Morellato et al. 2013, 2016), even for 

seasonal dry vegetations. Alberton et al. (2014), working with digital cameras daily repeated 

photographs or near surface phenology at the same cerrado site, detected an identical timing 

of the growing season as revealed in the present study. Their cross-validation with the direct 

monthly observations rules out any inherent subjectivity of our leaf exchange direct 

observations.  

The predominance of a distinct leaf flushing season was demonstrated for some 

seasonal dry vegetations around the world, the marked dry seasons favoring fast response, 
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opportunistic species flushing new leaves at the end of dry season, after the first rains (Vico 

et al. 2015). We argue that cerrado could integrate the ecohydrological framework proposed 

by Vico et al. (2015) for seasonally dry ecosystems. Considering the interannual variability in 

the degree of deciduousness of cerrado individuals and, consequently species over this 7y 

study, the importance of temperature and rainfall as drivers of leaf fall and flush, and the 

similarity to other seasonally dry ecosystems, the cerrado leaf exchange phenology is likely 

susceptible to future climate changes scenarios of raising temperature and reduced rainfall 

(Vico et al. 2015, Reich 1995, Eamus & Prior 2001, IPCC 2004). 
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TABLE 1. Results of the ordinal multinomial models for the relation between leaf fall and 

leaf flush (individuals’ activity) and total rainfall, mean temperature, monthly day length 

difference and rainfall-temperature interaction, according to species leaf exchange patterns. 

All the p values were < 0.001. 

Leaf exchange 

pattern 
Models Estimate 

Standard 

error 
Z value 

Leaf fall    

Evergreen Total rainfall -0.031 0.009 -3.313 
 Mean temperature -0.271 0.009 -30.755 
 Day length difference 0.067 0.006 10.655 
 Rainfall * temperature 0.258 0.010 25.372 

Semi-deciduous Total rainfall -0.151 0.008 -19.896 

  Mean temperature -0.352 0.007 -49.048 

  Day length difference 0.051 0.005 9.957 

  Rainfall * temperature 0.375 0.008 45.301 

Deciduous Total rainfall -0.287 0.010 -28.350 

  Mean temperature -0.416 0.010 -43.700 

  Day length difference 0.068 0.007 10.040 

  Rainfall * temperature 0.469 0.011 42.940 
     

Leaf flush     

Evergreen Total rainfall 0.135 0.010 13.010 
 Mean temperature -0.086 0.010 -8.780 
 Day length difference 0.317 0.008 42.023 
 Rainfall * temperature -0.095 0.012 -8.001 

Semi-deciduous Total rainfall 0.093 0.009 10.265 

  Mean temperature -0.290 0.009 -33.285 

  Day length difference 0.424 0.007 62.288 

  Rainfall * temperature -0.075 0.010 -7.185 

Deciduous Total rainfall 0.351 0.012 28.760 

  Mean temperature -0.385 0.012 -32.030 

  Day length difference 0.567 0.010 55.570 

  Rainfall * temperature -0.307 0.015 -20.220 
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TABLE 2. Circular statistics analyses of the leaf flush onset, per year, in the individuals of a 

cerrado woody community, Southeastern Brazil. Individuals with marked onset: number of 

individuals, from the total of observed individuals, for which we could define the leaf flush onset 

date and include in the circular analyses; (n) number of individuals which presented the leaf 

flush onset in the indicated month; onset mean angle: mean angle of data distribution around the 

circle; onset mean date: month correspondent to the mean angle; *p<0.05. 

  2005 2006 2007 2008 2009 2010 2011 

Observed individuals 2112 2111 2100 2046 1979 1947 1891 

Individuals with marked onset 1300 1384 1000 876 816 778 994 

Most frequent onset month (n) Sep (665) Aug (537) Sep (447) Aug (423) Sep (348) Sep (290) Aug (359) 

Onset mean angle (µ) 236.4° 229.6° 249.8° 238.3° 245.8° 248.4° 236.0° 

Onset mean date  Aug Aug Sep Aug Sep Sep Aug 

Length of mean vector (r) 0.69 0.64 0.59 0.82 0.76 0.72 0.74 

Rayleigh test (Z) 617.21* 560.45* 346.05* 583.44* 468.37* 399.08* 550.24* 
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FIGURE LEGENDS 

FIGURE 1. Climate between 2005 and 2011 in Itirapina, São Paulo, Brazil. The rainfall as 

daily (circles) and monthly (bars) accumulated precipitation. Temperature as monthly mean 

(line) and daily means (black circles). Day length is shown as daily values and monthly 

difference.  

FIGURE 2. Percentage of species (A) and individuals (B) per deciduousness degree in each 

year according to the leaf fall intensity and the percentage of species per leaf exchange 

strategy (C) in a cerrado woody community, Southeastern Brazil. Deciduous: individuals or 

species which more than half of individuals reached 100% of leaf fall; semi-deciduous: 

individuals or species which more than half of individuals reached “2” of leaf fall intensity; 

evergreen individuals or species which the individuals reached only “1” of leaf fall intensity. 

FIGURE 3. Leaf fall phenology on percent of individuals (A) and percent of intensity (B) in a 

cerrado woody community according to the species’ leaf exchange strategy: deciduous (26 

species), semi-deciduous (25 species) and evergreen (18 species). The blue bars indicate the 

wet season. 

FIGURE 4. Leaf flush phenology on percent of individuals (A) and percent of intensity (B) in 

a cerrado woody community according to the species’ leaf exchange strategy: deciduous (26 

species), semi-deciduous (25 species) and evergreen (18 species). The blue bars indicate the 

wet season. 

FIGURE 5. Fitted generalized additive models’ responses of the proportion of individuals 

without leaves to the abiotic variables - rainfall (A), temperature (B) and day length 

difference (C) - and since the first phenological observation in the field (D). 

FIGURE 6. Fitted generalized additive models’ responses of the proportion of individuals 

flushing new leaves to the abiotic variables - rainfall (A), temperature (B) and day length 

difference (C) - and since the first phenological observation in the field (D). 
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Appendix B 

Article published in the Journal Pattern Recognition Letters: 

ALMEIDA J., SANTOS, JA, ALBERTON, B., MORELLATO, L.P.C., TORRES, R.S. Phenological visual 

rhythms: compact representations for fine-grained plant species Identification. Pattern Recognition Letters, v. 

81, p. 90-100, 2016. 
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Phenological visual rhythms: Compact representations for fine-grained plant species identification 
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Abstract 

Plant phenology, the study of recurrent life cycles events and its relationship to climate, is a key disci- pline 

in climate change research. In this context, digital cameras have been effectively used to monitor leaf 

flushing and senescence on vegetations across the world. A primary condition for the phenological 

observation refers to the correct identification of plants by taking into account time series associated with 

their crowns in the digital images. In this paper, we present a novel approach for representing phenolog- ical 

patterns of plant species. The proposed method is based on encoding time series as a visual rhythm. Here, 

we focus on applications of our approach for plant species identification. In this scenario, visual rhythms are 

characterized by image description algorithms. A comparative analysis of different descrip- tors is 

conducted and discussed. Experimental results show that our approach presents high accuracy     on 

identifying individual plant species from its specific visual rhythm. Additionally, our representation is 

compact, making it suitable for long-term data series. 

 

Keywords: 

Remote phenology, Plant identification, Image analysis, Time series, Visual rhythm  

 

1. Introduction 

 
Plant phenology, the study of recurrent life cycles events and its 

relationship to climate, is a key discipline in climate change re- 

search [34]. One key component of phenology research is the leaf 

exchange patterns from leaf budding to senescence, due to its rel- 

evance to comprehend ecosystem processes, such as growth, water 

and gas exchange, and nutrient cycling [24]. The dynamics of plant 

growing seasons define the spatial and temporal patterns of carbon 

balance and water exchange, and ultimately the productivity of 

terrestrial ecosystems [22,35]. 

Recently, digital cameras have been effectively applied as multi- 

channel imaging sensors to estimate color changes (RGB channels) 

that are related to leaf flushing and senescence phenology [1,2,30]. 

The technique allows to increase the range of study sites and 
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species and the accuracy of phenological observations, and a clear 

perception of the start and end of the growing season [2,16]. 

We have monitored leaf changing patterns of a tropical cerrado- 

savanna vegetation by taking daily digital images [2]. We extracted 

image color information from the RGB (red, green, and blue) chan- 

nels and correlated the changes in pixel levels over time with leaf 

phenology patterns [2]. The analysis was conducted after we de- 

fined regions of interest (ROI) based on the random selection of 

plant species crowns identified in the digital image [29]. We ob- 

tained a time series associated with each ROI, raising the need of 

using appropriate tools for mining patterns of interest in a given 

digital image [7,11,32,33]. 

The plant species identification is a key issue for the pheno- 

logical observation of tree crowns using phenocams, especially in 

tropical vegetations where one single image may include a high 

number of species [2,6,7]. This task is time consuming since first 

each crown in the image has to be matched to the tree in the soil and 

then the tree is identified at species level. In this sense, we have 

developed and deployed computational methods to find similar 

patterns in the digital images and then we checked if they 

correspond to similar species or leaf functional groups [5,6]. 

The major challenge of designing automatic tools for address- 

ing the plant identification task is to deal with fine-grained 
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recognition, where the categories are visually similar. In general, 

different plant species may have an analogous behavior with re- 

spect to leaf color change and, hence, the differences between their 

time series are quite subtle and hard to be detected, even for hu- 

mans without careful training. Usually, plant identification is based 

on the analysis of huge volumes of sequential vegetation images, 

i.e., vegetation images obtained over time. In this scenario, an- 

other challenge refers to efficiency aspects, both in terms of stor- 

age requirements and processing time. Typical existing solutions 

for plant identification based on vegetation images [6,28] do not 

scale properly for handling ever-growing collections. 

In this paper, we present an effective and efficient approach for 

capturing phenological patterns from time series generated by 

digital images. Our strategy consists of encoding time series as      a 

visual rhythm [25]. This simple, yet effective, approach offers rich 

information regarding spatio-temporal data, which is useful   in 

many fields of applicability. Here, we focus on applications of the 

proposed method to identify and distinguish the behavior of plant 

species. In this scenario, visual rhythms are characterized by 

traditional and recently proposed image description algorithms. 

Such methods are able to codify key image features into fixed-size 

representations. 

The proposed method was evaluated in a dataset recorded dur- 

ing the main leaf flushing season composed of about 2,700 images 

[2]. We performed a detailed experimental comparison of several 

image descriptors. The results show that our approach presents high 

accuracy on identifying regions in the images be- longing to a same 

plant species. In addition, our strategy provides   a compact 

representation for time series. The improvement of the computation 

makes it suitable for long-term data sets. 

This paper extends substantially our preliminary works pre- 

sented in [3,4]. Here, we introduce several innovations. First, we 

present a review of the state-of-the-art approaches for process- ing 

spatio-temporal data. In addition, we discuss new strategies of 

generating visual rhythms from time series. Finally, after a much 

more thorough presentation of the proposed method, we extend the 

experimental evaluation of our technique, including a statisti- cal 

analysis of its performance. 

The remainder of this paper is organized as follows. Section 2 

briefly describes related work. Section 3 discusses the method- 

ology adopted for acquiring time series. Section 4 presents our 

approach and shows how to apply it  to characterize  time  se- ries. 

Section 5 presents the adopted experimental protocol, while Section 

6 reports the results of our experiments and compares our technique 

with other methods. Finally, we offer our conclusions and 

directions for future work in Section 7. 

 

 
2. Related work 

 
The increasing accessibility to data with high spatio-temporal 

resolution has enabled a detailed analysis of vegetation properties. 

At the same time, it requires feature extraction techniques able to 

represent such properties, taking into account storage aspects. 

Time series-based vegetation indices from remote sensing im- 

ages (RSIs) are widely used for phenological and land cover change 

studies [10,13,17,31]. Rodrigues et al. [31] presented a software to 

extract phenological parameters (e.g., maturity and senescence) 

from Normalized Difference Vegetation Index (NDVI) time series. 

Foster et al. [13] also applied NDVI time series to detect grassland 

vegetation. Brooks et al. [10], in turn, proposed a Fourier-based al- 

gorithm to fit NDVI multitemporal curves and reduce missing data 

effects in the analysis. Hmimina et al. [17] exploited NDVI time- 

series to evaluate the potential use of MODerate resolution Imag- 

ing Spectroradiometer (MODIS) remote sensing data for monitoring 

phenological patterns in a African savanna. 

 

 
 

Fig. 1. Sample image of the cerrado savanna recorded by the digital camera on Oc- 

tober 5th, 2011. 

 

 
 

In [6,8,23,28], the authors consider not  only  temporal  but also 

spatial properties. For that, they extract time series from segmented 

regions. Petitjean et al. [28] proposed a strategy to en- code spatial 

data over time. Their strategy consists of segment-   ing each image 

of the series in order to characterize each pixel of the data with 

spatial properties. The time series are computed for each pixel 

based on the properties extracted from the segmented regions. 

Ardila et al. [8], in turn, used time series based on spa-   tial 

properties, from pre-defined regions to monitor urban trees. 

Almeida et al. [6] exploited a multiscale segmentation structure to 

compute time series with spatial information, which were used to 

detect phenological patterns in a cerrado-savanna vegetation. Ma   

et al. [23] analyzed spatial and temporal patterns in savanna veg- 

etation phenology in Australia by comparing image datasets from 

different spatial resolutions. 

In spite of all the advances, existing strategies for processing 

spatio-temporal data usually require a considerable amount of stor- 

age space. A traditional phenology database storing information 

from just one event per individual per year, for several species and 

observation stations may encompass a enormous amount of data. 

For instance, the data set of phenological observations of plant 

species from Central Europe, largely Germany, from about 9000 

stations, covering 130 years (1880–2009), includes more than 16 

millions observations [12]. This paper aims to fill such a gap. Here, 

we introduce a compact representation for identifying and char- 

acterizing plant species in time series obtained from phenological 

observations. 

 
 

3. Time series acquisition 

 
The near-remote phenological system was set up in an 18 m 

tower in a Cerrado sensu stricto, a savanna-like vegetation located 

at Itirapina, São Paulo State, Brazil. We set up the camera to au- 

tomatically take a daily sequence of five JPEG images (at 1280 × 

960 pixels of resolution) in the first 10 min of each hour, from 6:00 

to 18:00 h (UTC3), totalizing 65 images per day. The present study 

was based on the analysis of over 2,700 images (Fig. 1), recorded at 

the end of the dry season, between August 29th and October 3rd 

2011, day of year (DOY) 241 to 278, during the main leaf flushing 

season [2]. 

The image analysis was conducted by defining different regions    

of interest (ROI), as described in [1,2,29,30]. For each ROI, a binary 

image with the same dimensions of the  original  image  was  cre-  

ated. These images are later used as masks. A mask of white pixels 

indicates the ROI, and the remaining area is filled by black pixels.     

As defined in [2], we selected six ROIs (Fig. 2) of six plant species 

described as follow: (1) Aspidosperma tomentosum (Fig. 2(a)), (2) 

Caryocar brasiliensis (Fig. 2(b)), (3) Myrcia guianensis (Fig. 2(c)), (4) 
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Fig. 3. Visual rhythm: (a) simplification of a video content by mapping each frame 

into one column of an image; (b) a real example produced by sampling the central 

vertical line of the digital images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Regions of interest (ROIs) defined for the analysis of cerrado-savanna digital 

images: (a) Aspidosperma tomentosum, (b) Caryocar brasiliensis, (c) Myrcia guianensis, 

(d) Miconia rubiginosa, (e) Pouteria ramiflora, and (f) Pouteria torta. 

 

 
 

Miconia rubiginosa (Fig. 2(d)), (5) Pouteria ramiflora (Fig. 2(e)), and 

(6) Pouteria torta (Fig. 2(f)). 

According to the leaf exchange data from the on-the-ground 

field observations on leaf fall and leaf flush at our study site, those 

species were classified into three functional groups [2]: (i) decid- 

uous: Aspidosperma tomentosum and Caryocar brasiliensis; (ii) ever- 

green: Myrcia guianensis and Miconia rubiginosa; and (iii) semide- 

ciduous: Pouteria ramiflora and Pouteria torta. 

 
4. Visual rhythm-based description 

 
Visual rhythms [25] are an effective way to analyze temporal 

properties from video data. It consists of an abstraction of a video 

that encodes the temporal change of pixel values along a specific 

sampling line [21], as illustrated in Fig. 3(a). In this example, the 

central column of a set of images are put together to create a sin- 

gle image, the visual rhythm. A clear advantage of this approach is 

the reduction of the storage space of the extracted features. There- 

fore, it also speeds up data processing. 

Formally, a visual rhythm is a simplification of a video V = 

{ ft }, t ∈ [1, T ], in domain 2D + t, with T frames of  dimensions 

WV × HV , in which each frame ft  is transformed into a vertical line  

on an image R, in domain 1D + t, such that, 

R(t, z) = ft (rx × z + a, ry × z + b), t ∈ [1, WR], z ∈ [1, HR], 

where WR (WR = T ) and HR are its width and height, respectively; 

rx and ry are the sampling rates along the horizontal and vertical 

directions; a and b are the horizontal and vertical offsets on each 

frame, respectively. 

Without loss of generality, a time series comprised of images 

taken by digital cameras at fixed time intervals can be viewed as a 

video of the vegetation. Therefore, a visual rhythm can be used to 

simplify a time series into a single image, as illustrated in Fig. 3(b). 

This example shows the visual rhythm produced by sampling the 

central vertical line of vegetation digital images such as the one 

showed in Fig. 1. The parameters rx, ry, a, and b used to gener-     

ate the visual rhythm are 0, 1, WV /2, and 0, respectively. In this 

paper, we propose to take advantage of existing image descriptors 

to identify and characterize phenological changes in visual rhythm 

images. 

The major problem with the previous definition of visual rhythms is 

that it has been designed for the pixel sampling of specific lines 

(e.g., diagonal, horizontal, and vertical). Here, we are interested in 

analyzing unshapely regions related to plant species that are 

identified by phenology experts (see Fig. 2). However, it is 

impossible to adjust values for the parameters rx, ry, a, and b so that 

we can transform a ROI into a vertical line of a visual rhythm. The 

novelty of this paper is to generalize the notion of visual rhythms. 

From a generic point of view, this approach relies on tak- ing 

samples of the information to be analyzed and then grouping them 

in an orderly manner. The key contribution of our idea is the 

mapping function we design to encode the temporal change of a 

ROI into a single image. In the following, we present different 

strategies of generating visual rhythms from time series obtained 

by digital images of vegetation data. 

 
4.1. Pixel-based visual rhythm 

 
Let S = {Sh}, h ∈ [1, H] be a set of H image sequences, in which 

each Sh = {Idh}, d ∈ [1, D] is composed of D images Idh, with di- 

mensions WS × HS , taken by the digital camera at the day of year 

d and the hour h; and M be a binary image, with the same di- 

mensions of S, in which white pixels indicate an area of interest. 

Fig. 4 shows how pixel-based visual rhythm images are created. 

Initially, we convert the binary image M into a list of Cartesian 

coordinates Lxy = (x, y)  M(x, y) = 1  . Next, we use this list for 

computing the geometric center  (xc,  yc)  of  the  area  of  interest. 
After that, we translate the Cartesian coordinate system of the 
elements in the list Lxy to  have  its  origin  at  the  point  (xc,  yc) and 
then we convert them to the polar coordinate system,  creat- ing a 
list of polar coordinates Lrθ . Thereafter, we create an index 

K = {k | ∀(r, θ ) ∈ Lrθ , k = 2πr + θ } which assigns a unique value 
to each element in the list Lrθ  Finally, we sort the keys in the in- 

dex K in an increasing order and then we use them to arrange the 

elements in the list Lxy. 

Thus, we can define a visual rhythm as a mapping of an image 

sequence Sh into a single image Rh, in which each image Idh is a 

column (i.e., vertical line) at the row d, such that 

Rh(d, z) = Idh(Lxy(z)), d ∈ [1, WR], z ∈ [1, HR], 
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Fig. 4. Overview of the pixel-based strategy. For each hour, the pixel set of the 

segmented region is linearized. At the end of the process, the pixel values of the 

segmented region along the time is a column in a new image: the visual rhythm. 

One visual rhythm is computed for each hour of the day along the time. 

 

 

Fig. 5. Visual rhythms obtained for each ROI by using the pixel-based strategy. 

 

 

 

where WR = D and HR = Lxy  are  its  width  and  height,  respec- 

tively. Fig. 5 presents the visual rhythms produced by the pixel 

sampling of the digital images using each ROI from Fig. 2. 

 

 
 

Fig. 6. Overview of the area-based strategy. This representation encodes the color 

intensity of each region in each hour (vertically) along the year (horizontally). The 

color intensity of a entire region is computed by using statistical moments. 

 

 

Fig. 7. Visual rhythms obtained for each ROI by using the area-based strategy. Each 

ROI was encoded by the first-order moment. 

 

 

 

tribution, i.e., 

 

4.2. Area-based visual rhythm .
,   . 

[Idh (x, y) − Edh] 

Let S = {Idh }, d ∈ [1, D], h ∈ [1, H] be an image sequence com- Fdh 

= σdh 
= 
. 

(x,y)∈Lxy 

 
. 

|Lxy| 
posed of D × H images Idh, with dimensions WS × HS , taken by 

the digital camera at the  day of  year d and the  hour h;  and M  be  

a binary image, with the same dimensions of S, in which white 

pixels indicate an area of interest. Fig. 6 shows how area-based vi- 

sual rhythm images are created.The third-order moment is the 

skewness. It measures how asymmetric the color distribution is, and 

thus it gives information about the shape of the color distribution. It 

can be computed with the following formula: 

Initially, we convert the binary image M into a list of Cartesian    

coordinates Lxy = {(x, y) | M(x, y) = 1}. After that, we use this list 

to draw a sample of the pixels from an input image Idh. Finally, we 
 

 
  

 

,
.
.
.3

 

 
 

 

(x,

.

y)∈ 

[Idh (x, y) − Edh] 
 

tribution of all those pixels by calculating color moments of this 

segmented region. 

Here, we use the three central moments of a  color distribu- tion 

[37]. The first-order moment can be interpreted as the average color 

intensity, and it can be calculated by using the formula:  

. 
Idh(x, y) 

 

Thus, we can define a visual rhythm as a mapping of an image 

sequence S into a single image R, in which each feature Fdh is a 

pixel at the position (d, h), i.e., 

R(d, h) = Fdh, d ∈ [1, WR], h ∈ [1, HR], 

Fdh = Edh 
(x,y)∈Lxy 

.
 

|Lxy| 

where  WR = D  and  HR = H  are  its  width  and  height, respectively. 

Figs. 7–9 present the visual rhythms produced by the pixel sam- 

pling of the digital images using each ROI from Fig. 2, where each 

The second-order moment is the standard deviation, which is 

obtained by taking the square root of the variance of the color dis- 

ROI was encoded by the first-order, second-order, and third-order 

moments, respectively. 

= dh = s F that uniquely characterizes the natural dis- dh extract a feature F 

   

= 

dh 

Lxy 

|Lxy| 

2 

3 
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Fig. 8. Visual rhythms obtained for each ROI by using the area-based strategy. Each 

ROI was encoded by the second-order moment. 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Flowchart of a content-based region retrieval system used in the evaluation 

protocol. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Visual rhythms obtained for each ROI by using the area-based strategy. Each 

ROI was encoded by the third-order moment. 

 

 

5. Experimental protocol 

 
This section presents the adopted experimental protocol. First, 

we introduce the region-based image retrieval scenario used  in our 

evaluation in Section 5.1. Next, we present the used evaluation 

metrics and the baseline considered in our study in Sections 5.2 

and 5.3, respectively. 

 
5.1. Image retrieval protocol 

 
We carried out experiments to identify plant species in  the 

image using the proposed visual rhythm representations. In this 

work, we approach the plant identification as an image retrieval 

problem, in contrast to some initiatives that have addressed this 

task in the context of image classification [5,6]. Our objective is   

to use the proposed representations in search services that could 

leverage the understanding of phenological changes over time by 

providing areas of plant individuals whose visual features are sim- 

ilar to those of a region of interest defined as input. 

We adopted a content-based region retrieval approach in our 

evaluation protocol. This approach relies on the execution of simi- 

larity searches [41], according to which image regions are ranked in 

order of their distance from a given query region. From each image 

region, feature vectors are extracted by taking into account differ- 

ent representations (e.g., pixel-based or area-based visual rhythm) 

and descriptors (e.g., Global Color Histogram). Two regions are con- 

sidered similar to each other, if the distance of their feature vectors 

are small. The more effective a descriptor is, the more relevant im- 

age regions are ranked at top positions of the returned ranked list. 

The flowchart of the content-based region retrieval system is 

illustrated in Fig. 10. The process is composed of offline and on- 

line steps. The offline steps comprise: (1) the representation of 

each labeled segmented regions in the multitemporal data by 

using visual rhythms; (2) the extraction of features from each vi- 

sual rhythm through descriptors; and (3) the indexing of features 

in a data repository. The online steps consists of a query search 

composed of the following steps: (4) the selection of a query pat- 

tern, which is a segmented region along the multitemporal images; 

(5) the computation of the query’s visual rhythm; (6) the extrac- 

tion of features by using descriptors; (7) the search computation   

by similarity; and (8) the final similarity ranking, including all pat- 

terns learned at the offline stages. 

In this system, we provide a time series extracted from an im- 

age area associated with a given species and we query for simi-   

lar time series computed from other image areas that belong to     

the same species. For describing time series encoded into a vi-   

sual rhythm, we used six traditional and  recently  proposed  im- 

age descriptors: Auto Color Correlogram (ACC) [18], Color Coher- 

ent Vector (CCV) [26], Border/Interior pixel Classification (BIC) [36], 

and Global Color Histogram (GCH) [38], for encoding color infor- 

mation; Generic Fourier Descriptor (GFD) [42] and Haar-Wavelet 

Descriptor (HWD) [20], for analyzing spectral properties. The dis- 

tance function used for feature comparison is the Manhattan 

(L1) distance. For more details regarding those image descriptors, 

refer to [27]. 

Our strategy to evaluate image descriptors in the  context  of 

time series description is based on assessing the similarity among 

regions associated with individuals of a same species. For that, we 

used the Guigues algorithm [15] to segment the hemispheric im- 

age into small polygons, obtaining 8, 849 segmented regions (SR). 

Then, we associated each SR with a single ROI aiming to label it. A 
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Table 1 

MAP scores obtained by each of the image descriptors along all the available periods of the day. 

Pixel-based visual rhythm Baseline 
 

Hour ACC BIC CCV GCH GFD HWD  RGB ExG NDI  

6 0.587 0.601 0.601 0.608 0.338 0.374 
 

0.739 0.523 0.490 
 

7 0.561 0.555 0.549 0.545 0.353 0.377  0.720 0.515 0.569  

8 0.571 0.555 0.554 0.546 0.355 0.385  0.716 0.480 0.532  

9 0.572 0.574 0.548 0.569 0.353 0.380  0.733 0.422 0.619  

10 0.620 0.612 0.588 0.614 0.354 0.382  0.741 0.407 0.644  

11 0.607 0.586 0.562 0.585 0.345 0.372  0.744 0.398 0.640  

12 0.535 0.528 0.519 0.534 0.342 0.356  0.731 0.381 0.632  

13 0.542 0.526 0.506 0.513 0.334 0.364  0.718 0.407 0.628  

14 0.577 0.577 0.553 0.554 0.341 0.387  0.723 0.419 0.625  

15 0.567 0.562 0.542 0.542 0.346 0.395  0.718 0.427 0.633  

16 0.558 0.548 0.530 0.524 0.347 0.386  0.700 0.434 0.615  

17 0.554 0.555 0.531 0.548 0.358 0.388  0.686 0.464 0.610  

18 0.576 0.590 0.596 0.595 0.338 0.376  0.688 0.498 0.656  

 

Table 2 

P@5 scores obtained by each of the image descriptors along all the available periods of the day. 

Pixel-based visual rhythm Baseline 
 

Hour ACC BIC CCV GCH GFD HWD  RGB ExG NDI  

06 0.761 0.795 0.769 0.767 0.451 0.502 
 

0.878 0.779 0.728 
 

07 0.779 0.778 0.729 0.782 0.495 0.523  0.922 0.764 0.848  

08 0.805 0.742 0.713 0.749 0.506 0.513  0.878 0.724 0.777  

09 0.778 0.757 0.706 0.735 0.500 0.521  0.856 0.661 0.800  

10 0.807 0.824 0.788 0.818 0.494 0.532  0.834 0.642 0.816  

11 0.833 0.817 0.765 0.770 0.466 0.503  0.852 0.639 0.806  

12 0.785 0.743 0.728 0.749 0.471 0.449  0.860 0.620 0.809  

13 0.810 0.788 0.743 0.775 0.463 0.466  0.835 0.675 0.792  

14 0.780 0.768 0.763 0.794 0.475 0.517  0.872 0.702 0.814  

15 0.714 0.711 0.751 0.736 0.466 0.523  0.862 0.700 0.798  

16 0.697 0.729 0.732 0.725 0.480 0.518  0.866 0.676 0.800  

17 0.738 0.740 0.724 0.762 0.505 0.538  0.866 0.676 0.817  

18 0.798 0.787 0.788 0.777 0.432 0.520  0.906 0.720 0.908  

 

labeled region is created if there is at least 80% of overlapped area 

between a SR and a ROI. In the remainder of this paper, when we 

refer to regions of interest related to tree crowns of plant species 

identified manually in the digital image, we use the acronym ROI; 

and when we refer to segmented regions obtained from the seg- 

mentation algorithm, we use the acronym SR. The similarity be- 

tween two SRs is computed as a function of the distance between 

the feature vectors extracted from their visual rhythms. An image 

descriptor is better than another if it ranks more SRs belonging to 

the same ROI of a query SR at the first positions. 

For each ROI, we randomly selected twenty percent of its total 

number of SRs to be used as queries. Five replications were per- 

formed in order to ensure statistically sound results. Presented re- 

sults consider the average performance of the evaluated image de- 

scriptors, which were computed based on the mean and standard 

deviation of each replication. 

 

5.2. Evaluation metrics 

 
We assess the effectiveness of each approach using the metrics 

of Precision and Recall. Precision is the ratio of the number of rel- 

evant SRs retrieved to the total number of irrelevant and relevant 

SRs retrieved. Recall is the ratio of the number of relevant SRs re- 

trieved to the total number of relevant SRs in the database. Here,   

a given SR is considered as relevant only if it belongs to the same 

ROI of a query SR. However, there is a trade-off between Precision 

and Recall. Greater Precision decreases Recall and greater Recall 

leads to decreased Precision. So, we choose to report the results 

using unique-value measurements: Mean Average Precision (MAP), 

which is the mean of the precision scores obtained at the ranks of 

each relevant SR; and Precision at 5, which is the average precision 

after 5 SRs are returned. These metrics combine Preci- 

sion and Recall into a single measure, which makes the comparison 

easier. 

 
5.3. Baseline 

 

We compare the visual rhythm-based techniques against three 

approaches widely used by phenology experts for characterizing leaf-

changing patterns of plant  species  from  digital  images.  The  first 

approach is a normalized index called RGB chromatic coor- dinates 

(RGBcc), which was developed by Gillespie et al. [14]  and     is 

considered the most  efficient  index to  detect  the  color  of  plants in 

relation to their background [40]. The normalized RGBcc index 

undergoes a nonlinear transform, as follows: 

 r = R/(R + G + B), g = G/(R + G + B), b = B/(R + G + B);  

where R, G, and B are the average pixel intensity of the red, green, 

and blue bands, respectively. 

The second approach is a contrast index named as Excess Green 

(ExG), which was introduced by Woebbecke et al. [40] and is com- 

monly applied to separate green plants from soil and residue back- 

ground. The ExG index is defined as: ExG = 2g − r − b. Similarly, 

the third approach, known as Normalized Difference Index (NDI), 

uses only green and red channels and is given by [39]:  

NDI =(G − R)/(G + R). 

6. Experimental results 

 
The objective of our evaluation is to confirm that the use of 

the proposed visual rhythm representations yields comparable re- 

sults, in terms of search result effectiveness, when compared with 

the traditional RGBcc index. The evaluation results are discussed 

in Sections 6.1 and 6.2, for the pixel-based and area-based visual 

rhythm representations, respectively. The correlation analysis and 

feature combination between different approaches is discussed in 
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Table 3 

Differences between MAP of the different image descriptors by con- 

sidering the best result of each approach. 

Confidence interval (99%) 
 

Approach Min. Max. 

RGB@11h - ACC@10h −0.236 0.401 

RGB@11h - BIC@10h −0.291 0.461 

RGB@11h - CCV@06h −0.290 0.475 

RGB@11h - GCH@10h −0.282 0.441 

RGB@11h - GFD@17h 0.022 0.744 

 RGB@11h - HWD@15h −0.045 0.757  

Table 4 

Differences between P@5 of the different image descriptors by con- 

sidering the best result of each approach. 

Confidence interval (99%) 
 

 

Approach Min. Max. 
 

 

RGB@07h - ACC@11h 0.012 0.378 

RGB@07h - BIC@10h 0.085 0.298 

RGB@07h - CCV@10h −0.001 0.316 

RGB@07h - GCH@10h −0.006 0.207 

RGB@07h - GFD@08h 0.201 0.750 

RGB@07h - HWD@17h 0.109 0.730 

        
 

 

 
Fig. 11. MAP scores obtained for each ROI. 

 
 

 
Section 6.3. Finally, in Section 6.4, we discuss on efficiency aspects 

of the visual rhythm-based techniques, highlighting the main ad- 

vantages of using the proposed approaches. 

 
6.1. Pixel-based visual rhythm 

 

Tables 1 and 2 compare the pixel-based visual rhythm tech- 

niques and the baseline methods with respect to the MAP and P@5 

measures, respectively. MAP is a good indication of the effective- 

ness considering all positions of obtained ranked lists. P@5, in turn, 

focuses on the effectiveness of the methods considering only the 

first positions of the ranked lists. For each approach, we highlight 

the hour of day that provided the best result. 

Those results indicate that the performance of the different 

evaluated approaches is similar, with a small advantage to the 

RGB-based baseline. Notice that early hours (from 8h to 11h) are 

better to characterize the phenological changes of plant species by 

using color descriptors. As we can observe, the best performances 

were achieved using the digital images taken at ten in the morn- 

ing. This finding disagrees with the general suggestion of extract- 

ing color information from midday hours (from 11h to 14h) for 

ecological studies [1,19,29]. 

Paired t-tests were performed to verify the statistical signifi- 

cance of those results. For that, the confidence intervals for the 

differences between paired means of each ROI were computed to 

compare every pair of approaches. If the confidence interval in- 

cludes zero, the difference is not significant at that confidence level. 

If the confidence interval does not include zero, then the sign of the 

difference indicates which alternative is better. 

Tables 3 and 4 present the 99% confidence intervals of the 

differences between the RGB-based baseline and the pixel-based 

visual rhythm techniques for the MAP and P@5 measures, re- 

spectively. For simplicity and readability purposes, we report only 

the results for the hour of day that provided  the  best  result  of 

each approach. Such analyses confirm that the pixel-based visual 

rhythm techniques and the RGB-based baseline exhibit similar per- 

formance. Notice that the confidence intervals include zero and, 

hence, the differences between those approaches are not signifi- 

cant at that confidence level. 

Figs. 11 and 12 compare the individual scores obtained for each 

ROI considering the best results of the evaluated methods in terms 

 

 

 
 

 

Fig. 12. P@5 scores obtained for each ROI. 

 

 

 

of the MAP and P@5 measures, respectively. It is interesting to note 

the differences in responsiveness of the different approaches with 

respect to each of the species individually. The main reason for 

those results is the different patterns of the leaf color change of 

each species. In general, different image descriptors are designed   

to capture different visual features. 

 

6.2. Area-based visual rhythm 

 
In Fig. 13, we compare the effectiveness of the baseline meth- 

ods and the area-based visual  rhythm  techniques  by  consider- 

ing different image descriptors. The graphs present the individual 

scores obtained for visual rhythms encoded by the first-order (first 

column), second-order (second column), and third-order (third col- 

umn) moments. We show the results for the MAP (top row) and 

P@5 (bottom row) measures. 

In general, those graphs demonstrate that visual rhythms en- 

coded by lower order moments (left column) outperform  the 

higher order ones (right  column).  On  the  other  hand,  for  a 

same statistics, the performance of different image descriptors of a 

same type (color or texture) is similar. Unlike the results obtained 

for the pixel-based visual rhythm techniques, the texture descrip- 

tors (GFD and HWD) are more effective than the color ones (ACC, 

BIC, CCV, and GCH). 

Table 5 presents the 99% confidence intervals of the differences 

between the RGB-based baseline and the area-based visual rhythm 
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Fig. 13. Comparison between the effectiveness measures obtained by the evaluated approaches.  These  graphs  present the  results  for  visual  rhythms  encoded by  the  first- 

order (first column), second-order (second column), and third-order (third column) moments. They report the MAP (top row) and P@5 (bottom row) scores. . 

 
Table 5 

Differences between MAP and P@5 scores of the different image descriptors by con- 

sidering visual rhythms encoded by different color moments. 

This behavior reflects their contrasting leaf phenology [2]: the 

Myrcia guianensis is an evergreen species and, therefore, the leaf 

   senescence is a continuous process and color changes are more 
MAP P@5 

 
  

Method Min. Max. Min. Max. 

First-Order RGB - ACC −0.062 0.311 −0.084 0.407 

RGB - BIC −0.087 0.267 −0.047 0.314 

RGB - CCV −0.048 0.276 −0.097 0.437 

RGB - GCH −0.086 0.306 −0.093 0.360 

RGB - GFD −0.181 0.145 −0.094 0.059 

RGB - HWD −0.134 0.198 −0.141 0.161 

Second-Order RGB - ACC 0.010 0.475 −0.020 0.654 

RGB - BIC −0.066 0.434 0.001 0.513 

RGB - CCV −0.089 0.445 −0.031 0.529 

RGB - GCH −0.105 0.457 −0.015 0.494 

RGB - GFD −0.134 0.444 −0.066 0.265 

RGB - HWD −0.199 0.361 −0.125 0.239 

Third-Order RGB - ACC 0.082 0.520 0.131 0.518 

 RGB - BIC 0.087 0.384 0.035 0.496 

 RGB - CCV 0.098 0.414 0.041 0.511 

 RGB - GCH 0.083 0.386 0.071 0.471 
 RGB - GFD 0.029 0.566 0.050 0.550 

   RGB - HWD −0.002 0.540 0.065 0.570     

 

techniques for the MAP and P@5 measures, respectively. Such anal- 

yses confirm that the area-based visual rhythm techniques and the 

RGB-based baseline exhibit similar performance. Note that the con- 

fidence intervals include zero and, hence, the differences between 

those approaches are not significant at that confidence level. 

In Fig. 14, we compare the  individual  scores  obtained  for  

each ROI in terms of the MAP (top row) and P@5 (bottom row) 

measures, respectively. We show the results for visual rhythms 

encoded by the first-order (first column), second-order (second 

column), and third-order (third column) moments by considering 

different image descriptors. Notice the differences in responsive- 

ness of the evaluated methods with respect to each of the species 

individually. For instance, despite the overall performance of the 

first-order visual rhythms outperform the second-order ones, these 

latter have achieved the best results for the Pouteria torta. On the 

other hand, they have obtained the worst results for the Myrcia 

guianensis. 

subtle over time; in contrast, the Pouteria torta is semideciduous, 

thus the color change reflects the rapid leaf senescence and the  

flush of new leaves. 

 

6.3. Correlation analysis and descriptor combination 

 
One important issue with regard the evaluation of multiple rep- 

resentations and descriptors concerns the investigation of their 

correlation. The objective is to somehow confirm if the differ- 

ent representations/descriptions provide complementary informa- 

tion regarding the image visual properties. 

Figs. 15 (a) and 16(a) present the correlation among the ranked 

lists defined by the most effective descriptors associated with the 

pixel-based and area-based visual rhythm representations, respec- 

tively. The correlation score is computed using the Kendall rank 

correlation coefficient, defined as: 

τ (x, y) = 
  (P − Q) 

 

(P + Q + T ) × (P + Q + U) 

where P is the number of concordant pairs, Q the number of dis- 

cordant pairs, T the number of ties only in rank x, and U the num-     

ber of  ties only in  rank y.  If a  tie  occurs  for the  same pair in  both  

x and y, it is not added to either T or U. 

The RGB-based baseline is referred at the first line and column 

in both figures. Notice that the proposed descriptors are not cor- 

related to each other. More importantly, they are not correlated to 

the RGB-based baseline. That opens a novel possibility of investi- 

gation concerning their combination. 

In this sense, we have combined the ranked lists associated 

with the two best descriptors for the pixel-based and area-based 

visual rhythm representations with the RGB-based baseline using 

the traditional Borda Count rank aggregation approach [9]. The 

Borda Count algorithm is an order-based method, according to 

which a score is assigned to an element x in the ranked list ri,   

equal to ri − ri(x), where ri(x) is the position of the element x in 

ri. The final score of an element is the sum of the scores obtained   

in each ranked list. 
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Fig. 14. Individual scores obtained for each ROI. These graphs present the results for visual rhythms encoded by the first-order (first column), second-order (second column),    

and third-order (third column) moments. They report the MAP (top row) and P@5 (bottom row) measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15. (a) Correlation scores and (b and c) Combination results of the two best pixel-based descriptions with the RGB-based baseline. 

 

 

 

   
 

Fig. 16. (a) Correlation scores and (b and c) Combination results of the two best area-based descriptions with the RGB-based baseline. 
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Table 6 

Computational costs and space requirements of each of the evaluated approaches. 
 

 

Computational cost 
 

Method Extraction Matching Space requirements 

Visual rhythm VR + ACC O(n) O(1) O(1) 

VR + BIC O(n) O(1) O(1) 

VR + CCV O(n) O(1) O(1) 

VR + GCH O(n) O(1) O(1) 

VR + GFD O(nlog n) O(1) O(1) 

VR + HWD O(nlog n) O(1) O(1) 

Baseline RGB 

ExG 

NDI 

O(n) 

O(n) 

O(n) 

K(n) 

K(n) 

K(n) 

K(n) 

K(n) 

K(n) 

 

 

Figs. 15 (b and c) and 16(b and c) present the MAP and P10 

scores achieved by the most promising combinations for the pixel- 

based and area-based visual rhythm representations, respectively.  

As we can observe, even considering a fairly simple approach, the 

combination of the proposed methods with the RGB-based base- 

line improved the effectiveness results both in terms of MAP and 

P@5. These results show the potential of the idea, opening a new 

world of research possibilities. 

 

6.4. Computational efficiency 

 
The key advantage of our technique is its computational effi- 

ciency. Table 6 presents the computational cost and the space re- 

quirements (in terms of the length n of the time series) of all the 

compared methods. In this way, we can investigate the relative dif- 

ference of performance among different approaches. 

Clearly, the visual rhythm-based techniques are much more ef- 

ficient than the current solutions. This improvement makes our ap- 

proach suitable for long-term collections of image data. 

Note also that the larger the time series, the bigger would be 

the visual rhythm image generated, independently of the represen- 

tation considered (either the pixel-based or area-based approach). 

For larger time series, the feature extraction process will probably 

take more time. Note, however, that the size of the final feature 

vector generated is not dependent on the size of the input image. 

It only depends on the descriptor used to characterize the visual 

properties of the visual rhythm images. 

 

7. Conclusions 

 
In this paper, we have presented a novel approach for captur-  

ing phenological patterns from time series and distinguishing the 

behavior of plant species. Our technique relies on encoding time 

series as a visual rhythm, which is characterized by image descrip- 

tors. The improvement of the computational efficiency makes our 

method suitable for long-term temporal data. 

We have validated our technique using about 2700  images, 

taken from a tropical cerrado-savanna vegetation, including a high 

diversity of plant species. Experimental results obtained by the ap- 

plication of our method with several image descriptors show that   

it presents high accuracy and computational speed when identify- 

ing regions that belong to the same species. 

Future work includes the evaluation  of  other  visual  features 

for image retrieval. In addition, the proposed method can be aug- 

mented to consider temporal segmentation and/or summarization 

methods. Finally, we also plan to consider learning-to-rank meth- 

ods (e.g., genetic programing) for combining different descriptors. 
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Abstract: 

Global warming and its resulting environmental changes surely are ubiquitous subjects nowadays and 

undisputedly important research topics. One way of tracking such environmental changes is by means of 

phenology, which studies natural periodic events and their relationship to climate. Phenology is seen as the 

simplest and most reliable indicator of the effects of climate change on plants and animals. The search for 

phenological information and monitoring systems has stimulated many research centers worldwide to 

pursue the development of effective and innovative solutions in this direction. One fundamental 

requirement for phenological systems is concerned with achieving fine-grained recognition of plants. In 

this sense, the present work seeks to understand specific properties of each target plant species and to 

provide the solutions for gathering specific knowledge of such plants for further levels of recognition and 

exploration in related tasks. In this work, we address some important questions such as: (i) how species 

from the same leaf functional group differ from each other; (ii) how different pattern classifiers might be 

combined to improve the effectiveness results in target species identification; and (iii) whether it is possible 

to achieve good classification results with fewer classifiers for fine-grained plant species identification. In 

this sense, we perform different analysis considering RGB color information channels from a digital 

hemispherical lens camera in different hours of day and plant species. A study about the correlation of 

classifiers associated with time series extracted from digital images is also performed. We adopt a 

successful selection and fusion framework to combine the most suit- able classifiers and features 

improving the plant identification decision-making task as it is nearly impossible to develop just a single 

“silver bullet” image descriptor that would capture all subtle discriminatory features of plants within the 

same functional group. This adopted framework turns out to be an effective solution in the target task, 

achieving better results than well-known approaches in the literature. 

 

Keywords: 

Plant species identification, Classifier fusion, Diversity measures 
 

 

1. Introduction 

 
Environmental changes have emerged as an important question in 

the global agenda [24,29]. This has spurred important research inter- 

est in phenology, the science of studying recurrent life cycles events 

and its relationship to climate [8,10,31]. To increase the range of study 

sites and species and the accuracy of phenological observations, dig- 
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ital cameras have been successfully applied as multi-channel imag- 

ing sensors, providing measures to estimate changes on phenological 

events, such as leaf flushing and senescence [1,26,27]. 

Previous work of our research group has monitored leaf chang- 

ing patterns of a neotropical savanna (cerrado sensu stricto vegeta- 

tion) based on daily acquired digital images [2]. We extracted image 

color information from the RGB (red, green, and blue) channels and 

correlated the changes in pixel levels over time with leaf phenology 

patterns [2]. The analysis was conducted after we defined regions of 

interest (ROI) based on the random selection of plant species crowns 

identified in the digital image [26]. Time series associated with each 

ROI have been obtained, raising the need of using appropriate tools 

for mining patterns of interest [3,4,6,28,30]. 

Fine-grained species identification in digital images is a key is- 

sue for the phenological observation of tree crowns, especially in 
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tropical vegetations where one single image may include a high num- 

ber of species [2]. Usually, this task is very time consuming since it 

has to be done in the field, first by matching each crown in the image 

to the tree in the soil and then by identifying the tree at species level 

[5]. In this sense, we have designed and deployed machine learn- 

ing methods to find similar patterns in the digital images and then 

we checked if they correspond to similar species or leaf functional 

groups [5]. 

Our first studies have focused on the intraspecies analysis, i.e., 

on detecting different individuals of the same species [5]. However, 

different species from the same leaf functional group may exhibit 

similar phenological traits, confusing the classifiers as discrimina- 

tive features among the classes are more subtle, hardening the iden- 

tification process. Hence many questions arise when considering 

interspecies interactions, i.e., the recognition of individuals from 

different species belonging to the same leaf functional group [2] 

spurring the need for the proper design and development of fine- 

grained recognition algorithms to tackle the problem. Therefore, in 

this paper, we aim at addressing the following questions: (i) how to 

distinguish different species from the same leaf functional group us- 

ing a pattern classification scheme for proper fine-grained decision- 

making; (ii) how the individual responses of classifiers built upon 

different phenological features are correlated to each other; and 

(iii) how to combine such phenological features so as to improve 

the responsiveness of all plant species as it is unlikely that just   

one phenological treat would be enough for complete and proper 

identification. 

We start by evaluating the performance of classification models 

built upon a single phenological feature. Thereafter we perform a cor- 

relation analysis in order to understand the responsiveness of each 

plant species regarding multiple phenological features. Based on the 

observations made, we adopted a successful fusion framework [12] to 

collect complementary features and better solve the multiclass clas- 

sification problem. This kind of problem has never been addressed 

in our studies before. Finally, we analyze the impact of increasing 

the number of classifiers in the individual responses of each plant 

species. 

The most important contributions of our work are: (1) A correla- 

tion analysis between different time series-based classifiers for each 

species. In this vein, we can identify correlations between classifiers 

and relationship intra/inter species, which show to be very important 

for the problem we are tackling in this paper; (2) The exploration and 

proper custom-tailoring of a classifier fusion framework [12] to im- 

prove the effectiveness results in a new application (species recogni- 

tion); (3) The exploration of this classifier fusion framework for com- 

bining time series-based classifiers. Unlike the previous work of ours 

[12], which has used visual properties (e.g., color, texture, and shape) 

as input data to training base classifiers, our new proposal uses time 

series, a much different problem with its own intrinsic particulari- 

ties and reduced information when compared to images; (4) Finally, 

in this work, we have considered a multi-class classification problem 

differently from the previous work. 

 
2. Time series acquisition 

 
A digital hemispherical lens camera (Mobotix Q24) was set up in 

an 18 m-high tower in a Cerrado sensu stricto, a neotropical savanna 

vegetation located at Itirapina, São Paulo State, Brazil [2,25]. Fig. 1 

shows all steps of the time series acquisition process used in our 

work. 

First, we set up the RGB digital camera to take a daily sequence of 

five JPEG images (at 1280 × 960 pixels of resolution) per hour, from 

6:00 to 18:00 h (UTC-3). The present study was based on the analysis 

of over 2700 images (Fig. 1(a)), recorded at the end of the dry season, 

between August 29 and October 3, 2011, day of year 241 to 278, during 

the main leaf flushing season [2]. 

Next, the image analysis has been conducted by defining differ- 

ent regions of interest (ROI), as described in [26] and defined by [2] 

for our target species. Then, we analyzed 22 ROIs (Fig. 1(b)) obtained 

from a random selection of six plant species identified manually by 

phenology experts in the hemispheric image [2]: (i) three regions 

associated with Aspidosperma tomentosum (green areas), (ii) four re- 

gions for Caryocar brasiliensis (blue areas), (iii) two regions for Myrcia 
guianensis (orange areas), (iv) six regions for Miconia rubiginosa (ma- 

genta areas), (v) two  regions for  Pouteria  ramiflora (cyan  areas), and 

(vi) four regions for Pouteria torta (red areas). 

We analyzed each ROI in terms of the contribution of the primary 

colors (R, G, and B), as proposed by [27] and described in [2]. Ini- 

tially, we analyze each color channel and compute the average value 

of the pixel intensity (Fig. 1(c)). After that, we compute the normal- 

ized brightness of each color channel (RGB Chromatic coordinates) 

(Fig. 1(d)). The normalization of those values reduces the influence 

of the incident light, decreasing the color variability due to changes 

on illumination conditions [9,34]. Finally, by computing those values 

along the whole period (August 28 to October 3, 2011), we obtained 

time series to use as input data for a learning method (Fig. 1(e)). 

 

 
 

Fig. 1. The time series acquisition process pipeline. (a) Sample image of the Cerrado savanna; (b) Different segmentation scales are computed and the coarse scale is selected; 

(c) Hemispherical image with the selected ROI’s species; (d) Channel representation are extracted from ROI’s; (e) RGB chromatic coordinates are computed; (f) Phenological time 

series extracted from digital images. (For interpretation of the references to color in this figure text, the reader is referred to the web version of this article.) 
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According to the leaf exchange data from the on-the-ground field 

observations on leaf fall and leaf flush at our study site, those species 

were classified on three functional groups [2,23]: (i) deciduous, A. to- 

mentosum and C. brasiliensis; (ii) evergreen, M. guianensis and M. ru- 

biginosa; and (iii) semideciduous, P. ramiflora and P. torta. 

 

 
3. Framework for time series-based classifier fusion 

 
The objective of adopting a classifier fusion approach is to exploit 

the degree of agreement/disagreement among different classifiers, 

concept known as diversity and to improve the effectiveness results 

in the target task. In this sense, we adapt a successful selection and 

fusion framework, originally proposed for multimedia recognition, 

to be used as a combiner of times series-based classifier [12]. This 

framework selects the most suitable classifiers to be used in a meta- 

learning approach. In this work, we define a classifier as a tuple con- 

taining a simple learning method (e.g., k-Nearest Neighbors – kNN) 

and a description technique (e.g., a color channel from the RGB color 

channels). 

 

 

3.1. Classifier fusion approach 
 

Fig. 2 illustrates the used framework [12] for plant identification. 

First, classifiers learn patterns from a training set (T) that contains 

samples of time series. Next, C classification models are created. 

They are applied on a validation set V, resulting in a matrix of clas- 

sifier outcomes MV, where MV = V × C and |V| is the number of 

time series extracted from a validation set V (Fig. 2(a)). 

Thereafter, in the selection of the most appropriate time series- 

based classifiers to be combined, MV is used to calculate different di- 

versity measures (D). These measures compute the degree of agree- 

ment and disagreement all of |C| available classifiers [20]. 

The main objective of this selection process is to select a set C∗ ⊂ C 
of classifiers that are more suitable to be fused/combined (Fig. 2(b)). 

Note that a new matrix MV
∗  ⊂ MV   is computed. Finally, given a new 

time series extracted from I, a fusion technique (e.g., Support Vec- tor  

Machines)  uses  the  newly  created  matrix  MV
∗  to  learn  patterns and 

thus define the final class of I through a meta-learning approach 

(Fig. 2(c)). 

 
3.2. Classifier selection approach 

 
Fig. 3 illustrates the adopted five-step approach for selecting clas- 

sifiers based on diversity measures, previously introduced in [12]. 

First, set D of diversity measures are used to assess the degree of 

agreement among available classifiers in C by taking into account the 

MV matrix previously computed. In this approach, five different mea- 

sures have been used (Correlation Coefficient p, Double-Fault Measure, 

Disagreement Measure, Interrater Agreement k, and Q-Statistic [20,21]). 

That step is represented by arrow (a) in Fig. 3. Pairs of classifiers are 

then ranked according to their diversity score. Each diversity mea- 

sure defines a different ranked list and, at the end of this step, a set 

R of ranked lists is produced (arrow (b)). In the following, a novel set 

of ranked lists Rt  is computed by selecting the top t pairs of classi- 

fiers from each ranked list in R (arrow (c)), and a histogram H that 

counts the number of occurrences of a classifier in all ranked lists of 

R is computed (arrow (d)). Finally, the most frequent classifiers in H, 

whose accuracy is greater that a given threshold T , are combined by 

a fusion approach (arrow (e)). T is a threshold defined in terms of the 

average accuracy among all classifiers using the validation set V. 

 
4. Experimental protocol 

 
This section presents the experimental protocol used in this work. 

 

4.1. Dataset 

 
In this work, we have applied the same evaluation method used in 

[2]. It relies on the classification of time series extracted from pixels 

associated with individuals of a same species. For that, we used the 

algorithm introduced by [15] to segment the hemispheric image into 

small polygons, obtaining 8849 segmented regions (SR). Then, we as- 

sociated each SR with a single ROI aiming to label it. A labeled region 

is created if there is at least 80% of overlapped area between an SR 

and a ROI. 

Finally, we extracted a time series from each labeled region using 

the approach described in Section 2. In this way, we built a dataset of 

892 time series separated into six classes, one for each plant species: 

A. tomentosum (96), C. brasiliensis (346), M. guianensis (36), M. rubigi- 

nosa (195), P. ramiflora (50), and P. torta (169). 

 

 
 

Fig. 2. Time series-based classifier selection and fusion framework adapted from [12]. In (a), given a classification problem with training examples, different classifiers are trained 

using data from training set T. In (b), the most discriminating classifiers are selected (C∗) by taking into account diversity measures (D). Finally, in (c), classifiers are combined in a 

meta-level approach using any other classifier. In this particular example, both the SVM and Majority Voting (MV) techniques can be used as the classifier fusion technique. 

 

 

Fig. 3. The five steps for classifier selection are: (a) Computation of diversity measures from the validation matrix MV; (b) Ranking of pairs of classifiers by their diversity measures 

scores; (c) Selection of the top t ranked pairs of classifiers; (d) Computation of a histogram H that counts the number of occurrences of each classifier; (e) Select the most appropriate 

classifiers |C∗| based on their occurrence in H and satisfy a defined threshold T . 
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Table 1 

Confusion matrix. TP, TN, FP, and FN stand 

for true positive, true negative, false posi- 

tive, and false negative, respectively. 
 

Predicted 
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4.2. Evaluation measures 

 
To report the effectiveness of each method in the experiments, we 

have used evaluation measures based on the confusion matrix: accu- 

racy and average accuracy [32]. Given a confusion matrix as Table 1 

shows, the measures can be calculated according to Eqs. (1–5). 

Total = TP + FP + FN + TN (1) 

40 

 

 
20 

 

 
0 

06 07 08 09 10 11 12 13 14 15 16 17 18 

LabelX 

 
TN 

Specificity = 
(FP + TN) 

(2) 

Fig. 4. Mean accuracy results for all hours and RGB channels using kNN-1 as learning 

method. 

 

 

all those learning methods might be costly. Therefore, we have con- 
TP 

Sensitivity = 
(TP + FN)

 

TP + TN 

(3) ducted a study to find the best parameter k that yields good results 

in our approach. Through experiments, we observed that the best ef- 

fectiveness performance was obtained for k = 1. From now on, all the 

Accuracy = (4) 
Total 

experiments reported in this work considers kNN-1 as base classifiers 

inside the proposed framework. Fig. 4 shows the effectiveness results 
of the RGB channels for each hour of the day on the validation set V. 

Average Accuracy 
Specificity + Sensitivity 

2 
(5) In these experiments, we observed that the best results were 

achieved for red channel (R) in all hours. We also observe that all 

In the case of multi-class classification task with unbalanced 

datasets, the use of Average Accuracy avoids that the evaluation of 

learning methods are biased towards the majority class [32]. Since in 

our experiments, we have used the 5-fold cross-validation protocol, 

all reported results are in terms of Mean Accuracy or Mean Average 

Accuracy. 

 
5. Results and discussion 

 
This section presents five different performed experiments and 

discusses the obtained results. In Section 5.1, we compare different 

values for the k parameter of the kNN learning method that yields 

better results in the target problem. Since it is impracticable to use 

all and any learning method from the literature, we conduct a pre- 

processing of simple classifiers. In Section 5.2, we analyze the rela- 

tionship between hours of the day and the six different plant species. 

This  experiments is essential to identify differences between 

species. In Section 5.3, a correlation analysis between available 

time series- based classifiers is performed. Thus, we might measure 

the degree of agreement/disagreement between involved classifiers. 

In Section 5.4, we adapt the framework to combine different 

classifiers to consider the use of complementary information 

provided by RGB channels. Furthermore, we compare this 

framework to other well-known tech- niques from the literature 

(e.g., majority voting [22] and bootstrap aggregation [7]). Finally, 

in Section 3.2, we use the same frame- work with classifier 

selection process to reduce the number of time series-based 

classifiers used, while maintaining similar effectiveness results. 

 

5.1. Finding the best kNN classifier 
 

We have used eight k-Nearest Neighbors (kNN) methods [13], us- 

ing k ∈ {1, 3, 5, 7, 9, 11, 13, 15}. Such methods are simple and fast, 

being suitable to be combined in a real-time recognition system. As    

in this paper we rely on the presence of several descriptors, using 

classifiers performed better in extreme hours 6, 7, 17, and 18. These 

results are used in the next section to guide the correlation analysis 

between all 39 available time series-based classifiers (3 channels × 

13 h = 39 classifiers). 

5.2. Relation between hour and species 

 
In these experiments, we have analyzed the behavior of each 

species (A. tomentosum, C. brasiliensis, M. guianensis, M. rubiginosa, P. 

ramiflora, and P. torta) throughout the day using the same validation 

set V used in the previous section. For these species, we use the same 

color patterns employed for their regions in Fig. 1(c). (A. tomentosum 

– green, C. brasiliensis – blue, M. guianensis – orange, M. rubiginosa – 

magenta, P. ramiflora – cyan, and P. torta – red). 

Figs. 5 , 6, and 7 show the behavior of all species for each one of 

three different color channels (RGB). The x-axis refers to the hours of 

day (6, …, 18), while the y-axis refers to the mean average accuracy. 

As it can be observed, although all species have the same behavior 

with relation to the best results in the extreme hours, these behaviors 

might vary for each species. In Fig. 5, notice that the C. brasiliensis 

species (blue line) has a behavior more stable than the other curves.   

In contrast, the M. guianensis species (orange line) has the highest 

performance decrease between ranges 7–8 and  the  highest  increase 

on the ranges 6–7 and 16–18. 

In Fig. 6, we can observe that the curve for the C. brasiliensis 

species is more stable over the time of day. The curve of the A. to- 

mentosum species (green line) differs from the other curves. It has 

a “U-like” shape, which indicates that time series-based classifiers 

yield better results for extreme hours. 

In Fig. 7, we can see that the behavior of the curve of the P. ram- 

iflora species (cyan line) has the highest performance decrease be- 

tween ranges 8–9. Furthermore, we can observe that there are differ- 

ences between R and B color channels with relation to the best results 

achieved at 6 and 18 h for all species. Classifiers using R color chan- 

nel at 18 h achieved better results than those at 6 h. The contrary 
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Fig. 5. Mean accuracy results for all hours and R color channel using kNN-1 as learning 

method for each class. (For interpretation of the references to color in this figure text, 

the reader is referred to the web version of this article.) 

 

Fig. 7. Mean accuracy results for all hours and B channel using kNN-1 as learning 

method for each class. (For interpretation of the references to color in this figure text, 

the reader is referred to the web version of this article.) 
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5.3. Correlation analysis between time series-based classifier 
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This section shows a correlation analysis of each pair of classi- 

fiers for all 39 available time series-based classifiers aiming at find- 

ing which of them might be combined by the framework described 

in Section 3. 

The Correlation Coefficient ρ (COR) [20] has been used to assess the 

correlation of two classifiers ci and cj: 

COR(c , c ) = ,
  ad − bc 

, (6) 

where a is the percentage of time series that both classifiers ci and cj 

Hour 
 

Fig. 6. Mean accuracy results for all hours and G channel using kNN-1 as learning 

method for each class. (For interpretation of the references to color in this figure text, 

the reader is referred to the web version of this article.) 

 

 

 

 

was observed for the G channel. In this case, the best results were ob- 

served at 6 h. Note also that the curves of the species M. guianensis 

presents the lower mean average accuracy for all color channels. We 

might attribute these consistent difference to its leafing phenology: 

M. guianensis (orange line) is the only species reducing the percent- 

age of green over the period of study [2]. 

In summary, each species has a particular behavior with regard to 

different RGB color channels throughout the day. This phenomenon 

might be justified by scattering of solar radiation and canopy re- 

flectance [33]. Moreover, the leaf biochemical contents (e.g., chloro- 

phyll, water, and dry matter) and canopy architecture (e.g., leaf area 

index, leaf angle distribution, and relative leaf size) might have im- 

pacted the spectral response of leaves [17]. 

This study might reinforce the importance of the R channel for 

the identification of these plant species as pointed out in [11]. How- 

ever, the G channel has shown also to be important for some species 

(e.g., M. guianensis, P. ramiflora, and P. torta) for some hours of the day. 

The difference in behavior of the time series-based classifiers led us 

to consider their combination as a suitable alternative for improving 

the classification results in plant identification systems. We therefore 

performed a correlation analysis between all those classifiers to guide 

us in the time series-based classifier selection process. 

classified correctly in a validation set V. Value b is the percentage of 

time series that cj hit and ci missed, c is the opposite of b. The value d 

is the percentage of time series that both classifiers missed. The pairs 

of classifiers with lower COR values have greater degree of comple- 

mentarity and are more likely to yield better results when combined. 

Range of COR is in [−1, +1]. 

Fig. 8 presents the COR values for all possible combinations of 

pairs of classifiers considering the six classes. The lowest correlation 

coefficients are closer to the purple color (−1) and the highest coef- 

ficients are closer to the yellow color (+1). Furthermore, in this fig- 

ure, there are seven important regions that have been highlighted and 

they are explained below. 

As we can observe in Fig. 8(a), in region (1), there are few classi- 

fiers with high correlation between the channels R and G which are 

closer to their extreme hours (16–18 h). However, outside of region  (1), 

the classifier from channels R and G are less correlated with chan- nel 

B. We can see some points in purple, which means lower corre- lation 

coefficients. Fig. 8(b) shows a more homogeneous behavior of the 

classifiers, since instances of class C. brasiliensis are not difficult  to be 

correctly classified. Furthermore, we can notice that there are      a few 

yellow strips meaning high correlation of the same classifier  with all 

other classifiers. Fig. 8(c) shows many purple points, which mean  a  

low  correlation  between  almost  all  classifiers  used  in  this 

work. This phenomenon can be explained by the difficulty of clas- 

sifying instances of the class M. guianensis. In region (2), we found 

the lowest correlation coefficient for all experiments. Fig. 8(d) shows   

a similar behavior to Fig. 8(a) with coefficients more homogeneous. 

We can observe in region (3) that classifiers of the same color channel 

G are more correlated between them. However, in region (4), R and G 
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Fig. 8. Correlation analysis considering all 39 available time series-based classifiers (3 channels × 13 h = 39 classifiers). The lowest correlation coefficients are closer to the purple 

color (−1) and the highest coefficients are closer to the yellow color (+1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

are less correlated with B. Fig. 8(e) shows the second most difficult 

class to be classified: P. ramiflora. In regions (5) and (6), we found the 

lowest correlation coefficients between almost all classifiers of R × G 

and all classifiers of the color channels R and G with part of classifiers 

of channel B (9–12 h). Finally, in Fig. 8(f), which refers to the class 

P. torta, we can notice that the classifiers achieve similar behavior to 

Fig. 8(a) and (b). In region (7), there are the less correlated classifiers 

within Fig. 8(f). 

5.4. Time series-based classifier fusion 

 
In these experiments, 12 fusion techniques were compared: four 

techniques that use the adopted framework [12] (FSVM-ALL-39, 

FSVM-R-13, FSVM-G-13, and FSVM-B-13), four majority voting tech- 

niques [22] (MV-ALL-39, MV-R-13, MV-G-13, and MV-B-13), and 

four bootstrap aggregation approaches [7] (BAGG-MERGE-ALL-39, 

BAGG-MERGE-R-13, BAGG-MERGE-G-13, and  BAGG-MERGE-B-13). 
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Fig. 9. Mean average accuracy of all fusion techniques. 

 

 

 

ALL means that all color channels, hours, and features have been used. 

R, G, and B refer to the color channels that compose the RGB channel. 

Furthermore, the number after a name (e.g., 13 in FSVM-B-13) refers 

to amount of time series-based classifiers considered in the fusion 

process. MERGE denotes a binding of the all available channels, hours, 

and feature vectors. 

The proposed framework aims at finding suitable combinations 

of time series-based classifiers formed by descriptors and learning 

methods. We have used the implementation of those learning meth- 

ods available in the WEKA [16] data mining library. All learning meth- 

ods were used with default parameters which means we did not op- 

timize them. 

Figs. 9 and 10 show the effectiveness results of all fusion tech- 

niques considered in this work. Two evaluation measures have been 

adopted, mean average accuracy (Fig. 9) e mean accuracy (Fig. 10). 

Balanced mean accuracy per class considers the mean accuracy of 

each class using the 5-fold cross validation protocol and the final ef- 

fectiveness result is the average of these accuracies. Mean accuracy is 

the principal diagonal from confusion matrix, which counts the num- 

ber of correct classification cases with respect to the total instances 

using the 5-fold cross validation protocol. 

As it can be observed, two of our approaches (FSVM-ALL-39 and 

FSVM-R-13) achieved the best results among all involved fusion tech- 

niques. FSVM-ALL-39 approach obtained a mean average accuracy of 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 10. Mean accuracy of all fusion techniques. 

 

 

Fig. 11. Behavioral analysis of the framework for different numbers of classifiers. On 

the x-axis are the numbers of selected classifiers C∗ = 2, . . . , 39 and y-axis are the 

mean accuracy achieved in the experiments. (For interpretation of the references to 

color in this figure text, the reader is referred to the web version of this article.) 

 

 

78.66% and mean accuracy of 85.87% against the best baseline MV-R- 

13 that yielded 73.02% and 83.18%, respectively. A fine-grained anal- 

ysis considering mean average accuracy showed that FSVM-ALL-39 

approach achieved better results in two classes (M. guianensis and P. 

torta), FSVM-R-13 approach is the best for other two classes (A. to- 

mentosum and M. rubiginosa). Finally, MV-ALL-39 achieved better re- 

sults in the classes C. brasiliensis and P. ramiflora. Thus, our approaches 

achieved better results in four out of six possible classes from the 

dataset used. 

 

5.5. Time series-based classifier selection 
 

This section describes a behavioral analysis of the proposed 

framework using different numbers of time series-based classifiers 

C∗ for the six classes from the dataset. Fig. 11 shows this analysis 

per class as well as all classes together. 

In these experiments, we can notice that the classes C. brasilien-  

sis, A. tomentosum, M. rubiginosa, and P. torta have a stable behavior 

with the increasing number of selected time series-based classifiers. 

This fact cannot be observed in the classes M. guianensis and P. ram- 

iflora. The class M. guianensis achieved an increase of more than 10% 

of mean accuracy in the range [3, 7]. However, the curve of the class P. 

ramiflora decreases more than 15% for the same ranges. Furthermore, 

note that the framework using only six classifiers achieves similar re- 

sults to those observed when 39 time series-based classifiers are used 

(see brown line in Fig. 11). In summary, the investigation for mini- 

mizing the misclassification rate per class seems to be a promising 

research venue and a classifier selection approach based on balanced 

classes might be a good solution to address this problem. 

Fig. 12 depicts the histogram H created in the selection process, 

while Fig. 13 shows the accuracy performances of all simple/non- 

complex classifiers using the validation set V. We highlight in gold 

bars the six time series-based classifiers (see brown line in Fig. 11) 

that have been selected by our selection process. In Fig. 12, although 

classifiers kNN1-09G, kNN1-09B, and kNN1-12G have achieved the 

higher frequency than kNN1-06R and kNN1-07G, our selection ap- 

proach does not choose any of those classifiers as candidate for fu- 

sion (gold bars). This is due to the policy of also considering the 

individual accuracy performance of classifiers in the selection pro- 

cess. As the accuracy performances of kNN1-09G, kNN1-09B, and 

kNN1-12G are below than the employed threshold values (dark blue 

line, T = 61.97%), these classifiers are not selected. Selected classi- 

fiers are kNN1-06R, kNN1-06B, kNN1-07R, kNN1-07G, kNN1-07B, and 
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Fig. 12. Histogram H related to the occurrence of classifiers in the selection process. 

(For interpretation of the references to color in this figure text, the reader is referred to 

the web version of this article.) 

 

 

 

Fig. 13. Average accuracy performances of all non-complex classifiers used in our ex- 

periments. The dark blue line defines the employed threshold (T ) value. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

kNN1-18R. In these experiments, three selected classifiers use the R 

channel, two classifiers use the B channel, and one classifier uses the 

G channel. We can observe also a huge impact of the extreme hours 

(06, 07, and 18) in the selection process. 

 
6. Conclusions 

 
In this paper, we proposed a time series-based classifier selec- 

tion and fusion framework to address problems in fine-grained plant 

identification tasks. We validated such framework with phenology 

studies. Recalling the objectives of our work, we addressed some 

very important questions, such as: (i) how species from the same 

leaf functional group differ from each other; (ii) how different pat- 

tern classifiers might be combined to improve the effectiveness re- 

sults in target fine-grained species identification as just one classi- 

fier or feature would not be discriminatory enough for the task; and 

(iii) whether it is possible to achieve good classification results with 

fewer classifiers for plant identification improving the efficiency of 

the whole decision-making process. To answer such questions, we 

have performed five different analyses: (1) Investigation of the best 

value for the k parameter of the kNN learning method that yields 

better results in the target problem; (2) An analysis of the relation- 

ship between hours of the day and the six different plant species 

considered in this study; (3) A correlation analysis measuring the 

degree of agreement/disagreement between available time series- 

based classifiers; (4) Use of a classifier selection and fusion frame- 

work aiming at exploring complementary information provided by 

different descriptions and learning methods, thus improving the ef- 

fectiveness results; (5) Investigation of the impact of using the same 

framework with classifier selection process to decrease the number 

of time series-based classifiers used, while maintaining similar effec- 

tiveness results. 

The experiments performed in this work confirm that there are 

some differences in terms of classification performance depending 

on the plant species considered, as well as, the correlation that exists 

between RGB channels and hours of the day using kNN-1 classifiers. 

Also, in the experiments, it was possible to note the importance of 

the red channel for plant species identification, in spite of the good 

contribution observed for the blue channel for some species (e.g., M. 

guianensis, P. ramiflora, and P. torta). Furthermore, the adopted frame- 

work achieved excellent results when compared with other well- 

known fusion techniques of the literature (Bootstrap Aggregation- 

BAGG [7] and Majority Voting-MV [22]). This framework, extended 

upon [12], brings an essential and important property different from 

those techniques in the literature: it is highly flexible and paralleliz- 

able. Regarding flexibility, our adopted approach can use any descrip- 

tion technique or learning methods as base classifier. In addition, the 

method is able to use any learning method in the late fusion (meta- 

learning process), such as a simple majority voting or more complex 

techniques such as support vector machines (SVMs). As for paral- 

lelization, each combination of description and learning methods can 

be used in different parallel approaches (e.g., thread, processor, and 

GPU) due the framework structure being designed independently (in 

modules). With that, the more important modules are the training 

classifiers, the classifier selection, and the meta-learning. Further- 

more, other important advantage of the adopted approach is that it 

considers each description and learning method as a single represen- 

tation thus it does not incur in the common normalization problems 

and, consequently reduces the risk the “the curse of dimensionality” 

that may result of direct combination of features (e.g., by means of 

concatenating feature vectors). 

A fine-grained analysis using time series-based classifier selection 

showed that the framework using fewer classifiers (i.e., six) achieved 

similar results to those observed when 39 time series-based classi- 

fiers are used. Therefore, our proposed method might be able to per- 

form real-time plant identification in different domains such as when 

monitoring plants through intelligent autonomous vehicles (e.g., un- 

manned aerial vehicles and drones). 

Another important contribution of this work is related to the use 

of multiclass classification approaches, which was not used in previ- 

ous phenology work [5]. The main take-home message of our work is 

that the adopted framework might be a good solution to address com- 

plex problems such as the ones involving phenology derived from se- 

quential digital images and fine-grained recognition of plants from 

the same functional leaf groups. This framework takes advantage of 

different and complementary information provided by RGB channels 

and combine them for a better decision-making process. In addition, 

it achieves good effectiveness results with fewer classifiers, which is 

paramount for efficient plant recognition. 

Future work may consider the use of the proposed framework in 

semi-automatic plant identification tasks, in which users may pro- 

vide relevance feedback that may tune the used classification mod- 

els for better fine-grained categorization that always includes hu- 

mans (specialists) in the loop. Also, we may consider the use of the 

proposed framework for real-time plant identification systems. Fur- 

thermore, other vegetation indices might be studied and combined 
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such as Color Index of Vegetation Extraction (CIVE) [19], Excess Green 

(ExG) [14], and the Plant Phenology Index (PPI) [18]. Regarding the 

generalization, with the proposed approach in this work for dealing 

with time-series based problems, we believe that other application 

domains, still in the realm of time series as input data, may include 

crop monitoring, recognizing different plant growth rates and also 

for plague control. Other applications also may tap on snowmelt and 

comparison of species or different kinds of vegetation. 
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Text formatting according to the Journal Pattern Recognition Letters 

 

Fusion of time series representations for plant recognition in phenology studies 
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Abstract: 

Nowadays, global warming and its resulting environmental changes is a hot topic in different biology re- 

search area. Phenology is one effective way of tracking such environmental changes through the study of 

plant’s periodic events and their relationship to climate. One promising research direction in this area relies 

on the use of vegetation images to track phenology changes over time. In this scenario, the creation of 

effective image-based plant identification systems is of paramount importance. In this paper, we propose the 

use of a new representation of time series to improve plants recognition rates. This representation, called 

recurrence plot (RP), is a technique for nonlinear data analysis, which represents repeated events on time 

series into a two-dimensional representation (an image). Therefore, image descriptors can be used to 

characterize visual properties from this RP images so that these features can be used as input of a classifier. 

To the best of our knowledge, this is the first work that uses recurrence plot for plant recognition task. 

Performed experiments show that RP can be a good solution to describe time series. In addition, in a 

comparison with visual rhythms (VR), another technique used for time series representation, RP shows a 

better performance to describe texture properties than VR. On the other hand, a correlation analysis and the 

adoption of a well successful classifier fusion framework show that both representations provide 

complementary information that is useful for improving classification accuracies 

 

Keywords: 

Plant species identification, Classifier fusion, Diversity measures 
 

1. Introduction 

 

Global warming and its resulting environmental changes have 

raised important research topics of different disciplines. Among 

those is phenology that studies recurrent life cycles events and its 

relationship to climate [35]. To increase the range of study sites and 

species and the effectiveness of phenological observations, 

technological devices (e.g., multi-channel imaging sensors) have 

been successfully applied to provide metrics for estimating changes 

on phenological events, such as leaf development and senescence 

[3,4,33]. 

Plant species recognition in the digital images is not  a  triv- ial 

task, especially in tropical vegetations, where one single image 
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may include a huge number of species [4]. This task is very time 

consuming since it has to be done in the field, first by matching 

each crown in the image to the tree in the soil and then by iden- 

tifying the tree at species level. 

Our goal in this work is to support automatic plant species 

recognition tasks based on phenological pattern information. Dif- 

ferent patterns correspond to different species, as well as similar 

patterns can be grouped in one species type or in  a  leaf  func- 

tional group that encompasses several species. This may not just 

save time for phenologists but also complement the phenological 

interpretation of the data collected. 

Almeida et al. [7] have proposed the use of machine-learning 

methods to find similar patterns in the digital images and then check 

if those patterns correspond to similar species or functional groups. 

Their work was focused on the intraspecies analysis, i.e., on 

detecting different individuals of a same species. However, dif- 

ferent species from a same functional group may exhibit a similar 

phenological pattern [4], confounding the classifiers. Hence, many 

questions arise when considering interspecies interactions, i.e., the 

recognition of individuals from different species but belonging to 

the same functional group [4]. 
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In this work, we adopt the strategy of characterizing phenolog- 

ical patterns from time series and distinguishing species from the 

same leaf functional group in plant species recognition tasks. In 

fact, several time series representations have been proposed in the 

literature. Some successful approaches include data-adaptive (e.g., 

SAX [26] and APCA [23]) and non-data adaptive representations 

(e.g., wavelets [31]). A good survey upon this subject can be found 

in [40]. 

In this work, we present a novel approach for time series repre- 

sentation, which is based on a technique for nonlinear data anal- 

ysis called recurrence plots (RP). Different from other time series 

representations, RP provides a visual mechanism for pattern iden- 

tification, being suitable for combining with state-of-the-art com- 

puter vision description approaches. This work has also been mo- 

tivated by the results of [24] and [37]. Both studies indicate that    

it is possible to perform classification tasks through the use of re- 

currence plots and texture feature extraction approaches. RP tech- 

nique has been used successfully in different application domain, 

such as action recognition [24], identification of diabetes analysis 

of epilepsy [1], and detection of financial crisis [2]. 

In our experiments, we performed four rigorous comparative 

analysis to show the robustness of RP-based representations for 

plant recognition tasks. We begin with an effectiveness study eval- 

uating the performance of RP-based classifier associated with time 

series of different hours of day. Then, we compared the proposed 

approach with another time series representation proposed by [6], 

called Visual Rhythm (VR). Next, we performed a correlation anal- 

ysis to find out agreement/disagreement between all classifiers in- 

volved between RP and VR-based representations. Finally, we adopt 

a successful classifier fusion framework [16] to combine the most 

suitable classifiers. Experimental results show that the combina- 

tion of RP- and VR-based representations yields better results that 

their use in isolation. 

In summary, the main contributions of this  work  are:  (i)  a  

new representation of time series based on recurrence plots tech- 

nique for plant recognition; (ii) effectiveness study of the recur- 

rence plots approach in different hours of day; (iii) effectiveness 

comparative study between recurrence plots and visual rhythm ap- 

proaches; (iv) correlation analysis between recurrence plots and vi- 

sual rhythm approaches; (v) use of a classifier fusion framework to 

combine the most suitable classifiers using both approaches. 

The remainder of this paper is organized as follows. 

Section 2 presents the phenological data acquisition process 

considered in our study. Section 3 presents the recurrence plot 

approach and how to use it for phenological time series represen- 

tation. Section 4 describes the experimental protocol adopted to 

validate the proposed approach. Section 5 reports the results of 

by [4] for our target species. Then, we analyzed 22 ROIs (Fig. 1b) 

obtained from a random selection of six plant species identified 

manually by phenology experts in the hemispheric image [4]: 

(i) Three regions associated with Aspidosperma tomentosum 

(green areas). 

(ii) Four regions for Caryocar brasiliensis (blue areas). 

(iii) Two regions for Myrcia guianesis (orange areas). 

(iv) Six regions for Miconia rubiginosa (magenta areas). 

(v) Two regions for Pouteria ramiflora (cyan areas), and 

(vi) Four regions for Pouteria torta (red areas). 

We analyzed each ROI in terms of the contribution of the pri- 

mary colors (R, G, and B), as proposed by [34] and described in [4]. 

Initially, we analyze each color channel and compute the average 

value of the pixel intensity (Fig. 1c). After that, we compute the 

normalized brightness of each color channel (RGB Chromatic co- 

ordinates) (Fig. 1d). The normalization of those values reduces the 

influence of the incident light, decreasing the color variability due 

to changes on illumination conditions [4,11,41]. Finally, by comput- 

ing those values along the whole period (August 28th to October 

3rd, 2011), we obtained time series to use as input data for our 

proposed framework (Fig. 1e). 

According to the leaf exchange data from the on-the-ground field 

observations on leaf fall and leaf flush at our study site, those 

species were classified on three functional groups [4,27]: (i) decid- 

uous, A. tomentosum and C. brasiliensis; (ii) evergreen, M. guianensis 

and M. rubiginosa; and (iii) semideciduous, P.  ramiflora and  P.  torta. 

 
3. Recurrence plots for plant species recognition 

 

This section introduces our approach for phenological time se- 

ries representation using recurrence plots. Section 3.1 describes 

how to compute recurrence plots (RP) from time series, while 

Section 3.2 presents how we use RP for representing phenology 

data. 

 

3.1. Recurrence plots (RP) 

 
Recurrence plots (RP), proposed by [15] in dynamical systems, is 

an advanced technique of nonlinear data analysis. RP technique has 

been used to visualize repeated events (the recurrence of states) of 

higher dimensional phase spaces through  projection into the  two 

or three dimensional sub-spaces. This technique is able to investi- 

gate recurrent behavior (periodicity) at time series (m-dimensional 

phase space) through a two-dimensional representation, such as a 

distance square matrix. 

Recurrence Plot might be defined by: 

our experiments and compares the proposed approach with an- 
R = ©(‹ − ǁ x − x ǁ), x  ∈ R  , i, j = 1...N (1) 

and directions for future work in Section 6. 

 
2. Phenological data acquisition 

 

A digital hemispherical lens camera (Mobotix Q24) was set up 

in an 18 m-high tower in a Cerrado sensu stricto, a neotropical sa- 

vanna vegetation located at Itirapina, São Paulo State, Brazil [4,32]. 

Fig. 1 shows all steps of the time series acquisition process used in 

our work. 

Firstly, we set up the camera to take a daily sequence of five  

JPEG images (at 1280 × 960 pixels of resolution) per hour, from 

6:00 to 18:00 h (UTC-3). The present study was based on the anal- 

ysis of over 2700 images (Fig. 1a), recorded at the end of the dry 

season, between August 29th and October 3rd 2011,  day of year 

241 to 278, during the main leaf flushing season [4]. 

Next, the image analysis has been conducted by defining dif- 

ferent regions of interest (ROI), as described in [33] and defined 

where N is the number of considered states  (dots  at  the  time  se- 

ries) xi, ‹i threshold distance, ǁ · ǁ a norm between the states (e.g.,  

Euclidean  norm),  m  is  the  embedding  dimension,  and  ©(·) 

the Heaviside function. This discontinuous function has value 0 for 

negative argument and 1 for positive argument. 

Eq. (1) provides an N × N image, which shows us whether there 

are recurrent states or not, along the target trajectory. This created 

image might be binary or grayscale, depending on the choice of a 

threshold or not. Fig. 2 shows a real time series from the dataset 

and two examples of recurrence plot considering those real time 

series, unthresholded and thresholded. 

The choice of an generalizable threshold to perform matching 

between two RP is a non-trivial task, but it can be possible with 

few heuristics [36]. As in this work we aim to make use of color 

and texture information, we have adopted the unthresholded ap- 

proach using the Manhattan norm and m = 1. This unthresholded 

approach is defined in Eq. (2). However, we can not rule out that 

j 
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Fig. 1. The time series acquisition process pipeline. (a) Sample image of the cerrado savanna; (b) Different segmentation scales are computed and the coarse scale is selected; 

(c) Hemispherical image with the selected ROI’s species; (d) Channel representation are extracted from ROI’s; (e) RGB chromatic coordinates are computed; (f) Phenological  

time series extracted from digital images. 

 

 

Fig. 2.  In  (a),  example  of  time  series,  (b)  is  an  example  of  unthresholded  RP,  and  (c)  is  an  example  of  thresholded  RP  with  ©(·)  < 20,  N = 37, and  m = 1. 

 

the extraction of shape information [13] is a research line to be 

explored in future work. 

Ri, j = |xi − x j|, xi ∈ R1, i, j = 1...N (2) 

3.2. Recurrence plot for phenological time series representation 

 
From phenology time series, it is possible to estimate changes 

on phenological events, such  as  leaf  flushing  when  analyzing 

the green channel, or leaf color change and senescence using 

values from the red channel [3,33]. It requires  the  analysis  of  

time series related to different color channels. The changing pat- 

terns along time are then validated with on-the-ground phenology 

observations. 

However, color information in the RGB channels are highly 

correlated (i.e., changes in one channel may lead to variations in 

another), making harder to detect temporal changes in recurrent 

phenology events. 

The novelty of this paper is to extend the notion of recurrence 

plots for the context of phenology. Here, we combine the time se- 

ries into a single representation, making the phenological change 

analysis easier. The key contribution of our idea is the combination 

process we design to encode the time series into a single image. 

Fig. 3 (a)–(c) illustrates the process of computing RP-based rep- 

resentations. In (a), given the obtained time series in Fig. 1, the 

recurrence plot algorithm is applied on these time series to cre-   

ate their two-dimensional representation  (distance  matrix).  Even 

at this step, a normalization technique is applied to convert real 

values to integer values in the typical range of grayscale images 

([0, 255]). Then, in (b), a merging process is performed to join    

the three distance matrices into a single color image. Finally, in  

(c), many image descriptors may be used to encode visual proper- 

ties (e.g., color, texture, and shape) from this color image into fea- 

ture vectors. The feature vectors created through the use of image 

descriptors are later used as input to a machine learning method 

(e.g., support vector machine and k-Nearest Neighbors). 

Fig. 4 shows the recurrence plots computed using the defined 

ROIs. As RP provides a two-dimensional representation (distance 

square matrix), we can observe many different colors in the matri- 

ces, which are associated with the  distance values between plots 

on the time series. The lowest distance values are closer to the 

blue color and the highest distance values are closer to the red 

color. Notice that there are pattern differences among all of species 

used in this work. 

 
4. Experimental setup 

 

This section describes the baseline used, which is based on vi- 

sual rhythms (Section 4.1); presents the classifier fusion frame- 

work adopted to combine VR-based and RP-based classifiers 

(Section 4.2), and, finally, introduces the experimental protocol 

(Section 4.3). 

 

4.1. Baseline: visual rhythms (VR) 

 
An effective way to analyze temporal properties  from  video 

data is by means of visual rhythms [28]. The objective is to create 

an abstraction of a video by coding the temporal change of pixel 

values along a specific sampling line [20]. 

In the context of phenology, a time series comprised of images 

taken by digital cameras at fixed time intervals can be viewed as    

a video of the vegetation, as proposed by [5]. However, instead of 

specific lines (e.g., diagonal, horizontal, and vertical), the interest 

here is to analyze unshapely regions related to plant species that  

are identified by phenology experts (see the initial step in Fig. 3). 

Motivated by such limitations, [6] have generalized the notion 

of visual rhythms. From a generic point of view, a visual rhythm 

consists of temporal data samples grouped in an orderly manner. 

For that, they have designed a mapping function to convert a ROI 

into a vertical line. In the following, we briefly describe their strat- 

egy for extracting visual rhythms from phenology time series. For 

more details regarding their approach, refer to [9]. 

Let  V = { ft }, t ∈ [1, T ]  be  a  video,  in  domain  2D + t, with  T 

frames of dimensions WV × HV ; and I  be a binary image, with the 

same dimensions of V, in which white pixels indicate a ROI. Ini- 

tially, the image I is converted into a list of Cartesian coordinates 

Lxy = (x, y) I(x, y) = 1 . Next, this list is used for computing the 

geometric  center  (xc,  yc)  of  the  ROI.  Then,  the  Cartesian coordi- 

nate system of the elements in Lxy  is translated to have its ori-      

gin at the point (xc, yc). After that, the Cartesian coordinates Lxy  
are converted to the polar coordinate system, creating a list of 
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Fig. 3. The steps for feature extraction from the recurrence plot representation. 

 

 
 

 
 

Fig. 4. Examples of recurrence plots for ROIs of each plant specie. These images 

were created using the Octave software [14] with one-dimensional interpolation 

method. 

 
 

 

Fig. 5. Visual rhythms obtained for ROIs of some plant species. Text and figure have 

been extracted from [6]. 

 

 

polar coordinates Lrθ . Thereafter, an  index  K = {k  |  ∀(r, θ ) ∈ 

Lrθ , k = 2πr + θ } is created to assign a unique value to each el- 

ement in Lrθ . Finally, the keys in the index K are sorted in an in- 
creasing order and then used to arrange the elements in Lxy. 

In this way, they defined a visual rhythm as a mapping of each 

frame ft  into a vertical line on an image R∗, in domain 1D + t, such 

that [6]: 

R∗ (t, z) = ft (Lxy(z)), t ∈ [1, WR∗ ], z ∈ [1, HR∗ ], 

where WR∗ = T and HR∗ = Lxy are its width and  height,  respec- 

tively. Figure 5 presents the visual rhythms produced by their ap- 

proach using the ROIs from Fig. 3(b). 

 

4.2. The classifier fusion framework 

 
This section presents a framework for classifier selection and 

fusion (FSVM), as devised in [16]. The objective of the fusion 

framework is to exploit the degree of agreement/disagreement 

among classifiers, concept known as diversity, with the objective 

of selecting the most suitable ones to be used in a combination 

scheme. 

In the context of classifier fusion area and in this work, a classi- 

fier might be defined as a tuple containing a learning method (e.g., 

kNN) and a description technique (e.g., Color Histogram). Classi- 

fiers learn patterns from training instances and use learned models 

to assign unseen instances to appropriate classes. Once the train- 

ing step is finished, a selection process is performed to define 
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Fig. 6.  Time series-based classifier selection and fusion framework adapted from [16]. In (a), given a classification problem with training examples, different classifiers are 

trained using data from training set T. In (b), the most discriminating classifiers are selected (C∗) by taking into account diversity measures (D). Finally, in (c), classifiers are 

combined in a meta-learning approach using a SVM technique. 

 

 

Fig. 7.  The five steps for classifier selection are: (a) Compute diversity measures from the validation matrix MV; (b) R lists sorted by diversity measures scores; (c) Rt   lists      

with top t; (d) counts the number of occurrences of each classifier that satisfies a defined threshold; (e) Selected classifiers   C∗  . Text  and figure have been extracted from         

[16]. 

 
classifiers whose combination, usually based on another learning 

method (meta-learning), is more promising. The objective is to de- 

termine the most discriminative methods, and, at the same time, 

boosting the classification performance at test time by selecting 

less, but more effective, classifiers. 

Fig. 6 illustrates the framework FSVM for combining classifiers, 

while Fig. 7 illustrates the adopted five-step approach for selecting 

classifiers based on diversity measures, previously introduced by 

Faria et al. [16]. 

First, diversity measures (set D in Fig. 7) are used to assess the 

degree of agreement among available classifiers in C by taking into 

account the MV matrix previously computed. That step is  repre-  

sented  by  arrow  (a)  in  Fig.  7.  Pairs  of  classifiers  are  then ranked 

according to their diversity score. Each diversity measure defines a 

different ranked list and, at the end of this step, a set R of ranked 

lists is produced (arrow (b)). In the following, a novel set of  ranked 

lists Rt  is computed by selecting the top t pairs of classifiers from 

each ranked list in R (arrow (c)), and a histogram H that counts   

the number of occurrences of a classifier in all ranked lists of Rt       

is computed (arrow (d)). Finally, the most frequent classifiers in H, 

whose accuracy is greater that a given threshold T , are combined 

by a fusion approach (arrow (e)). T is a threshold defined in terms 

of the average accuracy among all classifiers using the validation 

set V. 

 

4.3. Experimental protocol 

 
In this work, we adopted the evaluation method used in [7].       

It relies on the classification of time series extracted from pixels 

associated with individuals of a same species. For that, we used  

the algorithm introduced by [19] to segment the hemispheric im- 

age into small polygons, obtaining 8, 849 segmented regions (SR). 

Then, we associated each SR with a single ROI aiming to label it. A 

labeled region is created if there is at least 80% of overlapped area 

between an SR and a ROI. Finally, we extracted a time series from 

each labeled region using the approach described  in  Section  2.  In 

this way, we built a dataset of 892 time series separated into six 

classes, one for each plant species: A. tomentosum (96), C. brasilien- 

sis (346), M. guianensis (36), M. rubiginosa (195), P. ramiflora (50), 

and P. torta (169). 

In the following, we present four experiments performed to val- 

idate the use of the RP representation in plant recognition tasks. 

First, in Section 5.1, we performed an effectiveness study con- 

cerning the performance of classifiers that exploit RP-based fea- 

tures associated with time series  of  different  hours  of  day.  In  

this experiment, we used the k-Nearest Neighbors (kNN) learning 

method. We set k = 1 , which achieved the best results in [12]. 

For describing time series encoded into  a  RP  representation,  we 

used seven traditional  and  recently  proposed  image  descriptors:  

ACC [21], BIC [38], CCV [30], and GCH [39], for encoding color in- 

formation; GFD [42], GIST [29], and HWD [22], for analyzing tex- 

ture properties. 

In the second experiment, in Section 5.2, we compared the pro- 

posed RP-based approach with another time series representation 

proposed by [6], called Visual Rhythm (VR). Two different effec- 

tiveness experiments have been done: 

(1) Coarse-grained Analysis (Section 5.2.1) that evaluates the ef- 

fectiveness results of the recurrence plot-based and visual 

rhythms-based classifiers; and 

(2) Fine-grained Analysis (Section 5.2.2) that evaluates the best 

effectiveness results achieved by both representations (RP 

and VR) using different image descriptors (GFD and BIC). 

 

In the third experiment, in Section 5.3, we performed a cor- 

relation analysis to find out agreement/disagreement between all 

classifiers involved in the previous experiment using RP and VR 

representations. 

In the fourth experiment, in Section 5.4, we adopt a success-   

ful classifier fusion framework [16] to combine the most suitable 

classifiers using both approaches (RP and VR) representations. 
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Fig. 8. In (a)–(g), effectiveness results of the kNN learning method using each of seven different image descriptors and in (f), results for all seven descriptors together.. 
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Fig. 9. Effectiveness results of the (a) visual rhythms-based and (b) recurrence plot-based kNN classifiers using seven image descriptors.. 

 

100 

 
80 

 
60 

 
40 

 
20 

 
0 

 

 

 
Fig. 10. The best effectiveness results for each representation approach. BIC color 

descriptor for Visual Rhythm approach and GFD texture descriptor for recurrence 

plots approach. 

 

 

Finally, in Section 5.5, we conducted a behavioral study of the 

different approaches in small training scenarios. 

 
5. Experimental results and discussion 

 

5.1. Effectiveness results of RP-based classifiers 

 
In these experiments, we analyze the behavior of the  kNN  

learning method with each image descriptor (ACC, BIC, CCV, GCH, 

GFD, GIST, and HWD) for different hours of the day (from 6h to 

18h). 

We have adopted a 5-fold cross validation protocol, thus the 

evaluation measure used in this work is the arithmetic mean of    

the five accuracies (one accuracy per testing set). Furthermore, as 

the dataset is unbalanced (i.e., the number of samples in differ-   

ent classes is unequal), we computed each accuracy taking into ac- 

count the size of classes in the testing set (weighted accuracy). 

Fig. 8 (a)–(g) presents the  effectiveness  results  for  each  of  

the image descriptors used in this work. Furthermore, in (h) we 

present the effectiveness results of all descriptors together. Notice 

that the x-axis refers to the hours of the day,  while  the  y-axis 

refers to the used evaluation measure (Mean Accuracy). 

As it can be observed, C. brasiliensis (in blue) and P.  torta (in   

red) species may be considered the easiest  species  to  be  recog-  

nized among all the species,  considering  all  hours  of  the  day  and 

all the image descriptors. However, M. guianesis (in orange) and P. 

ramiflora (in cyan) species are the hardest ones to be recognized 

considering all the six species. In almost  all  the  experiments,  the 

best results were achieved  in  the  extreme  hours  of  the  day  (6,  7, 

17, and 18). 

In relation to visual property (color and texture), the best 

effectiveness results achieved by the RP-based methods are those 

related to the use of texture descriptors (GFD, GIST, and HWD). 

Notice in Fig. 8(e) that our approach achieved the  best  result  

when consider a single descriptor (GFD) at 18h (65.09%). The 

worst result of a single descriptor was observed when the CCV 

color descriptor was used: 19.55% (Fig. 8(c) at 15h). However, the 

best effectiveness results for almost all hours of day have been 

achieved in (h), with the merge of all image descriptors. 

 

5.2. Comparison of RP-based and VR-based classifiers 

 
In this section, we compare the RP-based representations with 

the VR-based ones [6]. In the experiments with VR, we adopted 

the same experimental protocol (i.e., 5-fold cross validation and  

the same image descriptors and classifier) used with our RP-based 

approach. 

 

5.2.1. Coarse-grained analysis 

Fig. 9 shows two radar charts with effectiveness results of the 

recurrence plot-based and visual rhythms-based classifiers. These 

charts are composed of three parts, (1) radius, (2) slice of the 

perimeter, and (3) lines. The radius means the effectiveness mea- 

sure values (mean balanced accuracy). The slices of the perimeter 

means each hours of day, from 6:00 to 18:00 h (UTC-3). Finally, the 

line means the performance of each kNN-1 learning method with 

one different image descriptor (ACC, BIC, CCV, GCH, GFD, GIST, and 

HWD). 

Fig. 9 (a) are the seven image descriptors used in this work for 

visual rhythms-based classifiers and Fig. 9(b) are the same image 

descriptors for recurrence plots-based classifiers. 

As it can be observed, in (a) the best results have been achieved 

by classifiers that use color image descriptors (ACC, BIC, CCV, and 
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Fig. 11. Correlation analysis considering all 182 available classifiers (2 representation approaches × 7 image descriptors × 13 hours = 182 classifiers). The lowest correlation 

coefficients are closer to the purple color (−1) and the highest coefficients are closer to the yellow color (+1). (For interpretation of the references to color in this figure          

legend, the reader is referred to the web version of this article).. 
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Fig. 12. Effectiveness performance considering (a) the mean accuracy and (b) the mean average accuracy when classifiers using RGB channels, RP, VR and both representa-  

tions are combined. 

 

GCH). However, in (b) the classifiers with texture image descriptors 

have achieved the best results (GFD, GIST, and HWD). 

 
 

5.2.2. Fine-grained analysis 

For a more detailed analysis, we performed a comparison be- 

tween the RP and VR approaches considering their performance 

per class for the best achieved results. The best results of the RP 

and VR approaches were observed when used with GFD (texture) 

at 18h and BIC (color) at 6h, respectively. Fig. 10 shows this fined- 

grained analysis. 

We  can  observe  that  the  RP  approach  achieved  better  results 

in four (C. brasiliensis, M. guianensis, P. ramiflora, and P. torta) out 

of the six species (see Fig. 10).  The VR approach, in turn, yields  

better results for A. tomentosum and M. rubiginosa. Furthermore, in 

the experiments with P.  ramiflora, and P.  torta species, it is possible  

to notice a large difference between results achieved by  the  RP-  

based and VR-based approaches, around 30% of accuracy in both 

species. 

 

 
 

5.3. Correlation analysis between RP-based and VR-based classifiers 

 
This  section  presents  the  correlation  analysis  of  each  pair 

of classifiers for all 182 available classifiers aiming to identify 
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task. In additional, we consider the fusion of RGB channels as a 

baseline approach [17]. 

Fig. 12 shows four curves, FSVM-RGB, FSVM-RP, FSVM-VR, 

and FSVM-RP+VR, which refer to the fusion of the RGB channels, 

recurrence plot, visual rhythms, and combination of RP and VR, 

respectively. The suffix FSVM refers to the selection and fusion 

framework, which was implemented  using  the  SVM  classifier  in  

the fusion step (meta-learning). 

Two evaluation measures, Accuracy and Average Accuracy, are 

considered.  In  these  experiments,  the  framework  combines each 

approach for different numbers of classifiers |C∗|. In pink, the 

framework combines |C∗| = {1, . . . , 39} RGB channels-based classi- 

fiers (39 = 3 channels × 13 h). In green, the framework combines RP-

based classifiers |C∗| = {2, . . . , 91} (91 = 7 descriptors × 13  h). In 

blue, it uses the VR-based classifiers  C∗  =  2, . . . , 91  . Finally, in 

red, the framework combines all available classifiers (91 RP-based 

plus 91 VR-based classifiers, leading to a total of 182 classifiers). 

As we can observe, the fusion framework using both representa- 
Fig. 13. Mean accuracy results of the best amount of classifiers for each approach 

using training sets with different sizes. 

 

 
 

whether them might be combined by any fusion technique (e.g., 

Adaboost [18], Bagging [10], and meta-learning approach [16]). 

The Correlation Coefficient ρ (COR) [25] has been used to assess 

the correlation of two classifiers ci and cj: 

COR(c , c ) = ,
  ad − bc 

, (3) 

tion (RP+VR) achieved a huge improvement when compared to the 

use of the two representations in isolation. 

As it can be observed, the FSVM-RGB approach has achieved the 

better results on the range 1, . . . , 8 classifiers. However, FSVM- 

RP+VR achieved the best results  when  more  than  8  classifiers 

are considered ( 9, . . .  , 182 ). Therefore, we could show that re- 

currence plot and visual rhythms representations address different 

and complementary information that might be combined to im- 

prove the effectiveness of plant identification systems. 

 
 
where a is the percentage of time series that both classifiers ci and 

cj classified correctly in a validation set. Value b is  the  percent- 

age of time series that cj hit and ci missed, c is the opposite of b. 

The value d is the percentage of time series that both classifiers 

missed. The pairs of classifiers with lower COR values have greater 

degree of complementarity and are more likely to yield better re- 

sults when combined. Range of COR is in [−1, +1]. 

Fig. 11 presents the COR values for all possible combinations of 

pairs of classifiers considering the six classes. The lowest correla- 

tion coefficients are closer to the purple color (−1) and the highest 

coefficients are closer to the yellow color (+1). Furthermore, in this 

figure, there are six important regions that have been highlighted 

and they are explained below. 

As we can observe in Fig. 11(a), in region (1), the RP-based clas- 

sifiers with texture descriptors are more correlated among them. In 

region (2), the VR-based classifiers with color descriptors are more 

correlated among them. This fact means that different classifiers 

that use the same kind of visual proporties (color or texture) in 

these approaches have predicted similar instances of the A. tomen- 

tosum species. However, outside these two regions, the same sce- 

nario can not be observed. 

In general, although there are classifiers with high correlation 

(regions 3, 4, 5, and 6), the great majority of classifiers are non- 

correlated to each other (see purple color) for different species. 

Thus, there is a strong indication that the RP-based and VR-based 

classifiers used in this work might be combined to achieve better 

results for plant recognition task. 

In this sense, we adopt a well successfull classifier fusion 

framework [16] (Section 4.2) to address complementary informa- 

tion provided by RP-based and VR-based classifiers. 

 
5.4. Fusion of RP-based and VR-based classifiers 

 
In this section, we adopt the framework reported in 

Section 4.2 (FSVM), with the objective of demonstrating that    

is possible to combine different RP-based and VR-based classifiers 

and to improve the effectiveness results in the plant recognition 

 
In this section, we have conducted a study considering three 

different sizes for the training set (25%, 50%, and 100%), which rep- 

resents 15%, 30% and 60% of the entire datasets, respectively. These 

subsets have been selected from original training set. 

Fig. 13 shows comparative analysis of the four different  

approaches FSVM-RGB-32, FSVM-RP-90, FSVM-VR-7,  and FSVM- 

RP+VR-91. Notice that FSVM approaches show up with a numerical 

suffix N (e.g., N = 7, 32, 90, 91 ), which means the number of 

classifiers each approach has used achieving the best effectiveness 

results. Furthermore, we used again the 5-fold cross-validation 

protocol. 

Notice that the FSVM-RP+VR-91 approach, which combines RP- 

based and VR-based classifiers, has achieved better results than 

other approaches for any training set size. 

 
6. Conclusion 

 

In this work, we proposed the use of a technique of nonlin-    ear 

data analysis for time series representation in plant species 

recognition task. This technique, called recurrence plot, allows us 

to represent repeated events (the recurrence of states) on time se- 

ries into two-dimensional representation. We have extracted fea- 

ture vector from this new representation through use of different 

kinds of image descriptor (e.g., color and texture). The created fea- 

ture vector is then used as input to a learning method, in our case, 

the k-Nearest Neighbor method. 

The experiments performed in this work showed that there are 

differences in terms of classification performance depending on the 

plant species considered, as well as, the low correlation that exists 

between almost all used classifiers. In these experiments, we ob- 

served that texture descriptors describe better the image provided 

from recurrence plots representation. However, the visual rhythms 

achieved better results when used in color descriptors. 

A correlation analysis between all of classifiers have been per- 

formed and we could observe that recurrence plot-based and vi- 

sual rhythms-based classifiers have low correlation coefficients, i.e., 

5.5. Training set size impact 
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both approaches describe complementary information that might  

be combined by fusion techniques with the objective of producing 

better effectiveness results in plant recognition tasks. 

Furthermore, we have adopted a successful classifier fusion 

framework [16] to combine RP-based and VR-based classifiers and 

then improve the effectiveness results. We could show in practice 

the huge complementarity degree between those time-series rep- 

resentations. 

Future  work  includes  the  use  of  other  image  descriptors   

to extract different visual features (e.g., shape description ap- 

proaches based on contour and regions [13]). In addition, the 

proposed framework can be augmented to consider learning- to-

rank methods (e.g., genetic programming [8]) for combining 

different descriptors. Another point to be explored is the use of    

RP for multispectral images or multisensor systems, which have 

more than three time series. In these scenarios, remote sensing 

approaches for channel selection and combination can be used. 

Finally, we also plan to perform an extensive study on different 

strategies for feature selection and classifier fusion. 

 

Acknowledgments 

 

This research was supported by the São Paulo Research Foun- 

dation FAPESP and Microsoft Research Virtual Institute (grants 

#2010/52113-5, #2013/50169-1, and #2013/50155-0). BA received 

a master scholarship from CAPES and a doctoral fellowship from 

FAPESP (grant #2014/00215-0); LPCM and RST receive a Produc- 

tivity  Research  Fellowship  from  CNPq   (grants   310761/2014-0   

and  306580/2012-8).   Also,   we   have   been   benefited   from   

funds of CAPES, CNPq, and FAPESP (grants #2009/18438-7 and 

#2010/51307-0). 
 

References 

 

[1] U.R. Acharya, S. Vinitha Sree, G. Swapna, R.J. Martis, J.S. Suri, Automated eeg 

analysis of epilepsy: a review, Knowl. Based Syst. 45 (2013) 147–165. 

[2] P.M. Addo, M. Billio, D. Guegan, Nonlinear dynamics and recurrence plots for 

detecting financial crisis. Documents de travail du Centre d’Economie de la 

Sorbonne 13024,  Universit Panthon-Sorbonne (Paris 1), Centre d’Economie de  

la Sorbonne, 2013. 

[3] H. Ahrends, S. Etzold, W. Kutsch, R. Stoeckli, R. Bruegger, F. Jeanneret, H. Wan- 

ner, N. Buchmann, W. Eugster, Tree phenology and carbon dioxide fluxes: Use  

of digital photography for process-based interpretation at the ecosystem scale, 

Clim. Res. 39 (2009) 261–274. 

[4] B. Alberton, J. Almeida, R. Henneken, R. da S. Torres, A. Menzel, L.P.C. Morellato, 

Using phenological cameras to track the green up in a cerrado savanna and its on-

the-ground validation, Ecol. Inform. 19 (2014) 62–70. 

[5] J. Almeida, J.A. dos Santos, B. Alberton, L.P.C. Morellato, R. da S. Torres, Plant 

species identification with phenological visual rhythms, in:  Proceedings  of  the  

IEEE International Conference on eScience (eScience’13), 2013a, pp. 148–154. 

[6] J. Almeida, J.A. dos Santos, B. Alberton, L.P.C. Morellato, R. da S. Torres, Vi- 

sual rhythm-based time series analysis for  phenology  studies,  in:  Proceed-  

ings of the IEEE International Conference on Image Processing (ICIP’13), 2013, 

pp. 4412–4416. 

[7] J. Almeida, J.A. dos Santos, B. Alberton, R. da S. Torres, L.P.C. Morellato, Apply- 

ing machine learning based on  multiscale  classifiers  to  detect  remote  phenol-  

ogy patterns in cerrado savanna trees, Ecol. Inform. 23 (2014) 49–61. 

[8] J. Almeida, J.A. dos Santos, W.O. Miranda, B. Alberton, L.P.C. Morellato, R. da S. 

Torres, Deriving vegetation indices for phenology analysis using genetic pro- 

gramming, Ecol. Inform. 26 (2015) 61–69. 

[9] J. Almeida, J.A. dos Santos, B. Alberton, L.P.C. Morellato, R. da S. Torres, Pheno- 

logical visual rhythms: compact representations for fine-grained plant species 

identification, Pattern Recogn. Lett. (2016), doi:10.1016/j.patrec.2015.11.028. 

[10] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140. 

[11] H.-D. Cheng, X. Jiang, Y. Sun, J. Wang, Color image segmentation: advances and 

prospects, Pattern Recogn. 34 (12) (2001) 2259–2281. 

[12] J.C. Conti, F.A. Faria, J. Almeida, B. Alberton, L.P.C. Morellato, J.L. C., R. da S. 

Torres, Evaluation of time series distance functions in the task of detecting re- 

mote phenology patterns, in: Proceedings of the IEEE International Conference 

on Pattern Recognition (ICPR’14), 2014, pp. 3126–3131. 

[13] R. da S. Torres, M. Hasegawa, S. Tabbone, J. Almeida, J.A. dos Santos, B. Al- 

berton, L.P.C. Morellato, Shape-based time  series  analysis  for  remote  phenol-  

ogy studies, in: Proceedings of the IEEE International Geoscience and Remote 

Sensing Symposium (IGARSS’13), 2013, pp. 3598–3601. 

 

[14] J.W. Eaton, D. Bateman, S. Hauberg, GNU Octave Manual Version 3, Network 

Theory Ltd., 2008. 

[15] J.-P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of  dynamical  sys- 

tems, Europhys. Lett. 4 (9) (1987) 973. 

[16] F.A. Faria, J.A. dos Santos, A. Rocha, R. da S. Torres, A framework for selection 

and fusion  of  pattern  classifiers  in  multimedia  recognition,  Pattern  Recogn.  

Lett. 39 (2014) 52–64. 

[17] F.A. Faria, J. Almeida, B. Alberton, L.P.C. Morellato, A. Rocha, R. da S. Torres, 

Time series-based classifier fusion for fine-grained plant species  recognition,  

Pattern Recogn. Lett (2016), doi:10.1016/j.patrec.2015.10.016. 

[18] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm,  Update 

(1996) 148–156. 

[19] L. Guigues, J. Cocquerez, H. Le Men, Scale-sets image analysis, Int. J. Comput.   

Vis. 68 (2006) 289–317. 

[20] S.J.F. Guimar aes, M. Couprie, A.A. Araújo, N.J. Leite, Video segmentation based 

on 2D image analysis, Pattern Recogn. Lett. 24 (7) (2003) 947–957. 

[21] J. Huang, R. Kumar, M. Mitra, W. Zhu, R. Zabih, Image indexing using color cor- 

relograms, in: Proceedings of the IEEE International Conference on Computer 

Vision and Pattern Recognition (CVPR’97), 1997, pp. 762–768. 

[22] C.E. Jacobs, A. Finkelstein, D.H. Salesin, Fast multiresolution image querying, in: 

Proceedings of the International Conference on Computer Graphics and  Inter-  

active Techniques (SIGGRAPH’95), 1995, pp. 277–286. 

[23] E.J. Keogh, K. Chakrabarti, S. Mehrotra, M.J. Pazzani, Locally adaptive dimen- 

sionality reduction for  indexing  large  time  series  databases,  in:  Proceedings 

of the ACM SIGMOD International Conference on Management of Data (ACM 

SIGMOD’01), 2001, pp. 151–162. 

[24] K. Kulkarni, P. Turaga, Recurrence textures for human activity recognition from 

compressive cameras, in: Proceedings of the IEEE International Conference on 

Image Processing (ICIP’12), 2012, pp. 1417–1420. 

[25] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wi- ley-

Interscience, 2004. 

[26] J. Lin, E.J. Keogh, L. Wei, S. Lonardi, Experiencing SAX: a novel symbolic repre- 

sentation of time series, Data Min. Knowl. Discov. 15 (2) (2007) 107–144. 

[27] L.P.C. Morellato, R.R. Rodrigues, H.F. Leit ao Filho, C.A. Joly, Estudo comparativo 

da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila 

semidecídua na serra do iapí, jundiaí, são paulo, Brazil.  J.  Botany  12  (1989)  85–

98. 

[28] C.W. Ngo, T.C. Pong, R.T. Chin, Detection of gradual transitions through tem- 

poral slice analysis, in: Proceedings of the IEEE International Conference on 

Computer Vision and Pattern Recognition (CVPR’99), 1999, pp. 1036–1041. 

[29] A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representation 

of the spatial envelope, Int. J. Comput. Vis. 42 (3) (2001) 145–175. 

[30] G. Pass, R.  Zabih,  J.  Miller,  Comparing  images  using  color  coherence  vec-  

tors, in: Proceedings of the ACM International Conference on Multimedia (ACM-

MM’96), 1996, pp. 65–73. 

[31] I. Popivanov, R.J. Miller, Similarity search over time-series data using wavelets, 

in: Proceedings of the IEEE International Conference on Data Engineering 

(ICDE’02), 2002, pp. 212–221. 

[32] P. Reys, M.G.G. Camargo, A.P. Teixeira, M.A. Assis, M.T. Grombone-Guaratini, 

L.P.C. Morellato, Estrutura e composição florística entre borda e interior de um 

cerrado sensu stricto e sua importância para  propostas de recuperação, Hoen-  

nea 40 (3) (2013) 437–452. 

[33] A.D. Richardson, B.H. Braswell, D.Y. Hollinger, J.P. Jenkins, S.V. Ollinger, Near– 

surface remote sensing of spatial and temporal variation  in  canopy  phenology, 

Ecol. Appl. 19 (2009) 1417–1428. 

[34] A.D. Richardson, J.P. Jenkins, B.H. Braswell, D.Y. Hollinger, S.V. Ollinger, 

M.L. Smith, Use of digital webcam images to track spring greep-up in a de- 

ciduous broadleaf forest, Oecologia 152 (2007) 323–334. 

[35] M.D. Schwartz, Phenology: An Integrative Environmental Science, Springer, 

2013. 

[36] D.F. Silva, V.M.A. de Souza, G.E.A.P.A. Batista, Time series classification using 

compression distance of recurrence plots, in: Proceedings of the IEEE Interna- 

tional Conference on Data Mining (ICDM’13), 2013, pp. 687–696. 

[37] V.M.A. Souza, D.F. Silva, G.E.A.P.A. Batista, Extracting texture features for time 

series classification, in: Proceedings of the IEEE International Conference on 

Pattern Recognition (ICPR’14), 2014, pp. 1425–1430. 

[38] R. Stehling, M. Nascimento, A. Falcao, A compact and efficient image retrieval 

approach based on border/interior pixel classification, in: Proceedings of  the 

ACM International Conference on Information and Knowledge Management 

(CIKM’02), 2002, pp. 102–109. 

[39] M. Swain, D. Ballard, Color indexing, Int. J. Comput. Vis. 7 (1) (1991) 11–32. 

[40] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E.J. Keogh, Experi- 

mental comparison of representation methods and distance  measures  for  time  

series data, Data Min. Knowl. Discov. 26 (2) (2013) 275–309. 

[41] D.M. Woebbecke, G.E. Meyer, K. Von Bargen, D.A. Mortensen, Color indices for 

weed identification under various soil, residue, and lighting conditions, Trans. 

ASAE 38 (1995) 259–269. 

[42] D. Zhang, G. Lu, Shape-based image retrieval using generic fourier descriptor, 

Signal Process.: Image Commun. 17 (10) (2002) 825–848. 

http://dx.doi.org/10.13039/501100001807
http://dx.doi.org/10.13039/501100001807
http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0004
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0004
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0004
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0007
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0008
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0008
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0008
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0008
http://dx.doi.org/10.1016/j.patrec.2015.11.028
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0010
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0010
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0011
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0011
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0014
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0015
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0015
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0016
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0016
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0016
http://dx.doi.org/10.1016/j.patrec.2015.10.016
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0018
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0018
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0019
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0019
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0020
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0020
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0021
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0021
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0021
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0022
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0022
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0022
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0023
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0023
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0023
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0023
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0024
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0024
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0024
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0025
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0025
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0026
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0026
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0027
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0027
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0027
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0027
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0028
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0028
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0028
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0029
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0029
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0030
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0030
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0030
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0031
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0031
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0031
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0032
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0033
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0033
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0033
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0034
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0035
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0035
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0036
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0036
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0036
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0037
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0037
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0037
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0038
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0038
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0038
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0038
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0039
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0039
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0039
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0040
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0040
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0040
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0041
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0041
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0041
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0042
http://refhub.elsevier.com/S0167-8655(16)00074-X/sbref0042


220 

 

 

 

 

 

 

 

 

 

Appendix E 

Article published in the Journal Pattern Recognition Letters: 

LEITE, R.A., SCHNORR, L, ALMEIDA JR, TORRES, R.S., ALBERTON, B., MORELLATO, LPC, COMBA, 

J. PhenoVis – Visual Phenological Analysis of Forest Ecosystems. Information Sciences, v. 372, p. 181-195, 

2016. 



223 

 

Text formatting according to the Journal Information Sciences. 

 

PhenoVis – A tool for visual phenological analysis of digital camera images using chronological percentage 

maps 

Roger A. Leitea, Lucas Mello Schnorra, Jurandy Almeida b,d, Bruna Albertonc, Leonor Patricia C. Morellatoc, Ricardo da 

S. Torres d, João L.D. Comba a,∗ 

a 
Institute of Informatics, Federal University of Rio Grande do Sul – UFRGS, Porto Alegre RS–91501-970 Brazil 

b Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São José dos Campos, SP–

12247-014 Brazil 

c Dept. of Botany, São Paulo State University – UNESP, Rio Claro, SP–13506-900 Brazil 

d Institute of Computing, University of Campinas – UNICAMP Campinas, SP–13083-852 Brazil 

Keywords: Phenology, Remote sensing, Vegetation index, Visual analytics, Similarity ranking 

 
1. Introduction 

 
Phenology studies the periodic phenomena of plants and their relationship to environmental conditions [39]. 

This analy- sis is crucial for accessing the impact on vegetation and ecosystem processes [29,32,39,42]. 

Examples of cyclic phenomena include flowering and fruiting in plants and the breeding season of birds and 

frogs, among others. The remote monitoring of vegetations using cameras has proved to be a promising 

approach to the study of plant phenology [30,38,40]. In this scenario, cameras capture daily pictures from a 

specific viewpoint at a specific time of the day.  By comparing a sequence of images over time, it is possible to 

identify changes that are associated with phenological events [38]. For example, images that have a high number 

of pixels with dominant shades of green are often associated with areas mostly covered by leaves. 

Due to the large number of images (at least 365 images per year), the visual analysis of large collections of 

images becomes too complex to be performed interactively. Instead, a single chromatic value is computed to 

represent the average color in each image. Among several chromatic coefficients described in the literature, the 

green chromatic coefficient (gcc) is widely used by the phenology community to understand periodic leafing 

patterns extracted from digital images [40]. The collection of values computed in the period of interest (usually 

one year) is displayed as a 2D line plot [3], and the analysis 
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Fig. 1. Images of the Takayama forest from different years (2004, 2007, 2012,  and 2013)  and days (281,  288, 293, and 291), generated by the Phenological 

Eyes Network (PEN). Although the images look very different, they have the same average gcc = 0.3905. 
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of this plot is used to identify interesting phenological events. It is well known that using the average as a 

comparison metric to analyze the images can potentially overlook important patterns and thus lead to wrong 

conclusions [14]. One motivation for this research is to address the shortcomings of using average scores in 

near-surface remote phenology. 

Fig. 1 illustrates the problem with the average in four different images captured by the same device on 

different dates. Each image looks different when compared to the others, but all of them share the same gcc 

average of 0.3905 (the pixels associated with the metallic structure are discarded). Therefore, by using the 

traditional average-based approach, phenolo- gists will be led to conclude that these four images are the same 

even if they are completely different in reality. The similar distribution of the shades of green, yellow and 

brown in the images indicates that 2012  was a full fall season, whereas in 2004 the levels of green were much 

higher (Fig. 1). 

In this work, we introduce PhenoVis, a visual analytics tool that aims at providing insightful ways to analyze 

phenological data. The main idea behind PhenoVis is the creation of more expressive visual encodings for 

phenological data visualization. We introduce the Chronological Percentage Maps (CPMs), a visual mapping 

technique that combines derived distributions from all images of a given year to create normalized stacked bar 

charts. Another problem we address is the lack of automa- tion in the search for regular patterns in plant 

phenology. Current research in the field frequently uses the analyst’s intuition   to find patterns of plant 

phenology. This approach is potentially time-consuming, error-prone and unable to scale to larger datasets. 

PhenoVis uses the additional information encoded to support similarity searches, which is useful for comparing   

data from different years. It also provides a customizable multi-rank comparison of data from different years, 

with filters of specific periods within a year or sub-regions associated with given plant species. 

In summary, we offer the following contributions: (a) PhenoVis, a visual analytics tool to perform a 

comparative analysis of phenological data for multiple years; (b) the design of CPMs, in which a more 

expressive representation of phenological data using percentage distributions is combined with a visual 

expression of this information using color-coded normalized stacked bar charts; (c) similarity algorithms that 

allow the search for similar phenological patterns across years, occurring      in either a fixed or moving 

window of time; (d) customizable ranking comparison of years, with filters that allow selections  of specific 

time periods or regions; and (e) case studies that validate PhenoVis in phenological analysis tasks such as 

pattern and outlier identification. 

 

2. Related work 

 

Below, we review visual analytics and information visualization techniques and approaches to analyse 

phenological data extracted from images. 

 

2.1. Visualization and data Analysis 
There is an extensive literature in the information visualization and visual analytics community on different 

ways to visually present information and to extract patterns from data [25]. Rectangular regions such as 

matrices are a common alternative for presenting aggregated data to allow identification of patterns. Pixel bar 

charts extend traditional bar charts       by coloring pixels inside bars to represent information derived from data 

attributes [26]. The visual presentation of data follows a pixel-placement ordering, which was demonstrated to 

reveal patterns in data [24] as well as provide support for data mining queries. The underlying motivation 

behind pixel bars was an inspiration when designing PhenoVis, particularly the CPM representation and the 

ability to search for similar patterns in CPMs of different years. 

There are several works that use matrix-encoded information to perform visual analysis. Stacked bar charts 

are used to display the temporal changes of traffic speed data in [8]. The normalized stacked bar charts used in 

CPMs resemble the images showed in their work, especially when using a categorical color mapping. The 

analysis of visual traffic also appears in [43], with trajectory information chronologically encoded into a 
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matrix. Matrices are used to compare genomic sequences in [2,34]. BallotMaps encode the votes received by 

politicians into matrices to identify voting patterns [46]. The Flowstrates approach encodes origin-destination 

data into a heatmap matrix, re-ordering rows  to reveal interesting patterns [9]. In [36],    a matrix encoding 

heart-rate information is used to identify unusual patterns during a running race. The exploration of dynamic 

graphs using matrix-encoded information is given in [12] and [18]. Climate change comparison using a 

global 

radial map is presented in [27]. Although it uses a radial representation, the compact representation 

resembles the CPM stacked bar charts. ThemeRiver [11,19,20] offers an alternative to stacked bar charts by 

displaying information in layers that are stacked in a symmetrical shape centered around the x-axis. This 

approach allows easy identification of predominant layers in time, particularly for datasets comprising a 

great number of layers. LineUp describes different ways to present multi-ranking attributes [17]. The 

multi-ranking visualization used in our work reveals the need for ranking visualization when performing 

comparative phenology analysis. We refer the reader to [1] for a comprehensive survey of other ways to 

perform visual analysis of time-oriented data. 

 

2.2. Phenological analysis 
Phenology analysis of satellite images often relies on average plots of computed vegetation indices. A web-

based in- terface described in [10]  displays time-series obtained from phenological and meteorological 

observations. TimeStats is a free software that offers tools for the visualization of long-term remote sensing 

data archives such as parametric and non- parametric methods for trend detection, linear regression, and 

frequency analysis [41]. EcoIP, a toolkit to estimate the onset and ending dates of phenological phases of plant 

species, relies on a Naïve Bayesian model created from a set of training images, which is used to provide 

temporal estimators [16].  A variety of color transformations is used to adjust the accuracy   of the estimations. 

Another recent trend refers to the construction of toolboxes. Eerens, for example, developed SPIRITS, a stand-

alone toolbox to produce evidence-based information for crop production analysts [13]. It includes a large 

number of features to analyze image time series and to create maps and graphs for vegetation status analysis. 

Different from those initiatives, our proposal relies on visual encodings designed to capture distribution aspects 

from vegetation data. A similar approach is taken in [5] and [6], which presented different strategies for 

encoding image time series as visual rhythms [33]. Such representations have proven to be a powerful tool for 

distinguishing the behavior of different plant species. The visual rhythm construction is similar to the CPM 

extraction process in the sense that they summarize image sequences in a single image representation. Despite 

the good results observed concerning the use of visual rhythm, no visual analytics tool has been proposed. 

 

3. PhenoVis 

 

PhenoVis is a visualization tool that includes a visual mapping representation called CPM, data analysis 

algorithms for identifying similar patterns in different years, and a ranking visualization module to present the 

similarity results. In this section, we describe each of these modules. 

 

3.1. Chronological percentage maps (CPMs) 
CPM is the main concept behind PhenoVis. Its construction consists of six steps that transform a sequence of 

images into a normalized stacked bar chart, as shown in Fig. 2. We detail these steps in the following 

sections. 

 

Step 1: Filtering by region of interest (ROI) 
The region of interest (ROI) (also called mask) is a portion of the input image that is the focus of the analysis, 

thus removing irrelevant areas that lack vegetation such as the observation tower. The ROI is user-configurable 

and implemented through a mask with the same dimensions as the input images. The mask is composed of black 
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and white pixels (a stencil 

image), where white represents selected regions. Two types of masks are used in PhenoVis: a community mask 

[21], which considers all plant species in the image; and a species mask [30], associated with a given plant 

species. 

 

Step 2: Data transformation using a vegetation index 

The phenophases and length of the growing season (from start to end) are indicators of plant development 

across dif- ferent years. The phenological analysis from images focuses on the following four checkpoints (or 

phenophases) of plant development [21,30]: 

• Leaf expansion: plants start to turn green, and leaves are expanding; 

• Peak or maturity: leaf growth reaches a plateau; i.e., leaves reach full size; 

• Leaf fall or senescence: leaves change colors and start to fall; 

• Post leaf fall: there are no leaves on the tree, representing the end of the growing season. 

Among the several images taken at different times of the day,  the image taken at noon is preferred for the 

analysis  because it minimizes shadow effects. Therefore, only one image per day is used. The analysis 

considers the chromatic co- efficients associated with each pixel in the image. Different vegetation indexes are 

described in [40]. The RGB chromatic coefficients (rcc, gcc and bcc) are defined by respectively dividing each 

component (R, G, or B) by the sum of the other com- ponents (R + G + B). The average plot of gcc is a good 

indicator of phenophases due to the encoding of green pigments (e.g., chlorophyll) in leaves. Although most of 

our analysis used the gcc chromatic coefficient, we also experimented with the hue index discussed in [15]. To 

use this index, it is necessary to convert colors from the RGB color space into the HSV (also called HSI)  color 

space [44], which represents colors as hue (H), saturation (or lightness) (S), and value (or brightness) (V). 

HSV is associated with a single line of the CPM. In this example, all lines of the CPM are stacked in 

landscape mode. 

 

 
 

Fig. 2. The Chronological Percentage Map’s six-step construction: (1) images are filtered by the community mask that defines the region of interest 

(ROI); (2) phenology metric (gcc) is computed; (3) interval of interest (IOI) filters the resulting values; (4) selection of the distribution granularity and 

associated color values; (5) percentage distribution is computed; (6) mapping color values to the percentage distribution. Each image generates a 

stacked bar chart defined in a cone using cylindrical coordinates, with shading variations defined by the angle around the central vertical axis  of the cone (the hue 

component). 

 

Step 3: Filtering by interval of interest (IOI) 
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Each vegetation index has values in a particular range. For example, gcc  is normalized between 0 and 1.  In 

practice, the range of gcc  found in vegetation images is much smaller, usually between 0.3 and 0.5 [47]. Since we 

compute a histogram of vegetation indexes, we narrow the limits of the histogram to a user-specified interval of 

interest (IOI), as shown in Fig. 2, step 3. 

 

Step 4: Color palette and histogram granularity 

Selecting a good color palette is essential in data analysis [28]. In PhenoVis we associate different colors 

with each bucket of the percentage histogram. The histogram granularity defines the size of a given bucket of 

the percentage distribution. The number of buckets is given by the number of colors available, and the range 

of the distribution is given by the IOI. There 

are trade-offs when selecting the size of the IOI, granularity, and the number of colors. For example, if the 
interval is small 

and the number of colors is large, each dimension of the IOI will be semantically irrelevant because of the 

resultant tiny   grain size. The same problem appears if the interval is too large and the number of colors is 

small. The best situation arises when there is a balance between the size of the IOI and the number of colors. 

The typical IOI for the gcc varies from 0.3 to 
0.5. Therefore, we chose 20 colors, with each bucket size being 0.01 wide. 

For convenience, we have pre-defined a set of palettes. From this set, the categorical color table in Fig. 2, 

step 4 was the preferred choice when using gcc indexes. The palette has four categories with different colors. 

Each of the five internal divisions of these four zones has distinct levels of saturation (from dark to light brown, 

for example). On the other hand, the standard hue color table is the choice when using hue indexes. 

 

Step 5: Calculating the percentage data distribution 

Each pixel in a given input image contributes one vegetation index value to the analysis, and when this 

value is multi- plied by the number of images in a year (365), a huge amount of data is generated. Instead, 

the average of all indexes in an image is used, leading to only 365 indexes. Average plots of these indexes 

help identify phenophases; however, this analysis may be misleading since different images might have the 

same index (see Fig. 1). In PhenoVis, we store more information about each image than a single vegetation 

index. We use a histogram instead to encode the percentage distribution of veg- 

etation indexes in an image. The range of the histogram is defined by the IOI, and the number of buckets 

by the size of color palette used. For indexes outside the IOI, we either discard the values or clamp them to 

the nearest extreme bucket. We repeat this process to compute one percentage distribution for each image. 

In some situations two distinct RGB colors may have the same gcc  (Fig. 3), and would therefore be accumulated 

in the same histogram bin and mapped to the same color. In these situations, the hue index can be used 

alternatively. The corresponding hue values in Fig. 3 are different and can be mapped to distinct colors. 
Shades of green can be found around hue values of 120.  In addition, the mapping of hues into colors can use the 

standard HSV palette at fixed S and V values. We did not replace gcc by the hue index, but used it to gain 

additional insights when looking at the data. 

 

 

 
Fig. 3. Colors with the same gcc of 0.4 (RGB codes are shown above each color). On the other hand, the corresponding hue values are distinct. By using the hue 

values to separate these colors, the histogram can better aggregate shades of green into closer bins. 
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Step 6: Creating the normalized stacked bar chart 

The percentage map of a single input image consists of a normalized stacked bar chart (vertical bar in Fig. 2, 

step 6). In this example, the height of the chart is proportional to the frequency count in the percentage 

distribution of the vegetation indexes. The width is associated with the number of pixels available for drawing 

the percentage map. Colors are defined by the palette being used and their corresponding histogram entries. 

The chronological percentage map consists of a sequence of  percentage  maps  stacked  in  chronological  order,  

from  top to bottom (portrait) or left  to  right  (landscape). In our analysis, each  CPM  corresponds  to  all  images  

from  a  single  year. Fig. 4  and Fig. 5  demonstrate the percentage map and CPM chart for images captured in Japan 

(the TKY dataset  [31,35]). Fig. 4 illustrates percentage maps for individual days of 2006; each map uses two 

vegetation indexes. The first one uses gcc 

and a categorical color table where shades of green, blue, and purple respectively correspond to gcc values 
between 35 −40%, 40 − 45%, and 45 − 50%. The second one uses the hue index and the hue color mapping. 
The color mapping is applied over the input camera to illustrate the shading variations for each chromatic 
coefficient. Fig. 5 shows the complete CPM for all days in 2006. Higher gcc  values are associated with greener 
regions, and a clear pattern of growing season emerges in the middle of the year. In the hue mapping, the 
growing season is associated with shades of green. Fig. 5 illustrates CPM charts that use different vegetation 
indexes for the year 2006. This CPM allows us to investigate interesting patterns outside the growing season, 
which displays shades of red and blue. 

 

3.2. Multi-year phenological analysis 
The comparative analysis of data from different years is one question that drives plant phenological analysis. 

The com- parison of the starting dates of a given phenophase (e.g. start of leaf growing season) allows us to 

identify how these values changed with the progression of the years. Automated similarity comparison of 

different phenophases is important in this process. PhenoVis provides an automatic similarity analysis, because 

more data is encoded in percentage distributions. The user can select a time interval directly over the CPM of 

one year, and PhenoVis will suggest a similarity rank of the other years based on this pattern. In this section, we 

describe how PhenoVis performs the similarity search and displays the visualization results. 

 

3.2.1. Search period and ROIs 

PhenoVis allows the user to define any period of a given year to serve as the basis of comparison against 

other years. This period of interest used for searches can be manually configured in the interface by specifying 

start and end dates. Since most queries are related to the analysis of pattern variations in specific phenophases, 

such as the leaf expansion or fall period, we allowed the user to select the period of interest from pre-defined 

phenophases. The search can be performed over the ROI of all plant specifies in the image (community mask), 

other pre-defined masks of any given species, or any region in general specified by the user. 

 

3.2.2. Similarity metrics 

PhenoVis offers four similarity techniques for automatic search: Mean Absolute Error (MAE), Mean Square Error  

(MSE),  Mean Absolute Percentage Error (MAPE), and the Kullback-Leibler Divergence (KLD) as described in the 

supplementary ma- terial. The MAE is a usual estimator of the difference between two matrices. Used for the same 

reasons, MSE highlights significant gaps between values due to squared distance computations and is not 

recommended for noisy datasets. MAPE is a normalized solution based on the percentage of the similarity for two 

samples, while the KLD is a non-symmetric measure of the difference between probability distributions. The 

similarity is computed using two CPMs as  input. The first parameter is the CPM query, defined by its start and end 

dates.  The second parameter is the  CPM  candidate,  which  will necessarily have the same number of days as the 

target, but the start date may differ. The percentage distribution associated with each CPM subset is interpreted as a 

matrix of values in which the similarity metric is computed. Errors are computed for each matrix entry and 

accumulated in the resulting similarity error. 
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Fig. 4. Percentage maps for 12 days: original data for the respective days (row 1 and 4), recoloring of pixels using gcc and a brown-green-blue-purple  

color mapping (rows 2 and 5), and recoloring using the hue index and hue mapping (rows 3 and 6). The percentage maps for the gcc (left) and hue (right) 

indexes are shown. 
 

3.2.3. Searching windows and filters 

The query defines a time period in the CPM of a given year. The search for similar patterns looks for CPM 

subsets that have the same number of days as the query pattern. This search is implemented in two configurable 

ways. The first one, referred to as fixed window, looks for CPM subsets with matching start and end dates. The 

result of this comparison gives the years in which the same pattern occurred on the same days of the year. In the 

second way, referred to as moving window, the search looks for the same pattern but does not fix the starting 

day, allowing the window to move throughout the year. This search finds patterns that happened at a different 

time of the year (e.g., a late growing season) in other years. We also implemented a filter that allows a subset of 

the percentage distribution to be considered. If the analysis is interested only in gcc values in the interval of 40% 

to 45%, the similarity search can be set to filter out values outside this interval. We also have an outlier filter that 

removes outliers (missing data or odd days) from the similarity search. An automatic outlier detection was 

implemented by taking into account the percentage distribution of a given day and the distribution of adjacent 

days. 
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Fig. 5. CPM example for 365 days displayed in portrait mode. Each line  corresponds to  a normalized stacked  bar  chart  mapped to  the  predefined  color table: 

(a) categorical color table using the gcc index, (b) HSV color table using the hue index. 

 

3.3. Single and multi-year ranking 
PhenoVis is also capable of creating a single or multi-year ranking according to the query and selected 

similarity tech- nique. The ranking includes the distributions for different years in order of similarity and the 

similarity error, which allows the evaluation of how the years differ among them. The single-year ranking 

generates a histogram plot that allows the comparison of one specific year’s distribution against all others. The 

goal of this ranking is to compare the phenophases of one year against the others. In the case of a moving 

window, the ranking also includes the distance (in days) of the closest pattern. 

The multi-year ranking creates similarity searches between a pair of ROIs in a given period of time for every 

pair of   years. This process first results several histogram plots, one for each year, that indicate how close or 

distant the other years are. These histograms can be normalized as needed; in PhenoVis we use three 

normalizations: single-year normalization, multi-year normalization, and global normalization (using the data for 

all years and all pairwise comparisons). The resulting histograms are drawn in red, green and blue, respectively. 

The second result is a histogram plot that summarizes the indi- vidual yearly histogram plots by associating a 

distance from one year to the others. In other words, this histogram displays the most common year and the most 

different years as distances between each other, which allows us to easily identify the average years. The resultant 

histogram is drawn in magenta. Fig. 6 illustrates the interface of PhenoVis, and samples of these histograms are 

shown in Fig. 6(b). 

 

4. Visualization results and discussion 

 

PhenoVis was implemented using the programming language Processing   [37]. The input to the system is a 

collection of raw images grouped by year and a mask image that defines the region of interest. In off-line computation, 

the mask is applied for all input images, and the percentage distributions are computed and stored. PhenoVis was 

tested, under permission, with the Takayama  Flux Site (TKY) dataset of the Phenological Eyes Network (PEN) 

[31,35]1.  TKY is located in Japan, which   has images from multiple  years  (from  2004  onward)  of  a  deciduous  

broadleaf  forest  [30].  For the results  below  we  used the 600 × 600 image resolution database due to its reduced 

pre-processing time. Experiments conducted with  the  larger  resolution dataset (2272 × 1704) showed similar  results  

to  the  smaller  dataset.  We  aim  to  extend  our  prototype  for  the  larger resolution  datasets,  possibly  using  

parallel  computation  to  speed-up  pre-processing  time.  We used  the  same  regions of interest defined by [30] to 

identify three species: Betula Ermanii, Quercus Crispula, and Acer Rufinerve. Fig. 7 illustrates the location of the 

species in the image. A discussion of the results obtained using the TKY dataset can also be found in [22,23]. Our 

results use the following phenological phases described in [30] to evaluate the TKY dataset: 

• Bud dormancy (BD): from January to early April (days 1 to 100); 

• Leaf Expansion (LE): from late May to late June (days 140 to 180); 

• Peak period (Peak): from early July to mid-September (days 181 to 258); 

• Leaf Fall (LF): from late September to early November (days 263 to 315); 

• Post Leaf Fall (PLF): from mid-November to late December (days 319 to 365); 
 

1 (http://www.pheno-eye.org). 

http://www.pheno-eye.org/
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Fig. 6. Selected screenshots of the PhenoVis interface: (A) CPM analysis mode, with interaction to inspect individual images and specify query windows; (B) 

multi-rank results with pairwise comparison of all years; (C) single-rank results using fixed and moving windows. In (D), we display additional windows   for 

configuring search parameters. 

 

Fig. 7.  Species location (a) and their masks: (b) community, (c) and (d) Betula ermanii (A1 and A2), (e) and (f) Quercus crispula (B1 and B2), and (g) Acer   

rufinerve (C) 

 

The realization and evaluation of experiments received feedback from the phenology experts involved in this 

research. Selected screenshots of the interface are shown in Fig. 6. To increase the reproducibility of our work, 

we prepared a git repository with the core programs of PhenoVis2. 

 

4.1. CPM evaluation 
In this section, we compare the CPM representation against average plots used in phenological studies, an 

evaluation of the CPM expressive power, and a novel outcome that consists of using the CPM as a species 

signature. 

 

4.1.1. Comparison against average-based plots 

We use an example to illustrate how the CPM better displays changes in the data throughout the year than 

average plots. Fig. 8 shows the average plot based on the gcc and rcc (displayed as a green or red line) over the 

CPM for 2006. While the average has changed over time, it fails to illustrate the data’s composition as CPM 

does. In the rcc  plot, we observe that the shading variations during the leaf-fall period can be easily spotted in 

the CPM. The red channel indicates the leaf senescence, which occurs in the fall; an expanded discussion on 

this can be found in [40]. 

Fig. 9 shows the difference between percentage maps and plots that have the same average. It shows four 

percentage maps of different days with the same gcc = 0.3905. Although they have the same gcc average, the 

percentage map is clearly different. Percentage maps and CPMs allow us to inspect differences in ways that 
average plots can not. 
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Fig. 8. CPM (landscape mode) and the corresponding gcc and rcc  for the year (DOY) of 2006. The CPM better expresses the changes in the data than the average 

plots, 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Four percentage maps with the same gcc average (0.3905). In the CPM representation, they show different aspects. The color palette is described in Step 4, 

Section 3.1. 
 

4.1.2. CPM expressive power 

The side-by-side comparison of CPMs can reveal relevant patterns on the data. In Fig. 10, we give 

CPMs for the years 2004-2012. We  observe that the years of 2004 and 2009 are different from the 

others. One possible explanation is that 2004 had the highest temperature and humidity indexes of all 

years. Another possible explanation is that the TKY site was attacked by typhoons. On the other ha nd, 

2009 had the lowest humidity of all years and the lowest snow index, which   reveals more of the 

terrain around trees during winter time.3  Note  that the hue index natural color associations have a 

direct relation to leaf exchange patterns. 

 

4.1.3. CPM as species visual signature 

In this section, we evaluate how the expressive power of CPMs can be used as a species’ visual signature. For this 

analysis,  we used the manual species identification of [30] for the TKY dataset described before. 

The placement of adjacent percentage maps in the CPM generates visual cues along the time axis. By 
exploiting this characteristic, we can see that different species create different CPM patterns. Fig. 11 shows the 

CPM for the Betula, Quercus and Acer species using the gcc index for 2007 and 2008. In this analysis, we use gcc 

and the categorical color table to identify different patterns. The three most relevant gcc intervals in the categorical 

mapping are 35 − 40% (colored in green), 40 − 45% 

(colored in blue), and 45 − 50% (colored in purple). The patterns we observe for each species is consistent for 
the two years. However, they have distinct patterns when comparing one species against the other,  especially 
during leaf growth and senescence phases. Quercus has a purple zone that shows a peak for the greening phase, 
which stabilizes in the rest of the growing season. 

 

4.2. Multi-year data analysis 
We investigate in this section the ability of PhenoVis to perform data analysis and search for similar 

phenological pat- terns. The identification of inter-annual variability in phenological data series is of key 

importance to identify changes and trends that can be related to environmental drivers. 

 

4.2.1. Searching for similar phenological patterns 

PhenoVis allows the user to specify a window of time over the CPM to define an interesting pattern to be 

searched. This pattern will be used as a query for similar patterns in other years. Fig. 12 shows the results of 

a search that uses as its query window the leaf expansion period of 2009 and the MSE similarity metric. The 

obtained results show that this pattern was most similar to the years 2008 and 2004 when using a fixed 

window. On the other hand, it was closer to 2007 and 2006 when using a moving window. As we can see, 

the ranking results can be different when the fixed and moving window searches are compared against each 

other. Moreover, as expected, the moving window approach presents a smaller error than the fixed window. 

 
2 https://github.com/schnorr/phenology. 
3  Both temperature and humidity information were obtained at http://www.data.jma.go.jp, using the station TAKAYAMA  WMO Station ID:47617  (As of  May 

https://github.com/schnorr/phenology
http://www.data.jma.go.jp/
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2015). 

 
 

Fig. 10.  CPMs for years 2004-2012 using the gcc  (rows 1,  3 and 5) and hue (rows 2, 4, and 6) indexes. We  observe in the hue CPMs that years 2004 and    

2009 were distinct from other years, while green colors consistently identify the leafing period. 

 

4.2.2. Multi-year ranking 

In a single-rank analysis, the user selects a query pattern of a given year. Results are ordered by the distance 

computed using the similarity metric. The multi-rank performs pairwise comparisons of all years. Fig. 13 shows 

the results obtained with the multi-year ranking using the entire year as the time interval, and pairwise 

comparisons of the community and species ROIs. For each ROI (community, Betula, Quercus and Acer), the 9 

histograms display in green the normalized distance of every year from 2004 to 2012 against the others. The 

histogram is sorted according to the error,  with the most similar year on top and the most different year on the 

bottom. For example, in the community mask, the most different years were 2014 (for 5 other years), 2009 (for 

3 years) and 2012 (for 1 year). For Betula, the most different years were 2012 (for 5 other years), 2009 (for 3 

years) and 2004 (for 1 year); for Quercus, 2004 (for 8 other years) and 2009 (for 1 year); and for Acer, 2004 

(for 6 other years) and 2009 (for 3 years). The purple histogram shows the combined information of all the 

histogram plots of a given ROI in a single summary plot. This summary plot confirms the information seen in 

the individual plots, which show that 2004, 2009 and 2012 were the most different years, while 2007 was the 

most similar year. For Betula, we observe that the most different year was 2012, as noted previously. 
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Fig. 11.  CPMs and zone highlights of different species for the years 2007 (top row), and 2008 (bottom). Observe the distinct patterns in the three zones (green, 

blue, and purple), which can serve as a visual signature to identify a given species. 

 

In Fig. 14,  we use the summary plots to refine our analysis to the pre-defined phenophases of the Betula, Quercus, 

and Acer species. For each phenophase described at the start of this section (BD, LE, Peak, LF and PLF), we display 

one summary plot. For Betula, the most different years in BD, LE, Peak, LF and PLF phenophases were 2004, 2008, 

2004, 2012  and again 2012.  For Quercus, the most different years in BD, LE, Peak, LF and PLF phenophases, were 

2004, 2008, 2009, 2009 and 2012, while for Acer, they were 2004, 2004, 2009,  2012  and  2008.  We  also observe  

that,  for  BD,  the  year  2004  was  the most different for the three species; for LE, it was 2008 (for two species); for 

Peak, it was 2009 (for two species); for LF,  it  was 2012 (for two species); and for PLF, it was also 2012 (for two 

species). Such analysis is easy to produce with the same encoding and reveals interesting aspects about the data that 

would be hard to extract from average plots. 

In Fig. 15, we used the moving window to search for the specific pattern associated with the leaf expansion 

period of the years 2007 and 2008. The bar height indicates the number of days that the same pattern appears 

before or after the query pattern. For example, for 2007, the most similar pattern occurred five days earlier in 

2004, two days later in 2005, one day later in 2006, and so forth. With respect to 2007, we observe that the 

leaf expansion happened earlier in 2004, 2008 and 2009, about the same day in 2010, and later in 2005, 2006, 

2011 and 2012. For 2008, it happened one day earlier in 2009, about the same day in 2004, and later in the 

remaining years. 
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Fig. 12. Searching for similar phenological pattern using MSE: (a) query pattern; and top two results using (b) fixed and (c) moving window. Comparison errors 

are given after the letter ‘e’; red numbers show the temporal shift in days from the matching pattern. 

 

Fig. 13. Multi-rank comparisons of four ROIs (Community, Betula, Quercus and Acer) for the entire year: (a)-(d) normalized distance of every year from 

2004 to 2012 against the others; (e)-(h) combined information of the green histogram plots of a given ROI into a single summary plot; the year 2007 was 

the year most similar to the others, while the years 2004, 2012, and 2009 were the most different ones. 
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Fig. 14.  Summary histograms of the community mask for specific phenological phases. The year 2004 was the most different for the three species; for LE,                  it 

was 2008 (for two species); for Peak, it was 2009 (for two species); for LF, it was 2012 (for two species); and for PLF, it was also 2012 (for two species). 

 

 

  

 
Fig. 15. The leaf-expansion period was used as input pattern in the moving window approach for the years 2007 and 2008: the bar heights represent the 

number of days that the result happened before (blue) or after (red) the query pattern. 

 

5. Conclusions and future work 

 

Plant phenology studies are based on the analysis of several years of data. Average yearly plots of vegetation 

indexes are the preferred approach to evaluate phenological changes. Despite good results, the analysis based on 

average values is limited and can constraint the knowledge discovery process. 

In this paper, we present PhenoVis, a framework for the visual phenological analysis of forest ecosystems. It 

contains the chronological percentage maps (CPM), a novel representation that is capable of discovering 

additional patterns by encoding percentage distributions of the data. We demonstrated CPM in a number of 

analysis scenarios, showing the additional in- sights that CPMs can bring to the analysis and how it can be used 

to identify species. The evaluation showed how automatic pattern searches can facilitate the detection of 

phenological singularities related to weather variations. 

As future work, we intend to automatically detect phenological patterns. Currently this process is manual: the 

user in- forms the start and end dates of the query pattern. Automatic suggestions can improve the analysis using, 

for example, a box-plot [45] of the distribution. Another possibility is to use more images per day, decreasing 

lighting variations and artifacts. We also plan to investigate the integration of the CPM representation with 

machine learning techniques [4,7] to perform automatic species identification. 
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Abstract: 

Phenology is among the most trustworthy indicators of climate change effects on plants and animals. The recent application of 
repeated digital photographs to monitor vegetation phenology has provided accurate measures of plant life cycle changes over time. 
A fundamental requirement for phenology studies refers to the correct recognition of phenological patterns from plants by taking 
into account time series associated with their crowns. This paper presents a new similarity measure for identifying plants based on 
the use of an unsupervised distance learning scheme, instead of using traditional approaches based on pairwise similarities. We 
experimentally show that its use yields considerable improvements in time-series search tasks. In addition, we also demonstrate 
how the late fusion of different time series can improve the results on plant species identification. In some cases, significant gains 
were observed (up to +8.21% and +19.39% for mean average precision and precision at 10 scores, respectively) when compared 
with the use of time series in isolation. 

Index Terms—Image analysis, plant identification, remote phenology, time series, unsupervised distance learning. 

 

I. INTRODUCTION 

LANT phenology studies recurrent plant life cycle events 

and is among the most trustworthy indicators of the impact 

of climate change on plants and animals [1]. Recently, digital 

repeated photographs have been applied to monitor vegetation 

phenology increasing the range of study sites and species and 

the accuracy of estimated changes on phenological events [1]– 

[3]. The proper identification of plant species based on their 

particular phenological patterns is a key issue for the 

phenolog- ical observation of tree crowns using phenocams 

[4], especially in tropical vegetations where one single image 

may encompass a large number of species [3]. Each crown in 

the image has to be match with the tree in the soil and then 

identified at species level, and further phenological patterns 

are identified to that species and analyzed [3], [5]. 

Existing approaches to cope with the task of plant 

identifica- tion based on phenological patterns rely on a 

feature extractor for encoding visual properties into feature 

vectors and on a sim- ilarity measure for comparing image 

data from their vectors, a pair known as descriptor [6]. In 

phenology studies, a common approach used for feature 

extraction is to compute for each im- age a chromatic or 

lighting coefficient associated with a visual property from all 

pixels of a given region of interest. Thus, a time series is 

obtained by computing this index for all days in an time 

period of interest [4], [7]. 

Besides the time-series modeling, the similarity measure 

adopted for comparing different times series also plays an 

important role, directly affecting the quality of retrieval results. 

Given the broad application of time series, various similarity 

measures have been employed [8] for comparison and retrieval. 

In addition to the traditional Manhattan (L1 ) and Euclidean (L2 
) distances, other measures, such as the dynamic time warp- ing 

distance and longest common subsequence, are commonly used 

[8]. In [9], shape descriptors are used to characterize time 

series. In [10], visual rhythms are used to simplify time series, 

enabling the use of image descriptors. 

However, traditional solutions often perform only pairwise 

analysis, that is, the similarity measure considers only the in- 

formation given by the pairs of time series being compared. In 

this scenario, the relationships among objects modeled by the 

time series are not considered. Therefore, the intrinsic struc- 

ture of the collection is ignored. In this scenario, one suitable 

alternative relies on the use of methods that are capable of en- 

coding information of the dataset structure. Relevance feedback 

approaches [11], for example, have been proposed for using the 

information obtained from user interactions for improving the 

quality of time-series retrieval tasks. Although effective, such 

supervised approaches require a lot of user intervention. 

In this paper, we present a novel approach for redefining the 

similarity from time series and identifying plant species based 

on phenological patterns, without the use of any training data. 

We approach the plant identification task as a similarity-based 

time-series retrieval problem using unsupervised learning, in 

contrast to some supervised initiatives that have addressed this 

task in the context of image classification [5], [12]. For this, we 
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introduce the use of an unsupervised distance learning method 

called reciprocal k-nearest neighbor (kNN) distance [13] for 

plant species identification. The method exploits the relation- 

ships among time series, using a contextual rank-based approach 

for improving the effectiveness of retrieval tasks. 

Unsupervised learning approaches have been used in time-

series retrieval in order to learn a layer of feature repre- 

sentations from unlabeled data [14]. In opposite, the proposed 

approach does not require intermediary feature learning steps. 

A traditional distance measure is obtained based on the original 

features, giving rise to a set of ranked lists. Subsequently, a 

more effective distance is computed by analyzing the reciprocal 

references encoded in the rankings. Although common in 

image retrieval systems [15], [16], to the best of our knowledge, 

this is the first approach that exploits contextual rank-based 

measures [13] in time-series retrieval scenarios. 

The proposed approach was validated on a dataset recorded 

during the main leaf flushing season [3], which is composed 

of about 2700 images. Several time series extracted from the 

digital image were evaluated and a large experimental evalua- 

tion was conducted. Various aspects are analyzed, considering 

individual features and fusion tasks. An approach for selecting 

the most discriminative features is also discussed. The experi- 

mental results show that our approach can improve the retrieval 

effectiveness considerably. While the best feature in isolation 

yields a precision of 73.12% at top-ten positions, the proposed 

approach achieves precision scores up to 87.30%. 

This paper is organized as follows.  Section  II  describes 

the time-series acquisition procedure. Section III describes the 

methodology adopted in this work. Section IV discusses the 

unsupervised distance learning approach. Section V discusses 

the experimental protocol, while Section VI presents achieved 

results. Finally, Section VII presents our conclusions and draws 

possible future work. 

 

 
 

Fig. 1. ROIs defined for the analysis of cerrado-savanna digital images, fol- 
lowing [3]. Each color represents a species: red = Aspidosperma tomentosum; 
green = Caryocar brasiliensis; blue = Myrcia guianensis; orange = Miconia 
rubiginosa; magenta = Pouteria ramiflora; cyan = Pouteria torta. 

 

 

5) two regions for Pouteria ramiflora (magenta areas); 

6) four regions for Pouteria torta (cyan areas). 

According to the leaf exchange data from the on-the-ground 

field observations on leaf fall and leaf flush at our study site, 

those species were classified into three functional groups [3]: 

1) deciduous, A. tomentosum and C. brasiliensis; 

2) evergreen, M.guianensis and M. rubiginosa; 

3) semideciduous, P. ramiflora and P. torta. 

We analyzed each ROI by means of a normalized index devel- 

oped by Gillespie et al.[18], called RGB chromatic coordinates 

(RGBcc). It is considered the most efficient index to distinguish 

leaves between monocots and dicots and to suppress light envi- 

ronment variation [19]. The normalized RGBcc indices undergo 

a nonlinear transform, as follows [18], [19]: 

R 

 
II. TIME-SERIES ACQUISITION 

We have been acquiring time series from digital images of  

a phenological monitoring, called near-surface remote phenol- 

ogy [17], in a cerrado savanna vegetation since August 2011. 

A digital camera was set up in the top of 18-m-high tower in 

rcc = 

 
gcc = 

 
bcc = 

(R + tt + B) 
(1)

 

tt 
(2) 

(R + tt + B) 

B 
(3) 

(R + tt + B) 

an area of a cerrado sensu stricto, located at Itirapina, South- 

eastern Brazil. Camera was set up for taking a sequence of five 

JPEG images (at 1280 960 pixels of resolution) per hour,  

from 6:00 to 18:00 h (UTC-3). This study was based on a sam- 

ple sequence of the time series, recorded between August 29th 

and October 3rd, 2011 (day of year 241 to 278), totalizing 2700 

images, which corresponds to the main leaf flushing season of 

the cerrado community [3]. 

The image analysis was conducted by defining different re- 

gions of interest (ROIs), as described in [4] and defined in [3] 

for our target species (see Fig. 1). We analyzed 22 ROIs of six 

plant species randomly selected in the hemispheric image: 

1) three regions for Aspidosperma tomentosum (red areas); 

2) four regions for Caryocar brasiliensis (green areas); 

3) two regions for Myrcia guianesis (blue areas); 

4) seven regions for Miconia rubiginosa (orange areas); 

where R, tt, and B are the average pixel intensity of the red, 

green, and blue bands, respectively. By computing those values 

along the whole period, we obtained time series to use as input 

data for our proposed framework. 

 
III. TIME-SERIES RETRIEVAL 

This section presents the methodology used to handle the 

plant identification task as a similarity-based time-series re- 

trieval problem. First, Section III-A presents an overview of the 

time-series retrieval system. In the following, the main compo- 

nents of this system are formalized in Section III-B. 

 
A. Overview 

In this work, the plant identification task is approached as  a 

time-series retrieval problem, as proposed in [20]. In this 
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In the search step, the similarity computation considers only 

pairs of objects (regions and the respective times series). The 

post-processing step exploits more global relationships among 

time series with the aim of improving the effectiveness of re- 

trieved results. In the data insertion module, the postprocessing 

step comprises: (7) a similarity search considering every re- 

gion as a query; and (8) the computation of a ranked list for  

all queries. In the query processing module, the ranked lists are 

redefined by the following steps: (9) the unsupervised learning 

method compute more effective ranked lists; and (10) the final 

retrieval results are returned to the user. 

 

B. Formalization 

Let Î    be a digital image. Let =    r1 ,r2 , . . . ,  rn be a 

collection of regions, such that for each region ri , we have 

ri Î  and each region contains a single species. Let n = 
denote the number of regions considered. Let X be a time series, 

defined as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Flowchart of the time-series retrieval system. 

 

 

 

method, we provide a time series extracted from an image area 

associated with a given species, and we query for similar time 

series computed from other image areas that belong to the same 

species. The flowchart of the time-series retrieval system is 

illustrated in Fig. 2. Two main functionalities are supported by 

this system: data insertion and query processing. Each of those 

subsystems is composed of two basic steps: (i) search and (ii) 

post-processing. 

In the search step, the data insertion module comprises: 

(1) the encoding of leaf change patterns from labeled image 

regions into time series by computing the normalized RGBcc 

indices along multitemporal data; and (2) the indexing of the 

extracted time series in a data repository. The query processing 

module consists of a query search, which are composed of the 

following steps: (3) the selection of a query pattern, which is an 

image area along the multitemporal images; (4) the extraction 

of the query’s time series by computing the normalized RGBcc 

indices; (5) the search computation by similarity; (6) the final 

similarity ranking, including all patterns learned at the offline 

stages. 

X = {xt,t ∈T  } (4) 

where denotes a discrete  index  set.  Let  m be  the  num- ber 

of days of observations; the index set is defined as    =          d1 
, d2 , . . . ,  dm . 

Let = r, g, b   be the set of chromatic indexes (defined 

by the normalized RGBcc indices). L et = 0, 1 , . . .  , 23 be a 

set defined by the hours of the day. Let  = X1 , X2 , . . . ,  Xz 

denote a set of all time series obtained for every combination of 

chromatic index, hour of day and region. 

We  can define  a function ψ : , which ex- 

tracts a time series for a given chromatic index, hour of day, and 

region.1 For example, the time series observed for the region 

“ri” by considering the gcc index at “6 h” can be defined by 

Xi,g,6 = ψ(ri, g, 6). 

Let be a time-series descriptor for a region, which can be 

defined as a tuple (ψ, ρ), where ψ extracts a time series for 

a region ri considering a chromatic index and a hour of 

day; ρ: R is a distance function that computes the 

distance between two regions according to the distance between 

their respective time series. Formally, the distance between two 

regions ri and rj considering a chromatic index c and a hour 

h is defined by ρ(ψ(ri, c, h), ψ(rj , c, h)). For simplicity and 

readability purposes, we use the notation ρ(i, j) along the paper 

for denoting the distance between regions ri and rj , considering 

their respective times series. 

The distance ρ(i, j) among all regions ri, rj can be 

computed to obtain a squared n n distance matrix A, such 

that Aij = ρ(i, j). Also based on the distance function ρ ,  a 

ranked list τq can be computed in response to a query region rq . 

The goal consists in retrieving the most similar regions ri 

considering the respective time series. 

The ranked list τq = (r1 , r2 , ... , rn ) can be defined as a 

permutation of the collection . A permutation τq is a bijection 

from the set onto the set [N ] = 1, 2,... , n . For a permu- 

tation τq , we interpret τq (i) as the position (or rank) of region 

1The extracted time series can be seen as feature vectors associated with an 
image area. 
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N 

|N | 

⎩ 

L 

d 

∈R 

1+ nr (q, i) 
q 

: R×R  → {0, 1} can be defined, determining if two regions j =1  

q i 

⎧
⎨

 

 

ri in the ranked list τq . We can say that, if ri is ranked before 

rj in the ranked list of rq , that is, τq (i) < τq (j), then ρ(q, i) ≤ 

ρ(q, j). We also can take every region ri ∈ R as a query rq, in 

order to obtain a set L = {τ1, τ2, . . . ,τn} of ranked lists for each 

region. 

respective weights 
Σ Σ 

  

 
fr (j, l) × wr (q, j) × wr (i, l) 

 

 

  
The unsupervised distance learning problem consists in re- 

defining the distance ρ by computing a more effective distance 

function ρr . The objective of function ρr (i, j, ) is to exploit the 

information encoded in the set of ranked lists . Formally, ρr : 

L is a distance function between two regions 

ri, rj that considers the information encoded int the set of 

ranked lists . 

We also consider the problem of distance fusion, in which 

we want to combine the information provided by two or more 

time series defined by different chromatic indexes and hours of 

day. In this case, we define a function ρrf , which takes as input 
various sets of ranked lists {L1 , L2 , . . . ,  Ld } computed using 

different pairs (c, h) where c ∈C  and h ∈ H. 

IV. UNSUPERVISED DISTANCE LEARNING 

In this paper, we exploit the contextual information available 

in relationships among time series by using a recently proposed 

unsupervised distance learning method based on ranking in- 

formation [13]. Given a rank of most similar image regions 

considering their time series, the reciprocal kNN distance mod- 

els the similarity between ranked lists in terms of the density of 

reciprocal neighborhoods. 

 
A. Reciprocal Neighborhood 

A neighborhood set    (q, k) contains the k most similar re- 

gions to a given query region rq according to a distance function 

ρ. For the k-NN query, we have    (q, k) = k, which can be 

formally defined as 

N (q, k) =  {S ⊆ R, |S| = k ∧ ∀ri ∈ S, rj 

∈R  − S : τq (i) < τq (j)}. (5) 

Since the nearest neighbor relationships are not symmet- 

The weight is defined based on the position of these regions 

in ranked lists τq and τi, according to the function wr : 

wr (q, j) = k +1 − τq (j). (9) 

The reciprocal kNN distance is defined as the inverse of the 

number of reciprocal neighbors nr . Since the top positions of 

ranked lists are expected to contain the most relevant regions 

related to the query, the distance learning can be performed con- 

sidering only the beginning of the ranked lists (until a parameter 

L). From the L position to the end, the ranked lists remain the 

same. The reciprocal kNN distance ρr can be formally defined 

as follows: 

  1 
, if τ (i) ≤ L 

τq (i),  otherwise. 

C. Reciprocal kNN Distance Fusion 

The reciprocal kNN distance framework for distance fusion 

considers two main steps: 1) first, the sets of ranked lists are 

combined into a single set f through an intermediary distance 

ρf ; and 2) next, this set is used as input by the conventional 

reciprocal kNN distance discussed in the previous section for 

computing a final distance ρrf . 

Given a time series and the respective set of ranked lists, the 

capability of this time series for determining the distance be- 

tween rq and ri is estimated by the number of reciprocal neigh- 

bors score nr . The quality estimation score ej (q, i) is defined as 

ej (q, i) = (1 + nr (q, q)) × (1 + nr (i, i)). (11) 

A multiplicative approach is used for computing the interme- 

diary distance, considering, for each time series, the position 

from which on regions rq and ri become reciprocal neighbors 

(max(τj (i), τj (q))). The relevance of the position computed 
q i 

ric [13], [21], [22], the set of k-reciprocal nearest neighbors 

of region rq can be defined as [13], [22] 

Nr (q, k) = {ri ∈ N (q, k) ∧ rq ∈ N (i, k)}. (6) 

Based on the reciprocal neighborhood set, a binary function 

rq , ri are reciprocal neighbors (fr returns 1 if rq and ri are 

reciprocal neighbors, and 0 otherwise) 

fr (q, i) = |Nr (q, k) ∩ {ri}|. (7) 

B. Reciprocal kNN Distance 

The reciprocal kNN distance between two regions rq , ri 

is computed based on the number of reciprocal neighbors at top 

positions of their ranked lists [13]. For each pair of reciprocal 

neighbors, a weight is computed proportionally to their position 

in the ranked lists τq and τi. The function nr (q, i) computes 

the score based on the number of reciprocal neighbors and their 

by each time series for the combined distance function is deter- 

mined by the quality estimation score ej (q, i). The intermediary 

function ρf is defined as follows: 

ρf (q, i) = 
  

max(τj  (i), τj (q))ej (q ,i) . (12) 

The intermediary function ρf is used to compute the set f 

with the combined ranked lists, which is submitted to the recip- 

rocal kNN distance learning procedure as a single time series. 

 
V. EXPERIMENTAL PROTOCOL 

We carried out experiments to identify plant species (i.e., 

areas within the image) using time series extracted from pix- 

els associated with individuals of a same species. For that, the 

Guigues algorithm [23] was used to segment the hemispheric 

image into small polygons, obtaining 8849 segmented regions 

(SR). Then, each SR was associated with a single ROI aiming to 

k 

j ∈N (q,k ) n (q, i) =  l∈N (i,k ) 

. 

ρr (q, i) =  (10) 

fr 
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label it. A labeled region is created if there is at least 80% of over- 

lapped area between an SR and an ROI.2 Thus, we built a dataset 

of 892 SRs separated into six classes, one for each species: A. 

tomentosum (96), C. brasiliensis (346), M. guianensis (36), M. 

rubiginosa (195), P. ramiflora (50), and P. torta (169). 

For each SR, we extracted 39 different time series by consid- 

ering the available periods during the day (13 hours: from 6:00 to 

18:00 h) and the normalized RGBcc indices (three components: 

rcc , gcc , and bcc ). The similarity between two SRs is computed 

as a function of the distance between the time series extracted 

from their SRs. A time series is better than another if it ranks 

more SRs belonging to the same ROI of a query SR at the first 

positions. The distance function used for time-series compari- 

son is the Manhattan (L1 ) distance, as suggested by Conti et al. 

[24]. In this way, we created 39 different time-series descriptors 

(features) to be used as input in our proposed framework. 

The effectiveness of each approach was assessed using the 

metrics of precision and recall. Precision is the ratio of the 

relevant SRs in the retrieved set of SRs. Recall is the ratio    of 

relevant SRs retrieved to the total number of relevant SRs in 

the database. A given SR is considered as relevant only if it 

belongs to the same ROI of a query SR. There is a tradeoff 

between precision and recall, i.e., increasing recall may decrease 

precision and vice versa. For this reason, we consider unique- 

value measurements in the validation: mean average precision 

(MAP), which is the mean of the precision scores obtained at 

the ranks of each relevant SR; and Precision at 10 (P10), which 

is the average precision after ten SRs are returned. MAP is a 

good indication of the effectiveness considering all positions of 

obtained ranked lists. P10, in turn, focuses on the effectiveness 

of the methods considering only the first positions of the ranked 

lists. Experiments were conducted using all the SRs from the 

dataset as queries. Reported results represent the average scores 

of all the SRs. 

 
VI. EXPERIMENTAL RESULTS 

Various experiments were conducted, aiming at analyzing 

the proposed approach under different aspects. This section dis- 

cusses the collected experimental results. 

Our experiments are generally intended to: 

1) compare the effectiveness achieved by individual time 

series before and after the unsupervised distance learning 

procedure; 

2) evaluate the impact of distance fusion steps using the 

reciprocal kNN distance for combining time series; 

3) analyze the improvements in the plant identification task 

obtained by the reciprocal kNN distance. 

Section VI-A presents an evaluation of the input features.  

In Section VI-B, we perform a parameter space analysis of  

our approach. Section VI-C presents the experimental results 

regarding the use of reciprocal kNN distance for individual 

features, while Section VI-D addresses its use for distance fu- 

 
2In the remainder of this paper, when we refer to segmented regions obtained 

by the Guigues algorithm, we use the acronym SR, whereas when we refer to 
regions of interest related to tree crowns of plant species identified in the image, 
we use the acronym ROI. 

sion. Section VI-E discusses the results obtained for most dis- 

criminative features. In Section VI-F, we compare our approach 

with other methods. Section VI-G presents a visual analysis of 

the results. Finally, Section VI-H describes performed experi- 

ments considering the use of a hyperspectral dataset targeting 

the classification of remote sensing pixels as belonging to two 

classes: savanna and forest. This is an important research prob- 

lem as it may help on understanding vegetation-related land 

cover changes over time. 

 
A. Quantitative Feature Evaluation 

As discussed in Section V, 39 different features are considered 

given by periods of the day (13 h: from 6:00 to 18:00 h) and 

the normalized RGBcc indices (three components: rcc , gcc , and 

bcc ). This sections aims at evaluating the effectiveness of each 

input feature for identification of plant species. 

In Fig. 3, we report and compare the time series with respect to 

the MAP and P10 effectiveness measures, respectively. Note that 

the initial effectiveness values are low for both measures, which 

turns more challenging the use of unsupervised distance learning 

methods. The MAP scores varied from 28.95% to 42.16%, while 

P10 scores varied from 44.30% to 73.12%. 

We can observe that the extreme hours (6 and 18 h) present 

the best effectiveness results, considering all the normalized 

RGBcc indices. This is probably due to sun illumination angle 

variations observed along the day. Slightly better effectiveness 

results can also be observed for the rcc index. 

 
B. Impact of Parameters 

The reciprocal kNN distance requires only two parameters: 

1) k, which represents the size of the neighborhood set; and 

2) L, which defines until which position the ranked lists are 

considered in the distance learning procedure. In general, the 

parameter L represents a tradeoff between effectiveness and 

efficiency, since higher values of L generally provide higher 

accuracy while requires higher computational efforts. 

The size of the neighborhood set is the most important pa- 

rameter of the method, defining the extension of the reciprocal 

neighborhood analysis. Therefore, we conducted an experiment 

aiming at determining the best value for the parameter k. We 

computed the MAP and P10 measures for each feature in isola- 

tion considering k = 5 , 10, 15, 20 . 
Fig. 4 presents two radar charts which show the impact of the 

parameter k on the MAP and P@10 measures obtained by each 

of the time series after using the reciprocal kNN distance. These 

charts are composed of three parts: radius, slice of the perimeter, 

and lines. The radius denotes the effectiveness score. The slices 

of the perimeter represent each of the time series. Finally, a line 

indicates the performace obtained by each time series when the 

parameter k is set to a given value. 

As we can observe, the effectiveness scores were similar for 

different values of the parameter k, with a small advantage to 

k = 10. Therefore, the value of k = 10 was used for all other 

experiments, demonstrating the robustness of our approach. For 

the parameter L, we used L = 400, as suggested in [13]. 
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Fig. 3. Initial effectiveness scores obtained by each of the time series. 

 
 

 

 

Fig. 4. Effectiveness results obtained for each of the time series after unsupervised distance learning by varying the parameter k. (a) MAP. (b) P10. 

 

C. Unsupervised Learning for Individual Features 

Experiments were conducted for evaluating the use of the 

unsupervised distance learning for individual features. The main 

motivation consists in the conjecture that the reciprocal kNN 

distance can improve the effectiveness results, even considering 

information given by a single feature. 

For evaluation purposes, we considered the MAP and P10 

measures and report the relative gain, which is computed by 

the absolute gain divided by the initial score. Fig. 5 presents 

the individual relative gains obtained by each of the time series 

considering the MAP and P10 measures, respectively. 

Despite of low effectiveness of the input individual features, 

positive gains were obtained in 35 and 22 out of 39 time series 

for MAP and P10, respectively. We can observe significant gains 

for MAP, reaching +6.72%. For P10, the gains are lower, but 

still significant, reaching +4.15%. Notice that the higher gains 

were obtained for features, which presented the higher initial 

effectiveness, e.g., features of the beginning and ending of the 

day and the rcc index. 

D. Distance Fusion With Unsupervised Learning 

Different features are expected to encode complementary in- 

formation about the phenomenon modelled by the time series. 

Therefore, we conducted an experiment to evaluate the use of 

unsupervised distance learning for combining features. The con- 

sidered combinations are: 

1) all the normalized RGBcc indices for each hour of the day 

(13 combinations); 

2) all the hours of the day for each of the normalized RGBcc 

indices (three combinations); 

3) all hours of the day and all the normalized RGBcc indices 

(one combination). 

Fig. 6 shows the MAP and P10 scores achieved by different 

time-series combinations. The results were sorted from higher 

to lower scores. The bars in gray indicate the combination of 

different chromatic indexes while bars in red, green, and blue 

indicate combination of different hours of the day. The percent- 

age value at the top of each bar refers to the relative gain with 

respect to initial values for the best feature used for combination. 
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Fig. 5. Relative effectiveness gains obtained for each of the time series after unsupervised distance learning. (a) MAP. (b) P10. 

 
 

 

  
 

 

Fig. 6. Effectiveness results obtained by unsupervised distance learning for combining different time series. (a) MAP. (b) P10. 

 

TABLE I 
SUMMARY RESULTS OF UNSUPERVISED DISTANCE LEARNING FOR PLANT 

SPECIES IDENTIFICATION BY CONSIDERING THE COMBINATION OF DIFFERENT 

TIME SERIES 

 

Measure Time 

Series 

Initial 

Value 

Reciprocal 

k NN Distance 

Relative 

Gain 

MAP Single (r18 ) 42.16% 44.15% +4.72% 

Fusion (r6 −18 ) - 44.71% +6.05% 

P10 Single (r18 ) 73.12% 75.38% +3.09% 

  Fusion (r6 −1 8 ) - 83.33% +13.96% 
 

 

 

 

Notice the significant relative gains obtained for both measures, 

reaching +6.05% for MAP and +18.11% for P10. 

In Table I, we compare the best results obtained for the com- 

bination and for each time series isolated with respect to the 

MAP and P10 measures, respectively. The relative gain of the 

combination was computed over initial values for the best fea- 

ture in isolation. We can observe that the combination achieved 

the best effectiveness scores, for both MAP and P10, reaching 

a relative gain of +13.96%. 

 
E. Distance Fusion of Most Discriminative Features 

The previous experiment has demonstrated the potential of 

the unsupervised learning to improve the results on plant identi- 

fication tasks by combining different time series. In this section, 

we discuss more elaborate strategies to deal with distance fusion. 

According to the results presented in previous sections, the 

extreme hours (early in the morning and late in the afternoon) 

outperformed the remaining ones. This finding is in accordance 

with results reported in previous works [5], [24]–[26]. It has mo- 

tivated us to evaluate the use of unsupervised distance learning 

for combining only the most discriminative features. 

Initially, we tested different combinations considering fea- 

tures of the beginning and ending of the day and the normalized 

RGBcc indices. The MAP and P10 scores achieved by the most 

promising combinations are presented in Fig. 7. We sorted the 

results from higher to lower scores, which makes the comparison 
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Fig. 7. Effectiveness results obtained by unsupervised distance learning for combining the most discriminative time series. (a) MAP. (b) P10. 

 

easier. The colors of the bars indicate the combination of differ- 

ent chromatic indexes: 

1) yellow refers to rcc and gcc ; 

2) magenta refers to rcc and bcc ; 

3) cyan refers to gcc and bcc ; 

4) gray refers to all the normalized RGBcc indices. 

The percentage value at the top of each bar refers to the 

relative gain with respect to initial values for the best feature 

used for combination. Significant relative gains can be observed 

for both measures, reaching +13.55% for MAP and +16.86% 

for P10. 

Based on those positive results, we performed a behavior 

analysis of the unsupervised distance learning method using 

different numbers of features. In this experiment, we selected 

time series based on initial effectiveness values, as discussed in 

Section VI-A. At first, we sorted the 39 evaluated features in 

a decreasing order of their absolute effectiveness scores. Then, 

each feature was selected according to its rank, i.e., the best was 

the first, the second best was the second, and so on. At each 

step, the next feature was combined with all the previous ones. 

A 5-fold cross validation was used for checking the consis- 

tency (i.e., the nonrandomness) of those rankings across dif- 

ferent query sets. This procedure was performed as follows. 

Initially, we randomly partitioned the input dataset into five 

equal-sized subsets, called folds. Then, we performed similarity 

search on four folds using the fold left out as query set. This 

process was repeated five times, each time leaving a different 

fold aside as query set. 

The nonparametric Friedman test was performed to verify 

the consistency of the rankings obtained using different folds 

as query set. It checks whether the measured average ranks are 

significantly different from the mean rank. The analysis of the 

experiment confirms the consistency of those rankings, rejecting 

the null hypothesis that there is no agreement among the query 

sets (p-value < 0.001). According to the Kendall’s coefficient 

of concordance (W), there is a high level of agreement between 

the query sets (W = 0.975). 

Fig. 8 shows the behavior of the unsupervised distance learn- 

ing in combining the most discriminative features. We show the 

MAP and P10 scores as the most effective features are used 

for distance fusion. The horizontal lines indicate the effective- 

ness scores for the best feature in isolation and form a baseline 

for our proposed framework. The vertical lines indicate sets of 

features, which achieved the highest effectiveness scores when 

combined with the unsupervised distance learning method. We 

can see that, as more features are considered for distance fusion, 

more effective results are obtained, until reach a peak. This is an 

expected behavior, because different features may complement 

each other, which aggregates more information. From a certain 

point, however, nonrelevant results from the less effective fea- 

tures exceed relevant results from the most effective ones and 

the gain decreases. Also note that the optimal sets of features 

are different depending on the measure (MAP or P10). As MAP 

considers all the positions from the ranked lists, a smaller set is 

enough. On the other hand, as P10 refers to the first positions 

of the ranked lists, it benefits from the combination of more 

features. 

Table II presents the best results obtained for different com- 

bination strategies and for each time series isolated with respect 

to the MAP and P10 measures, respectively. The relative gain 

of the combination was computed over initial values for the best 

feature in isolation. Notice that, for both MAP and P10, the 

best effectiveness scores were obtained by combining the most 

discriminative features, reaching a relative gain of +19.36%. 

 
F. Comparison With State-of-the-Art 

While the pairwise distance measures are broadly studied  

in several areas, with comparative studies, the context-based 

distances based on unsupervised learning schemes are relatively 

new, especially regarding rank-based methods. 

Aiming at providing a comparison of our approach with the 

state of the art, we conducted an experiment employing an un- 

supervised fusion approach for combining the most discrimi- 

native times series selected in the previous section. The graph 

fusion [27], [28] method is a recent approach that has been 

broadly used in image retrieval last years. A similar parameter 

setting was considered, with k = 10 for this method. 
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Fig. 8. Effectiveness results obtained by unsupervised distance learning for combining the most discriminative time series. (a) MAP. (b) P10. 

 
 

TABLE II 
SUMMARY RESULTS OF UNSUPERVISED DISTANCE LEARNING FOR PLANT SPECIES IDENTIFICATION BY CONSIDERING THE COMBINATION OF THE MOST 

DISCRIMINATIVE TIME SERIES 

 

Measure Time Series Initial Value Reciprocal k NN Distance Relative Gain 

MAP Single (r18 ) 42.16% 44.15% +4.72% 

 Fusion (r6 −18 ) 
Fusion (r18 + r6 + r14 ) 

- 
- 

44.71% 
45.62% 

+6.05% 
+8.21% 

P10 Single (r18 ) 73.12% 75.38% +3.09% 
 Fusion (r6 −18 ) - 83.33% +13.96% 

Fusion (r18 + r7  + r6  + b6  + b9  + r 17 + r1 4 ) - 87.30% +19.39% 

 

TABLE III 
COMPARISON WITH STATE-OF-THE-ART BASED ON GRAPH FUSION 

 

Measure Time Series Reciprocal k NN Distance Graph Fusion 

MAP Fusion (r18 + r6 + r14 ) 45.62% 37.36% 

P10 Fusion (r18 + r7 + r6 + b6 + b9 + r17 + r14 ) 87.30% 70.22% 

 

The results of conducted comparison are presented in Table 

III. As we can observe, the effectiveness results achieved by 

our approach are higher considering both P10 and MAP 

measures. It is worth mentioning that, if effectiveness results 

are higher than those obtained for the best individual features, 

it is commonly considered positive for unsupervised fusion ap- 

proaches, once there is no training data available. Notice that 

the proposed approach yielded effectiveness results significantly 

higher than the best feature in isolation. 

 
G. Qualitative and Visual Analysis 

Once the quantitative results demonstrated significant gains 

for effectiveness measures, this section conduct a qualitative 

analysis using visual representations for evaluating the impact 

of the use of unsupervised distance learning. First, we analyze 

the neighborhood relationships among regions and species. In 

the following, we present the visualization of identified species 

in the original images used for extraction the time series. 

For the neighborhood relationships analysis, a binary image 

representation is employed. In the binary image, each pixel 

p(i, j) has its color defined as black if the region rj is among the 

k-NN of region ri. In addition, the axis of the image is defined 

with regions sorted according to the plant species, such that an 

effective retrieval is expected to produce blocks of black pixels. 

In order to explicitly highlight the potential of the unsuper- 

vised distance learning, we chose the g12 feature to conduct 

those analyses. Such a feature was chosen due to the following 

reasons: first, it is in agreement with the general standard of 

analyzing the green color change at midday hours adopted in 

ecological studies [4], [29], [30], and moreover, the worst result 

in the plant identification task was obtained by this feature in 

isolation, as reported in Section VI-A. 

Fig. 9 shows the binary image representation of the neighbor- 

hood relationships for the gcc index at 12 h. Different neigh- 

borhood sizes are considered, with k = 10,  20,  and  50  in 

Fig. 9(a)–(c), respectively. Small and very diffuse blocks can 

be observed, mainly for 50-NN. 
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Fig. 9. Neighborhood relationship among the regions for the g12 feature and various sizes. (a) 10-NN. (b) 20-NN. (c) 50-NN. 

 
 

 

Fig. 10. Neighborhood relationship: Reciprocal kNN distance fusion and various sizes. (a) 10-NN. (b) 20-NN. (c) 50-NN. 

 
 

 
 

Fig. 11. Impact of the reciprocal kNN distance fusion on plant identification 
tasks, considering 50-NN neighborhood. 

Fig. 10 illustrates an analogous representation considering 

the reciprocal kNN distance fusion and the best combination of 

features identified in previous section. We can clearly observe 

very distinct blocks for 50-NN and even for 20-NN. 

Fig. 11 presents the 50-NN representation with a legend in- 

dicating the plant species in the axis of the image. As expected, 

the majority of the blocks are localized in the main diagonal, 

which demonstrates that regions of the same species are among 

the nearest neighbors of each other. Blocks out of the main di- 

agonal may indicate functional groups and constitute a future 

line of investigation. 

Figs. 12 and 13 present a different view of the results, showing 

the performance without and with the unsupervised distance 

learning for the individual queries (i.e., specific lines of the 

previous images) that achieved the best and the worst result, 

respectively. In those figures, each region is colored according 

to its distance to the query using a colormap from blue to red, 

where the red colors denote nearest regions (i.e., associate with 

similar species) and the blue ones represent furthest regions 

(i.e., relate to different species). The yellow circles indicate the 

relevant regions to the query (i.e., are from a same species). 
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Fig. 12. Results obtained for the query that achieved the highest score, showing the performance without and with the unsupervised distance learning. Each 
region is colored according to its distance to the query using a colormap from blue to red. The red colors denote nearest regions whereas the blue ones represent 
furthest regions. The yellow circles indicate the relevant regions to the query. (a) g12 feature in isolation. (b) Reciprocal kNN distance fusion. 

 
 

 

Fig. 13. Results obtained for the query that achieved the lowest score, showing the performance without and with the unsupervised distance learning. Each 
region is colored according to its distance to the query using a colormap from blue to red. The red colors denote nearest regions whereas the blue ones represent 
furthest regions. The yellow circles indicate the relevant regions to the query. (a) g12 feature in isolation. (b) Reciprocal kNN distance fusion. 

 

Ideally, the regions inside the yellow circles should be colored 

in red and all the remaining ones should be colored in blue, in- 

dicating a perfect prediction of individuals from a same species. 

Observe that it is hard to distinguish whether species are similar 

or not by considering only the g12 feature, since the areas in 

red and blue colors are diffuse [see Figs. 12(a) and 13(a)]. Re- 

gardless of the initial performance, we can notice the significant 

improvements yielded by the reciprocal kNN distance fusion, 

which clearly separates the plant species, thus producing large 

same-colored areas [see Figs. 12(b) and 13(b)]. 

 

 
H. Experiments With Hyperspectral Data 

Also, we evaluated the proposed method on a hyperspectral 

dataset, i.e., with more than three bands. For that, experiments 

were conducted on data collected by the sensor USGS Land- 

sat 5 TM Raw Scenes (Orthorectified) in various regions from 

South America, between January 2000 and December 2011. The 

sensor offers images composed of seven spectral bands at 30-m 

spatial resolution with a temporal frequency of 16 days.3
 

The geographical coordinates used as ground truth in this 

study are a modified subset of the inventory data used by [31]. 

These data correspond to centroid coordinates of field sampled 

quadrants of tropical vegetation labeled either as forest or sa- 

vanna. We selected the subset of these quadrants corresponding 

to tropical South America and visualized each of the quadrants 

using Google Earth images from 2016 superimposed with the 

MODIS pixel grid of 250 250 m using Series Views [32]. For 

each of those quadrants, we visually assessed whether a MODIS 

pixel was or not completely filled with a labeled vegetation type 

(i.e., savannas or forests). Pixels that were not entirely filled 

with the corresponding vegetation type were either replaced by 

a neighboring pixel fulfilling these criteria or discarded (when a 

suitable pixel could not be found nearby). In addition, locations 

 

3http://landsat.usgs.gov (As of July 2016) 

http://landsat.usgs.gov/
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Fig. 14. Classification accuracy obtained for each of the bands after unsuper- 
vised distance learning by using a k-NN classifier with different values of k. 

 

 

at which the label assigned to that vegetation type could not 

be visually confirmed were also discarded. The centroid coor- 

dinate of each remaining pixel was then obtained and used to 

extract the satellite data used for classification purposes. There- 

fore, subsequent analyses were performed using 183 savannas 

and 110 forest locations. 

For each location, we extracted seven different time series 

by considering the available bands (seven components: B1 to 

B7 ). The distance function used for time-series comparison is 

the Manhattan (L1) distance. In the experiments, we adopted 

the evaluation protocol used in [33] and [34]. It relies on the 

classification of time series extracted from locations associated 

with a given vegetation type. For that, we used a k-NN classifi- 

cation model: a given location is classified by a majority vote of 

its neighbors, being assigned to the class most common among 

its k-NN. 

Our experiments intend to evaluate the accuracy of a k-NN 

classifier before and after the use of the unsupervised distance 

learning procedure. For that, we adopted the same value of the 

parameter k used both for the k-NN classifier and the reciprocal 

kNN distance algorithm. Similar to the retrieval-based proto- 

col, the size of the neighborhood set plays an important role, 

defining the extension of the reciprocal neighborhood analysis. 

Therefore, the first experiment was conducted aiming at deter- 

mining the best value for the parameter k. We computed the 

classification accuracy for each band in isolation considering 

k = 5, 10, 15 . 
Fig. 14 presents the classification accuracy obtained by dif- 

ferent bands and different values of k. We can clearly observe 

that the accuracy of k = 5 achieved the higher scores for all 

the bands. Therefore, we choose the value of k = 5 for next 

experiments. 

Fig. 15 shows the accuracy scores of a 5-NN classifier ob- 

tained for each band based on the initial distance. Observe that 

the best result in isolation was achieved by the band B7 , reaching 

a classification accuracy of 89.08%. 

The next experiment was conducted to evaluate the use of the 

unsupervised distance learning for each individual band. Fig. 16 

presents the relative gains obtained by the use of the reciprocal 

Fig. 15. Initial accuracy scores obtained for each band using a 5-NN classifier. 

 

 

Fig. 16. Relative effectiveness gains obtained for each of the bands after 
unsupervised distance learning. 

 
  

 

 

 
 

 

    

 

 

 
 

 

 
 

 
 

 

 

 
 

Fig. 17. Classification accuracy obtained by unsupervised distance learning 
for combining the most discriminative bands. 

 

kNN distance algorithm for each band. The best gains can be 

observed for the band B4 , which obtained a relative gain of 

+2.36%, reaching a final accuracy of 88.74%. On other hand, 

the band B7 obtained a relative gain of +1.15%, reaching a 

final accuracy score of 90.10%. This score is higher than any 

accuracy score obtained by the initial distance, considering all 

the bands. 
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Finally, we also evaluated the combination of different bands. 

For that, an experimental protocol similar to the previous fu- 

sion experiments (see Section VI-E) was considered. Thus,  

we selected the most discriminative bands by ordering their 

classification accuracy after the unsupervised distance learning. 

Fig. 17 shows the classification accuracy obtained by our pro- 

posed framework. The horizontal line indicates the accuracy 

score for the best band in isolation and the vertical line indicates 

the best fusion result (obtained for the bands B7 + B6 + B4 ). 
We can observe that the curve presents a very similar behavior to 

the previous fusion experiments (see Fig. 8), achieving a higher 

accuracy result than the best band in isolation. 

 
VII. CONCLUSION 

This paper presented a new similarity measure for plant iden- 

tification tasks involved in remote monitoring of phenology with 

digital cameras. In order to obtain global measures that encode 

information of the dataset structure, we proposed the use of a 

unsupervised distance learning method called reciprocal kNN 

distance [13]. 

A comparative analysis of different features, as well as their 

possible combinations created by our approach, has been con- 

ducted in our experiments. Results obtained with our proposed 

framework applied to about 2700 images taken from a tropi- 

cal cerrado savanna vegetation demonstrate that it can largely 

improve the plant identification results, reaching gains of more 

than 19%. 

One possible limitation of the work refers to the problems 

caused by distortions within the generated images. For exam- 

ple, the visual properties associated with regions close to the 

borders probably contain a lot of noise, which may impact the 

effectiveness of the method. This is reason that we have avoided 

using them in our evaluation protocol (see the selected regions 

in Fig. 1). Another issue refers to parameter settings of the pro- 

posed method. An in-depth evaluation of suitable values for 

them is left for future work. Another issue refers to the time 

span of images used. We expect to check the consistence of the 

results with longer time series in future work. 

Future work includes the evaluation of other features for iden- 

tifying plants based on phenological time series and a rigorous 

analysis of the influence of parameters employed in our ap- 

proach in order to determine which configuration produces the 

best results, as well as perform an extensive study on different 

strategies for feature selection and distance fusion. 
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