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Conditionally exactly soluble class of quantum potentials
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We present a different class of quantum-mechanical potentials. These are midway between the exactly
solvable potentials and the quasiexactly ones. Their fundamental feature is that one can find the entire
s-wave spectrum of a given potential, provided that some of its parameters are conveniently fixed.
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Since the appearance of quantum mechanics, there has
been continual searching for exactly soluble (ES) poten-
tials [1]. This relies on the importance of such solutions
in many branches of physics, and on the fact that these
solutions can be used as a basis to perform perturbative
calculations in nonexact potentials. Until recently it was
thought that there would exist only two classes of poten-
tials in quantum mechanics, namely, the exactly soluble
and the nonexactly soluble ones. However, about a de-
cade ago [2], another class was discovered and, since
then, has been widely discussed in its various aspects
[3—7]. This class, the so-called quasiexactly soluble
(QES) potentials, is characterized by the fact that it is
only possible to have an exact finite number of their ener-

gy eigenstates: the remaining eigenstates can only be ob-
tained through numerical calculations, as with the nonex-
actly soluble potentials. The importance in the study of
these potentials, apart from intrinsic academic interest,
rests on the passibility of using their solutions to test the
quality of numerical methods and in the possible ex-
istence of real physical systems that they could represent.

Here we intend to report the finding of another class of
potentials, what we call the conditionally exactly soluble
(CES) potentials, because its principal feature is that of
having exact solutions only when certain conditions are
made, namely, that some of the parameters of the poten-
tial be fixed to a very specific value.

This class of potentials is positioned between the ES
and the QES potentials. All of their energy levels can be
exactly obtained, as with the ES potentials, but their pa-
rameters cannot be arbitrarily chosen, as with the QES
potentials. The first feature put them in conditions to be
used in perturbative calculations. having the advantage
that, for the potentials belonging approximately to their
form, they take into account the anharmonicity of the po-
tential, unlike the traditional perturbative method where
the wave functions of the harmonic oscillator or any oth-
er exact potential with a more appropriate form are com-
monly used. The second feature put the CES potentials
in a more suitable situation, when compared with the Q
potentials, in order to testify about the quality of a given
numerical approach. Furthermore, we will see that one
could expect some fashion of reality in at least one of
these potentials.

The way to obtain such potentials as we use is to look

h + VT(u) .g(u) =ET'(u),
2p Bu

(2)

where p is the mass, and ET is some constant resulting
from the transformation that takes the role of the "ener-
gy" in the new equation. Furthermore, it is straightfor-
ward to show that

with

VT ( u )
—E7 = (f '( u ) ) [ V(f ( u ) ) —E ] +b, V( u ), (3a)

2

EV(u) =
p

1 f"'(u) 3 f"(u)
4 f '(u) 8 f '(u) (3b)

This type of approach has been used extensively in the
path-integral method of quantization [8]. In fact, the
above procedure was also used in the Schrodinger picture
to relate different power-law potentials [9],and also to re-
late spherically symmetric potentials at different space di-
mensions [10]. However, for transformations where

f (u)=u, with a being real, b, V(u) will always produce
a u term, which should be removed in order to get a
driven harmonic oscillator potential in the new variable.
This is the origin, for the cases here considered, of the
very particular fixing of one of the potential parameters.
At this point it is interesting to make some considerations
about the boundary conditions after the transformation
r =f (u). The principal care to be taken is with respect
to the normalizability of the wave function, in order to
maintain the normalization of the final wave function
after returning to the physical variable.

Let us now look at the first two representatives of this
new class of potentials. First of all we see that an exten-

for a mapping between them and a driven harmonic oscil-
lator. This is done by performing nonlinear coordinate
transformations, and then requiring that a certain term
vanish. We start with the Schrodinger equation for a
given potential V(r), perform the variable transformation
r =f (u), and redefine the wave function as

g( r, t) =&f '(u (r) )y(r, t),
where the prime denotes differentiation with respect to
the variable u. This new wave function obeys the
transformed Schrodinger equation
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V(r)= +, +8 Go

r r
(4)

sion of our original Coulomb potential belongs to it. This
potential is

shall discard two. This can be done by a simple physical
criterion. As can be seen from the form of the potential,
we see that, when 8 =0, the energy spectrum must be re-
duced to one of the Coulomb type. Using this criterion
one gets the solution

The transformation is the same one that links the
Coulomb potential with a three-dimensional harmonic
oscillator f (u) = u [S]. In this case the expression (2)
reads

E =[R+(Q +R )' ]' +[R —(Q +R )' ]'
n

(10a)

3A'
Vz(u) ET=—4Eu —+48u+4A+ 4GO+

—2
Q

(5)

where

Q =(3a2 —a, )/9, R =(9a,a2 —27a~ —2a, )/54,

(lob)

ET =(n + 1/2)fico,

so that

4A+8 /E„=(n+ 1/2)A'Q —SE„/p,

(7a)

(7b)

which after simple manipulations leads us to the equation
for E„
A' ( n + I /2 )2E„+2p A E„+p AB E„+pB /S =0 . (S)

On the other hand, using the solutions of the eigenstates
of the harmonic oscillator, returning to the variable r,
and using (1), we obtain the eigenfunctions

1/4

(r) =(2(n —1)n!) 1/2 H p r /2rpn , 8
2E„

where we can identify ET with 4 A, the frequency of the
oscillator a1=&—SE/p, and the driving force is 48. In
order to get an exact solution one can follow one of two
possible ways. The first one is the elimination of the driv-
ing force (8=0), leading to the solution of the usual
Coulomb potential. The second way is that of imposing
the elimination of the centrifugal-barrier-type term; this
is obtained by imposing that Go = —3A /32p. This last
case led us to the first CES potential presented in this
work. It is interesting to observe that for great distances
it behaves like an s-wave Coulomb potential.

However, before obtaining the solution of the problem,
let us make a further transformation to map the CES po-
tential into the harmonic oscillator. Using the transla-
tion U =u —8/(2E), we get

VT(U) Ez = 4E—U +4A—+8 /E .

Now using the solution for the spectrum of the harmonic
oscillator, we get the following equation for the spectrum
of the CES potential:

and

2pA 2 @A+2
~1

A' (n+1/2) fi (n +1/2)
g4

a, =
SA' (n +1/2)

(10c)

V(r)=Ar /+ +

where go is chosen to be equal to —5' /72@, in a com-
pletely analogous fashion to the previous case. It is re-
markable to observe that a nonexact version of this po-
tential was considered recently [11], in connection with
an effective quark-antiquark potential model for heavy
and light mesons. In fact, it is easy to see that for high
radial quantum numbers the above CES potential will
have its spectrum be closer and closer to the nonexact
case appearing in [11]. The transformation function in
this case is f (u) =u, Eq. (3) looks like

VT(u) ET =(9A /4)u— (9E/4)u +—98/4, (12)

and now we identify Ez with 98/4, co=v'9A/2JM, and
the driving force is represented by 9E/4. Using a pro-—
cedure analogous to the previous case we see that this
time the eigenfunctions are

2/3 ~2
tP„(r)=(2 "+"n!/3)

7T

XH„p r/
2A

The second example of a CES potential, as far as we
know, does not have in some limit any other well-known
ES potential, as happened in the previous example. The
potential appears like

2
Pn 1/2 8

X exp — r
2 2E„

(9)
X exp — r /p'

2 2A

2

(13)

where we defined
1/4

SpE„
Q2 E„= [(n + 1/2)V9A /2@+98 /4],16A

(14a)

L

with p=(9@A /2' )' " The equation for. the spectrum is
simply

From the three solutions of the spectrum equation (S) we with the solutions
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E„=+ [(n + I /2)+92 /2p+98/4]'~~ .4&~
3

(14b)

It is not dificult to convince oneself that, for the cases
where the parameter B is positive, the positive solution is
quite good, but if B is negative one can see that there will
exist prohibited quantum numbers. This can be seen by
imposing that E„must be a real quantity, so

n ~ Int

1/2
9B
8A

1

2

where Int[ ] stands for the first integer after the value of
its argument. This, however, does not say that there are
not such energy levels, but that perhaps they should be
searched for in the negative solutions in (14b). It is only a
matter of experimentation to verify that, for instance,
with n = 1 the negative solution looks like a ground-state
eigenfunction, because it does not have any node.

The problem is that this potential, in contrast with the

former, does not have some type of limit as a guide for
deciding about what solution to use. This problem is un-
der investigation and we intend to report on it in a fur-
ther publication.

As should be expected, these two cases can be mapped
one onto another through a suitable transformation: in
the first one, for example, it would be f (u) =u . Some
extensions can be thought of as looking for supersym-
metric partners; one can find other CES representative
potentials.

We can also study the possibility of applying the
second potential presented above to the case of quark-
antiquark potential models. These and other problems
related to the CES potential are presently under investi-
gation, and we expect to report on them in the near fu-
ture.
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