Electrochimica Acta 234 (2017) 16-27

journal homepage: www.elsevier.com/locate/electacta 2

=

e

Contents lists available at ScienceDirect

Electrochimica

Electrochimica Acta -

o

10N

i
\

07

£

Y C
2 \§
[’

il
&)

pom—

Corrosion mechanisms in titanium oxide-based films produced by @ Cosshark

anodic treatment

A.C. Alves™*, F. Wenger”, P. Ponthiaux”, J.-P. Celis®, A.M. Pinto®¢, L.A. Rocha®*",

J.C.S. Fernandes®

2 CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Azurém, 4800-058 Guimardes, Portugal
P LGPM - Laboratoire de Génie des Procédés et Matériaux - Ecole Centrale Paris, France

©MTM - Materials Engineering — KULeuven, Belgium

9 Dep. Mechanical Engineering - University of Minho, Portugal

€ Dep. Physics, Faculdade de Ciéncias de Bauru, UNESP - Universidade Estadual Paulista, Brazil

fIBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Bauru, Brazil
& CQE/DEQ - Instituto Superior Técnico, Universidade de Lishoa, Lisboa, Portugal

ARTICLE INFO

Article history:

Received 12 October 2016

Received in revised form 2 March 2017
Accepted 2 March 2017

Available online 4 March 2017

ABSTRACT

Thanks to its excellent corrosion resistance, good mechanical properties and biocompatibility, titanium
has been widely used as dental implant material. A passive oxide film formed on titanium surface is
responsible for its high corrosion resistance. This study has evaluated the surface characteristics of oxide
layers formed on commercially pure titanium samples by anodic treatment and the effect of anodic
treatment on their corrosion behaviour. FEG-SEM and XRD were used to evaluate the micromorphology

K?yW}?rdSi and crystalline structure of these oxide films. Their corrosion resistance was evaluated using
Titanium electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. EIS was
Blomgterlal performed for different times of immersion and a new equivalent electrical circuit (EEC) is proposed to fit
Anodic treatment . . R A

Corrosion the experimental data of the anodic oxide films. It was concluded that the morphology, composition, and
EIS structure of the outer porous layer of the anodic layer determine the corrosion protection of the material.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In comparison with other metallic biomaterials (Co-Cr alloys
and stainless steels), titanium (Ti) possess the most adequate
balance of characteristics for several biomedical applications,
namely dental implants. High biocompatibility, specific strength,
and corrosion resistance may be pointed out as the most
interesting features for those applications [1-4]. However, being
a bio-inert metal, titanium does not have the ability to chemically
bond with the natural bone [5-8].

Although it was shown that metallic dental implants coated
with hydroxyapatite (HA) display enhanced biological response
compared to uncoated implants [9], lack of adhesion of HA
coatings to the metallic substrate and/or fracture or delamination
of the coating are liable to occur [10]. Thus, several surface
modification techniques, as plasma-spraying [9,11,12], ion

* Corresponding author at: University of Minho - Department of Mechanical
Engineering - Campus de Azurém, 4800-058 Guimaraes, Portugal. Tel.: +351 253 510
220; fax: +351 253 516 007.

E-mail address: alexandra@dem.uminho.pt (A.C. Alves).

http://dx.doi.org/10.1016/j.electacta.2017.03.011
0013-4686/© 2017 Elsevier Ltd. All rights reserved.

implantation [13-15], sol-gel deposition [16,17] and anodic
treatment [10,18-24] have been investigated in order to produce
surface layers with improved bioactivity. Due to their simplicity,
anodic treatments appear as attractive techniques for tailoring Ti
surfaces in terms of topography, porosity, and composition [19,21-
28].

In the 90's, Ishizawa and Ogino [10,19-21,29,30] were among
the first authors to perform surface modification of Ti with the
incorporation of bio-elements such as Ca and P. An electrolyte
consisting of calcium acetate and [3-glycerophosphate disodium
salt pentahydrate was used to form anodic titanium oxide films
containing Ca and P in different amounts depending on the
processing conditions. The authors observed precipitation of HA
crystals after a hydrothermal treatment [10,19,20,29,30].

Several authors have characterized different porous anodic
oxide films formed by micro-arc oxidation (MAO) on Ti or its alloys,
in terms of crystalline structure, topography, porosity, composi-
tion, corrosion behaviour and biological response [7-
10,19,21,22,24,26-48]. Electrochemical impedance spectroscopy
(EIS) was also used by several authors to characterize those films
[24,31,33,34,49,50]. Nevertheless, discussion on the most suitable
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equivalent electrical circuits (EEC) for interpreting EIS results is
still going on. Most of the authors assume that the anodic oxide
film is composed of two-layers, an inner barrier layer followed by a
porous outer layer, thus adopting the equivalent circuit proposed
by Pan et. al [51] for two-layers oxide film on anodised Ti.

An acceptable equivalent circuit should meet two main
conditions: first of all it should provide a good fitting to the EIS
experimental data and secondly it should have a clear and valid
physical meaning. In particular, a clear description of the different
paths for the flow of current should be done, allowing to
distinguish between electronic and ionic charge carriers and
between the faradaic and non-faradaic paths, as proposed by
Grahame [52]. As the number of time constants present in the data
increases, the number of degenerate EEC's that fit the data also
increases, but most of them have no physical meaning.

Some of the present authors had previously reported [45] that
increased concentration of calcium acetate in the mixture of
B-glycerophosphate and calcium acetate anodic treatment elec-
trolyte led to better tribocorrosion behaviour, due to the alteration
of the crystallographic structure of the resulting anodic layer. The
present work aims to study, for the first time, the electrochemical
properties of Ti anodic oxide layers during long-time immersion in
a physiological solution using EIS. In particular, a new EEC to fit the
experimental data is proposed, based on a detailed characteriza-
tion of the anodic layers.

2. Experimental
2.1. Materials and solutions

Commercial pure titanium (CP Ti grade 2, Goodfellow Cam-
bridge Limited, England) samples were cut from the same original
plate in square forms of 10x10x1 mm. Immediately before the
anodic treatment all the samples were cleaned in an ultrasonic
bath with acetone for 3 min, etched in Kroll's reagent (1 ml HF and
5ml HNO3 in 44 ml H,0) during 10 min, and cleaned again in an
ultrasonic bath for 10 min in propanol followed by 5 min rinsing in
distilled water, and then dried with warm air.

The electrolyte used for the anodic treatment consisted in a
solution of [(-glycerophosphate disodium salt pentahydrate
(B-GP) at different concentrations of calcium acetate monohydrate
(CA) as depicted in Table 1. After the anodic treatment,
electrochemical tests were performed in an 8 g/l NaCl solution.
The reagents used in the preparation of these solutions were
supplied by Fluka-BioChemika, Sigma-Aldrich and Panreac,
respectively.

2.2. Anodic treatment

The anodic treatment was performed under constant voltage
mode. A DC power supply (GPR-30H10D) was used and the
treatment was carried out at room temperature for 1 min at 300V,
under a sparking regime. A platinum plate was used as cathode
(2cm?). The distance between the cathode and the anode (Ti
plates) was kept constant (8 cm) for each treatment. The surface
area of the titanium samples exposed to the electrolyte solution
was 0.358cm? All the anodic treatments were done under

Table 1

Samples under study and electrolyte composition.
Group Electrolyte
015 CA 0.02 mol/l 3-GP+0.15 mol/l CA
035 CA 0.02 mol/l 3-GP+0.35 mol/l CA
CP Ti just etched

agitation in a turbulent regime by using a magnetic stirrer rotating
at 200 rpm.

2.3. Electrochemical tests

Electrochemical tests consisted of open circuit potential (Eqcp)
measurements, potentiodynamic polarization curves, and electro-
chemical impedance spectroscopy (EIS). All the electrochemical
tests were performed using a 3-electrode arrangement where the
samples were used as working electrode, with an exposed area of
0.358 cm?, a Pt electrode was used as counter electrode and a
saturated calomel electrode (SCE) was used as reference electrode.
All the potentials are given with respect to SCE.

All electrochemical tests were performed using a Reference 600
potentiostat/galvanostat from Gamry Instruments. The potential
scan rate in the potentiodynamic tests was 1 mV/s, starting at 0.5V
below E,, and moving into the anodic direction up to 2 V.

The EIS tests were done for different times of immersion in the
test solution (0O h, 1h, 1 day, 2 days, 4 days, 8 days, 16 days, and 20
days) at E,cp. Before each EIS test the Eo, was measured during
30 min. The impedance data acquisition was done by scanning a
range of frequencies from 63 kHz till 10 mHz, with 10 points per
frequency decade, and the amplitude of the sinusoidal signal was
10mV, in order to guarantee linearity of the electrode response.

2.4. Characterization Methods

The topography, microstructure and chemical composition of
the anodic oxide layers formed on the surface were analysed by
scanning electron microscope, FEI Nova 200 Field Emission Gun
Scanning Electron Microscope (FEG-SEM) equipped with Energy
Dispersive X-Ray Spectroscopy (EDS). The cross sections of the
anodic oxide films were prepared by nano-machining using the
focused ion beam of a SEM-FIB (Nova 600 NanoLab) and
characterized by FEG-SEM/EDS.

The surface roughness was measured on five randomly selected
samples (using five different areas on each sample), using a high
resolution optical sensor from STIL (model CHR150-N), a 3D
motion measuring station, a controlling system from STIL and an
optic sensor (F3) from ZEISS.

The structure of the anodic layers was analysed by X-ray
diffraction with Bragg-Brentano, Gobel mirror mode, CuKoa
radiation (Bruker D8 Discover). A scanning range (20) of 10° to
100° was used, and the step size was set to 0.02°. The peaks
identification was done using Diffrac Plus Evaluation (Package
Release 2006) software. The phase percentage (distribution) was
calculated following Eq. (1).

I
%phasea :M (])

E 1 all peaks

3. Results and Discussion
3.1. Characterization of the anodic films

3.1.1. Surface morphology

Fig. 1 presents the current density evolution during the
formation of the anodic oxide layers at 300V in the two different
electrolytes. After an initial current peak, a decrease is observed in
the early stages of the anodic treatment, being attributed to the
formation of a compact and thin oxide layer [37-39,42,53].When
the thickness of the oxide films reach a critical value, the applied
voltage promotes the dielectric breakdown of these films and
micro-arc discharge start to occur at the surface of the material,
leading to localised melting and formation of micro-pores
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Fig. 1. Current densities evolution during the anodic treatment time at 300V for
two different electrolyte concentrations.

[28,42,49]. Micro-arc discharges are identified in the curves by the
current oscillations during the treatment. These discharges
accelerate the growth of the layer, which then leads to a decrease
of the current density.

A representative SEM micrograph of the untreated Ti after
etching (before the anodic treatment) is shown in Fig. 2 (a), where
the typical granular structure of Ti can be observed. Fig. 2(b) and (c)
show the surface morphology after anodic treatment in 0.15 M and
0.35M CA, respectively. As can be observed, a multiscale porous
structure was obtained with some cracks being observed on the
surface of both groups of samples. The arrows shown in Fig. 2 (c)
identify some of the cracks presentin the 035CA group. The density
of cracks and distribution of pores size were calculated using a
point-counting method adapted from ASTM E562. A grid consist-
ing of a 15 lines parallel to each other with a constant spacing of
0.05mm was superimposed on the micrograph. All the pores
intersecting the lines were counted and their diameters were
measured. Five SEM images were taken for each sample in different
zones of the surface and five samples were used per condition. It
could be observed that for 015CA group the crack density was of
(1.14+0.4) x 10° cracks/mm? while for 035CA it is higher, namely
(7.1 £1.6) x 10® cracks/mm?. An increase of the number of cracks
with the increase of the calcium acetate concentration was also
observed by S-D Wu et al. [53].

Also, an increase in the amount of calcium acetate in the
electrolytic solution resulted in higher pore diameters, as shown in
Fig. 3. Finally, the anodic treatment resulted in pores with a wide
range of sizes [28]. Regarding the 015CA group, most of the pores
have a diameter between 0.5 and 1 pum, with a maximum size of
3.5 pwm. In the 035CA group, the size of pores increased, and their
diameter is between 1.5 and 2um, for most pores, with a
maximum size of 5 pm.

Comparing the pores size dispersion of both groups, it was
observed that the 035CA group presents a larger dispersion than
015CA. Also, the number of pores per surface area was different in
both groups, namely (34 +3) x 10> pores/mm? for the 015CA and
(24 + 3) x 10® pores/mm? for the 035CA. The increase on the pores
size with increasing electrolyte concentration has also been
reported by Ishizawa et al. [21] for anodic titanium oxide films
containing Ca and P, processed by similar anodic treatment
conditions. The microstructural differences between the two
anodized surfaces are attributed to the dielectric breakdown of
the oxides layers [32]. The increase of calcium acetate concentra-
tion in the electrolyte may improve the electrical conductivity of

20 um

Fig. 2. Representative SE SEM images of the titanium samples for different surface
conditions: a) etched, and anodic treated groups b) 015 CA and c) 035 CA.

the electrolyte. S. Abbasi et al. [37] stated that the variation in
electrical resistance of the electrolyte is the main reason for the
pore size enlargement at higher concentrations of calcium acetate.

In terms of roughness, the acid etched surface (just before
anodic treatment) presented a mean roughness (R,) of
0.42+0.02 wm. After the anodic treatment the roughness
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Fig. 3. Pore size distribution on the anodic treated surfaces for two different electrolyte concentrations.

increased around 4 times, up to 1.64 + 0.36 um and 1.66 + 0.22 pum
for group 015CA and 035CA, respectively.

3.1.2. Anodic films composition and structure

The Ca/P weight ratio of the anodic films was estimated by EDS
analysis, being strongly influenced by the calcium acetate
concentration. The Ca/P ratio for the 015CA group (1.61 £0.09)
was lower than for 035CA (3.62 +0.11).

Under sparking conditions, local heating occurs and high
temperatures can be reached, so water vapour and oxygen are
released [18]. During this process, specific ions as Ca and P can be
retained in the porous oxide layer [19,20,22]. This is one advantage
of this anodic treatment, as the presence of these ions may improve
osteointegration [43,46,47].

The presence of HA is known as beneficial to the implants, as it
promotes a direct bonding to the bone and enhancement of new
bone formation around it. Many studies have proved that HA
coated implants show superior histological results than the
uncoated ones [30]. The Ca/P ratio on HA is 1.67. In this way, it
may be expected that by changing the concentration of the
electrolyte of the anodic treatment, a Ca/P ratio similar to the one
in HA may be reached. Ishizawa et al.[19,20,30] have shown that
several HA crystals precipitated in the anodic titanium oxide layer
containing Ca and P after a hydrothermal treatment, when the Ca/P
ratio was similar to HA.

Anyway, even without HA precipitation, samples investigated
in this work showed enhanced human osteoblast adhesion when
tested in vitro [43,46,47].

The cross section of the anodic films is shown in Fig. 4a-d. Both
anodic films presented three different layers. Adjacent to the bulk
material (Ti) a compact film was formed (A) followed by two
porous outer layers. The inner porous layer, marked in Fig. 4 as B,
presented small pores, whereas the outer porous layer (C) formed
near the outer surface presented bigger pores.

The thickness of the anodic films was measured by image
analysis. The 035CA group has a slightly increased thickness
(4.38 £1.21 um) compared to the 015CA group (3.39 + 1.04 um).

The X-ray patterns obtained for the anodic treated samples, as
well as for untreated Ti, are shown in Fig. 5 (only the 26 values from
20° to 60° are shown, as this is the range where the characteristics
peaks for Ti and Ti oxides are found). Ti diffraction peaks were
observed on all groups: 015CA presented anatase, and 035CA both
anatase and rutile.

Kim et al. [25] have found that anodic treatment of titanium in a
calcium glycerophosphate /calcium acetate electrolyte produced
layers with two crystalline phases, as rutile and anatase. On the
other hand, Sul et al. [54] have shown that the structure of the
anodic layer is changed from amorphous to crystalline, meaning
that formation of the anatase, rutile or brokite occurs above a
critical oxide thickness. The electrochemical parameters, as
electrolyte concentration or the current density, influence the
dielectric breakdown potential, which is related to the crystallo-
graphic transformation. It has been reported that after the
dielectric breakdown, anatase is formed at lower forming voltages,
while the combination of anatase and rutile phases is formed at
higher forming voltages [36,55,56]. However, the forming voltages
of both phases may decrease when the conductivity of the
electrolyte increases. In this case, by increasing the concentration
of calcium acetate the dielectric breakdown changed and, probably
due to this fact, the anodic oxide layer was formed as a
combination of anatase and rutile phases on the 035CA group.
Since no rutile was detected in the case of 015CA group, it is
assumed that the crystalline phase of the anodic oxide layer was
100% anatase. The phase percentages (phase distribution) regard-
ing 035CA group were calculated by Eq. (1), and the results showed
that the anodic oxide layer was a combination of 70% anatase and
30% rutile.

3.2. Electrochemical behaviour

3.2.1. Potentiodynamic Polarization curves

Fig. 6 shows the polarization curves of the untreated titanium
samples and anodic treated groups of samples. The average
corrosion potential, E¢;—o), and the average passive current density,
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Fig. 4. SE SEM images of a FIB-prepared cross-sections of anodic layers for two different electrolyte concentrations: a) and b) 015CA - ¢) and d) 035CA.

ipass, Obtained from several experiments (up to seven) in each
group, are presented in Table 2.

The corrosion potential showed a clear increase from untreated
Ti to the 015CA group, followed by a slight decrease from 015CA to
035CA. A passivation plateau was observed for all types of
specimens, starting at 0.250V for Ti, whereas for 015CA it was
registered from 0.191V to 0.652V, being followed by a slight
increase of the current that corresponds to a degradation of the
protective film, possibly due to the dissolution of calcium and
phosphorous. For the 035CA group, the passive domain is observed
from 0.064 to 0.580V. The ip,ss values showed a two orders of
magnitude drop from Ti to 015Ca, with a slight increase from
015CA to 035CA. Although the passive range seems to be reduced
from the untreated Ti to both treated materials, even above this
primary passive range and up to 2V (the maximum applied
potential) the values of current density are always much lower
than those observed for Ti. Thus, both the Ei-o and the iyag values
indicated an evident tendency for the improvement of the
corrosion resistance on the MAO-processed materials, the 015CA
group showing the best properties.

I.S. Park et al. [ 28] have studied the corrosion resistance of CP Ti
(grade 2) anodized in similar conditions. They have also reported
higher corrosion potential value and lower current density as
compared with untreated Ti. The authors attributed these results
to the increased resistance of the oxide layer to corrosion through
the anodic treatment. Previous studies [8,28] also defended that,
beyond the increase in roughness, which is desirable for many
biomedical applications, the increase in thickness of the oxide
layer obtained through MAO also results in an improvement of the
corrosion resistance, compared to untreated Ti.

3.2.2. Open Circuit Potential evolution versus immersion time

The evolution of OCP with immersion time for untreated and
anodic treated Ti samples in 8 g/l of NaCl is presented in Fig. 7. After
exposing all samples to the solution, the OCP for the untreated Ti
increased while it decreased for the anodic treated samples. For the
untreated Ti samples, the increase on OCP values with immersion
time corresponded to the decrease of the anodic reaction kinetics
due to the formation of the natural oxide film of titanium in contact
with the electrolyte [41,57]. Regarding the anodic treated samples,
the decrease on OCP with immersion time may be related to partial
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Fig. 6. Potentiodynamic polarization curves of the different groups of samples in
NacCl (8 g/l).

Table 2
Average values of corrosion potential, E¢i-o) and passivation current density, ipass.
for all groups.

Group E¢i—0y (V vs. SCE) ipass (A cm~2)
CPTi —0.475 +0.017 (101 + 1.1)x10°6
015CA 0.091 +0.022 (2.8+1.0)x10°8
035CA —0.017+0.032 (3.8+0.5)x10°8

dissolution of the anodic film. Banakh et al. [35] evaluated the
response of anodic oxide layers containing Ca and P by immersion
in a simulated body fluid and reported that Ca and P content in the
anodic layers decreased after 14 days of immersion. Moreover, Ca
dissolution occurs at higher rates than P. However, during the
immersion period, the anodic treated samples presented more
positive values than untreated Ti indicating a lower tendency to
corrosion.

3.2.3. Electrochemical Impedance Spectroscopy

Fig. 8 shows the electrochemical impedance spectra for Ti in the
form of Nyquist and Bode diagrams for different times of
immersion. At high frequencies (10> Hz to 10° Hz), the Bode

diagram shows constant values of |Z| where the phase angle was
near 0° which corresponds to the response of the electrolyte
resistance. At low and middle frequencies, the phase angle
presented values approaching 90° which is a typical capacitive
behaviour of a compact oxide film. The protective character of this
film seemed to be enhanced with increased immersion time, as
already concluded from the OCP evolution.

Fig. 9 presents the equivalent electrical circuit for the native
oxide film formed on the surface of the CP Ti samples used in the
fitting of the experimental data, containing: Rs - electrolyte
resistance, Ry N - native barrier oxide film resistance and Qpgn) -
constant phase element (CPE), accounting for the non-ideal
capacitance of the native barrier oxide film.

Qufeny values were converted to Cpq (capacitance of the native
oxide film) by using Eq. (2), derived from Brug's equation [58].

1
Corny = Qbf(N)Rs(F")} (2)

The equivalent circuit parameters obtained from EIS data for the
untreated Ti at different immersion times are shown in Table 3. As
can be seen from the fitting results, the values of Ryq ) increase and
those of Cpqny decrease with the increased immersion time,
indicating a higher protection of the passive oxide film formed on
the surface at longer immersion time.

Fig. 10 presents the electrochemical impedance spectra in the
form of Nyquist and Bode diagrams, obtained at different
immersion times for the anodic treated samples. The 015CA group
presented two time constants: one corresponding to the high
frequencies being shifted to higher frequencies values as time
elapses. The 035CA presented a similar behaviour to the 015CA at
the beginning of immersion but the resistance corresponding to
the high frequencies time constant was considerably lower than
that of the 015CA. Both groups presented a phase angle near —80°,
for the lowest frequencies range (10~2 - 10~! Hz) during all the
immersion period.

Different circuits for fitting EIS spectra on MAO treated Ti
surfaces were found in the literature. Among other authors,
Shokouhfar et al. [49] and Venkateswarlu et al. [33,50] used EEC
consisting of two time constants, one at high frequency (CPE, with
aresistance R, in parallel), characteristic of the outer porous layer,
and the second corresponding to low frequencies and being
characteristic of the inner barrier layer of the film, consisting in a
CPE, with a resistance Ry, in parallel. Both authors present R, as the
“outer porous layer resistance”, although obtaining quite low
values for this parameter, as commented by both authors. In fact, R,
should not be assigned to the resistance of the outer oxides, but to
the additional solution resistance in their pores. Both the layout of
the EEC, where R, is in series with the contribution of the inner
barrier layer, and the low R, values point out to this interpretation.
Additionally, Pan et al. [51] have introduced this interpretation in
their publications, mentioning that R, (referred as R, in their work)
could be either the outer layer resistance or the electrolyte
resistance inside pores.

On the other hand, Fazel et al. [42] used a similar circuit for MAO
treated Ti surfaces but the authors added a constant phase element
(Qq) in series with R, which was assigned to diffusion of ions
through the oxide layer. This interpretation is questionable, as the
n value obtained by these authors for that constant phase element
is 0.845, far from the typical values expected for diffusion-
controlled processes (ca. 0.5) and closer to those of a capacitance of
a rough oxide. Thus, even if it fits the experimental data, the
proposed EEC lacks physical meaning, which is a major require-
ment for acceptance of an EEC.

Several studies [56,59-61] used EEC containing Rs (electrolyte's
solution), an outer porous oxide layer (CPE, and R;,), an inner dense
barrier oxide layer (CPE, and Ry,) and a Warburg diffusion element
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to account for the mass-transfer process inside the irregular
shaped pores in the oxide. However, diffusion control is not very
much expected in these materials, as the rate of any faradaic
reaction (especially metal oxidation) is expected to be very low. On
the other hand, Quintero et al. [40] proposed a different equivalent
circuit for similar anodic treated surfaces, in a 3 time constant
ladder arrangement, consisting of the contributions of the outer
layer, inner layer and metal/electrolyte interface at the bottom of
nanometric pores of a not completely homogeneous inner layer
that would allow contact between the Ti substrate and the
electrolyte. However, the fittings presented by these authors are
very poor, with x? values close to 10-2, which may question the
validity of their circuit.

In summary, all the circuits presented in the literature, both
relative to standard anodising or MAO, assumed a two-layered
oxide film, with an inner barrier layer and an outer porous layer,
although some of them may include other elements, such as
Warburg or CPE's, normally assigned to diffusion control. However,
by choosing from these circuits the ones that have a clear physical
meaning, none of them was able to provide acceptable fitting to the
impedance spectra of the present anodic treated samples. In fact,
based on the structure of the anodic film, as revealed from the cross
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Fig. 9. Equivalent circuit proposed for the fitting of EIS spectra for the untreated CP
Ti (grade 2) samples.

sections of the anodic oxide films prepared by SEM-FIB and
characterized by FEG-SEM/EDS (Fig. 3), and on the EIS diagrams
(Fig. 10), a triplex structure is considered, with a thin and compact
oxide film formed at the metal/oxide interface (barrier film)
followed by two porous layers, namely an inner porous layer
presenting small pores and an outer porous layer, formed at the
surface, that consisted in larger pores but not reaching the barrier
film. Therefore, a new equivalent circuit is proposed (Fig. 11),
where the barrier film is associated to a resistor Rygar) and a
constant phase element Qufar), Whereas the thicker anodic layers
corresponding to the intact porous wall and to the porous wall
under the outer pores are represented by Quwan and Qjpwan
respectively. In these last cases, no resistor is considered in parallel
with the CPE's as, due to the thickness of the films, the respective
value would be extremely high. Three resistors were also added,
corresponding to the overall electrolyte resistance, Rs and to the
additional resistances of the solution inside the inner pores and
outer pores (Rs-ip, Rs_op)-

The impedance spectra for the anodised samples were fitted to
this equivalent circuit using ZView software (version 2.9) and the
quality of the fitting was evaluated through their chi-square (x?)
values.

The impedance of CPE is defined as Zcpg = [Yo(jw)"] -1 where Yo
is the CPE admittance, w is the angular frequency, n the

-90
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Fig. 8. Nyquist and Bode diagrams recorded on the untreated CP Ti (Grade 2) immersed in NaCl (8 g/l) for Oh, 8 days and 20 days of immersion.
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Table 3

Equivalent circuit parameters obtained from EIS data for the untreated Ti at different immersion times.

Oh 1h 24h (1day) 48h (2days) 96h (4days) 192h (8days) 384h (16days) 480h (20days)
Rs (2 cm?) 479+5.1 476+5.1 47.7+4.2 48.5+5.1 45.8 +3.8 46.0+5.8 46.0+5.8 443 +5.8
Rpgcny (M cm?) 0.37 +£0.06 0.53+0.02 2.54+139 5.33+0.01 6.51+1.01 6.60+0.89 8.15+1.30 11.30+3.46
Corny (IWF cm 2) 48.6+4.1 477 +£3.7 441+2.0 39.0+0.9 35.6+3.5 35.0+1.6 33.6+04 28.2+5.7
n 0.92 +£0.02 0.93 +£0.02 0.93 +£0.01 0.93 +£0.02 0.93 +£0.02 0.94 +0.02 0.94 +0.01 0.95+0.02
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Fig. 10. EIS spectra in the form: a) and c¢) Nyquist diagrams and b) and d) Bode diagrams recorded on the 015CA and 035CA samples immersed in NaCl (8 g/1) for different

immersion times.

exponential factor (-1<n<1) and j=+/—1 is the imaginary
number. When n=1,n=0 and n=-1, the CPE responses correspond
to those of a capacitor, a resistor or an inductor, respectively. When
n= 1, a non-ideal capacitor may be described by this element, the n
value being influenced by the roughness of the surface and its
heterogeneity. As can be observed in Fig. 2, all groups of samples
presented rough surfaces, resulting in a range of n values between
0.90 and 0.93.

Fig. 12 shows the Bode diagrams of experimental data and the
respective fitted curves, comparing the proposed model (Fig. 11b)
and one of the models that has been used in the literature for
titanium anodic films produced by MAO [33,49,50] (Fig. 11a). These
diagrams show differences in the quality of the simulation by using
the two different models. The proposed model describes

adequately the behaviour of the anodic film in contact with NaCl,
with chi-square values often below 1x10~3, whereas the duplex
model does not satisfactorily fit the behaviour of the anodic oxide
films, with chi-square values around 1x1072.

The conversion of Q values into C (capacitance) is very
important when experimental capacitance data are used to
estimate the parameters as the thickness of anodized layers
[62]. Thus, the capacitance values were calculated in the case of
Cwai (3) and Cy jpwan (4) using Egs. (3) and (4) respectively that were
extrapolated from Brug's equation [58]. On the other hand, the
Eq. (5) was used to calculate Cpgary, when a resistor exists in
parallel with the CPE [58].

1
Cwall = [Qwalle(lin)]" (3)
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1
Cl/2wall = [Q]/Zwall (Rs + Rs—op)(]in)] (4)
1 1 (n—1)7n
Corar = |Q S S - 5
b (AT) bf (AT) <Rs TR Rbf(AT)) (5)

Fig. 13 shows the variation of Cq2wan With immersion time for
the anodically treated groups. The 035CA group presented higher
values of capacitance than 015CA for all times of immersion. It is
known that capacitance is proportional to the area. The 035CA

group presented higher pore size and higher crack density
((7.1 £1.6) x10? cracks/mm?) than 015CA ((1.1 £0.4) x10* cracks/
mm?), which can explain this behaviour. Besides, both groups
presented an increase on Cq2wan values throughout the immersion
time.

The variation of Cy,; with immersion time is presented in
Fig. 14. The 035CA group presented always higher Cy.; values,
increasing up to 24 h of immersion and then remaining almost
constant till two days of immersion, followed by an increase till the
end of immersion, while the values of C,,,; for 015CA are almost
constant during the immersion period. In fact, during immersion,
the solution can penetrate or attack the oxide film which may lead
to pores blocking that may explain the decrease of Cy,; values. The
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electrolyte penetration through the pores on the 035CA group is

facilitated, as this group presented bigger pores and higher number
of cracks.

The barrier film behaviour is shown in Fig. 15. The barrier film of
the anodic treated samples (Cprar)) Was compared with the Ti
native oxide film (Cpqn)) formed on its surface. Taking in account
the standard deviation for the anodic treated group, it was possible
to observe that the Cp values did not change significantly during
the immersion time. However a decrease with time was observed
for the untreated Ti that may be due to the contact with H,O
leading to the hydration of the oxide film. If the growth rate of the
oxide film is large enough, it can remain in hydrated form [63].

The values of C,., are considered representative of the
capacitance of the intact porous wall, and may be affected both
by variation of the exposed area of this layer and by variation of its
thickness. It was concluded from Fig. 13 that the pore size increases
with the immersion time, thus a slight decrease in the exposed
area of intact wall is expected. However, taking into account that
this area is quite large when compared to the pore area, its
variation should not be very important.

On the other hand, according to the Eq. (6) the capacitance
values depend on the thickness:

_&gA

C==3 (6)
_&8A

d=—c @

where, € is the dielectric constant of the oxide film, & is the
vacuum permittivity, A is the area and d is the thickness.
Considering £o=8.854 x 10~ "*Fcm~" and &= 100 (typical dielectric
constant for TiO, [64,65]), it may possible to estimate the film
(wall) thickness at the beginning of the immersion and at the last
immersion time. Thus, a decrease in the thickness of the overall
film, resulting from its dissolution, would lead to an increase of the
capacitance, as it occurs for 035CA group. In the case of the 015CA
group, the effect of decreasing area may affect this behaviour, as it
is observed from Figs. 13 and 14 that the enlargement of the pore
size was much bigger in this type of specimens.

To get a better understanding of the electrochemical behaviour
of the anodic oxide films under long-time immersion in
physiological solution, the characterization of the anodic films
cross-section should be done, as well potentiodynamic tests after
different immersion times should be performed.

4. Conclusions

The effect of the calcium acetate concentration in the
electrolyte used to anodize CP Ti on the composition, structure,
and corrosion behaviour of the anodic layers was investigated. The
outcomes of this work are the following:

- a new equivalent electrochemical circuit is proposed to fit the
EIS spectra of anodic films produced by MAO. The equivalent
circuit was established in accordance with the complex
structure of the films and overcomes the limitations of already
existing circuits proposed for this kind of materials. The
proposed circuit has a clear physical meaning, allows for a
good fitting of the experimental data and explains the changes in
the EIS spectra relating them with the different characteristics of
the anodic oxides.

- the corrosion resistance was improved by the surface treatment,
with both concentrations of calcium acetate, when compared
with untreated titanium. Nevertheless, higher concentrations of
calcium acetate results in a detrimental effect on the corrosion
resistance of the material, essentially due to the contribution of
the cracks present in the outermost porous layer of the anodic
film. The obtained knowledge is useful for the development of
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new strategies for the processing of MAO films in calcium-rich
electrolytes with less amount of superficial cracks.
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