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Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental dupli-
cation regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined
genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one
indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising ~55.6-Mbp
sequence—476 of which (~38%) have not previously been reported. We validated this sequence-based CNV call set with
array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH),
achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for
genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the
Nelore individual had the lowest copy numbers in 13 cases (~52%, x2 test; P-value <0.05). In contrast, genes related to
pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to
the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly du-
plicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some
CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first
individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable
future CNV studies into highly duplicated regions in the cattle genome.

[Supplemental material is available for this article.]

Copy number variations (CNVs) are gains and losses of genomic

sequence >50 bp between two individuals of a species (Mills et al.

2011). Substantial progress has been made in understanding CNVs

in mammals, especially in humans (Redon et al. 2006; Conrad et al.

2009; Altshuler et al. 2010; Mills et al. 2011) and rodents (Graubert

et al. 2007; Guryev et al. 2008; She et al. 2008; Yalcin et al. 2011).

While single nucleotide polymorphisms (SNPs) are more frequent,

CNVs impact a higher percentage of genomic sequence and have

potentially greater effects, including the changing of gene struc-

ture and dosage, altering gene regulation and exposing recessive

alleles (Zhang et al. 2009). In particular, segmental duplications

(SDs) were shown to be one of the catalysts and hotspots for CNV

formation (Sharp et al. 2005; Alkan et al. 2009; Marques-Bonet

et al. 2009). Several common CNVs have been shown to be im-

portant in both normal phenotypic variability and disease sus-

ceptibility in human (Aitman et al. 2006; Fellermann et al. 2006;

Le Marechal et al. 2006; Fanciulli et al. 2007; Yang et al. 2007;

Stankiewicz and Lupski 2010). Although analyses of a subset of

CNVs provided evidence of linkage disequilibrium with flanking

SNPs (McCarroll et al. 2008), a significant portion of CNVs fell in

genomic regions not well-covered by SNP arrays, such as SDs, and

thus were not genotyped (Locke et al. 2006; Estivill and Armengol

2007; Campbell et al. 2011). Combining CNV and SNP data in

human genome-wide association studies has associated CNVs with

diseases such as intellectual disability, autism, schizophrenia, neu-

roblastoma, Crohn’s disease, and severe early-onset obesity (de Vries

et al. 2005; Sharp et al. 2006; Sebat et al. 2007; Cook and Scherer

2008; Bochukova et al. 2009; Diskin et al. 2009; Glessner et al.

2009; Shi et al. 2009; Stefansson et al. 2009).

Comparative genomic hybridization (CGH) and SNP arrays

are routinely used for CNV screens, and their performances have

been extensively reviewed (Lai et al. 2005; LaFramboise 2009;

Winchester et al. 2009; Pinto et al. 2011). Although these plat-

forms offer some detection power in SD regions, they are often

affected by low probe density and cross-hybridization of repetitive

sequence. In addition, only a relative copy number (CN) increase

or decrease is reported with respect to the reference individual in

array comparative genomic hybridization (aCGH). This poses a

particular problem in the detection of CNVs in SD regions, as the

test individual’s CN may differ from that of the reference by
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a smaller proportion than is detectable using array-based calling

criteria.

The advent of next-generation sequencing (NGS) and com-

plementary analysis programs has provided better approaches

to systematically identify CNVs at a genome-wide level. These

sequence-based approaches, which are becoming more popular

due to the ongoing developments and cost decreases in NGS, allow

CNV reconstruction at a higher effective resolution and sensitivity.

Different methods to detect CNVs using sequence data were pre-

sented in the 1000 Genomes Project pilot studies (Sudmant et al.

2010; Mills et al. 2011) and have been previously reviewed (Snyder

et al. 2010). Read depth (RD) methods used to analyze the 1000

Genomes Project data contributed high-resolution CNV calls with

the capability of determining exact CN values for each genetic

locus in an individual (Sudmant et al. 2010). Specifically, mrFAST/

mrsFAST and whole-genome shotgun sequence detection (WSSD)

(Alkan et al. 2009; Hach et al. 2010; Sudmant et al. 2010) are able

to construct personalized CNV maps in or near SD regions by re-

porting all mapping locations for sequence reads, whereas other

RD methods consider only one mapping location per read. Since

CNVs are often found in or near duplicated regions in the genome

(Cheng et al. 2005; Marques-Bonet et al. 2009), mrFAST and

mrsFAST are more appropriate for detecting CNV in duplication-

and repeat-rich regions.

Recently, interest in CNV detection has extended into do-

mesticated animals (Chen et al. 2009b; Fontanesi et al. 2009;

Nicholas et al. 2009; Bae et al. 2010; Fadista et al. 2010; Liu et al.

2010; Ramayo-Caldas et al. 2010; Fontanesi et al. 2011; Kijas et al.

2011). For example, in ridgeback dogs, duplication of FGF3, FGF4,

FGF19, and ORAOV1 causes hair ridge and predisposition to der-

moid sinus (Hillbertz et al. 2007). The ‘‘wrinkled’’ skin phenotype

and a periodic fever syndrome in Chinese Shar-Pei dogs are caused

by a duplication upstream of HAS2 (Olsson et al. 2011). The white

coat color in pigs and sheep is caused by a duplication involving

KIT and ASIP, respectively (Moller et al. 1996; Norris and Whan

2008). The chicken peacomb phenotype was linked to a duplica-

tion near the first intron of SOX5 (Wright et al. 2009). Similarly,

partial deletion of the bovine gene ED1 causes anhidrotic ecto-

dermal dysplasia in cattle (Drogemuller et al. 2001). Given the

heritability of CNVs and their higher rates of mutation, it is pos-

sible that CNVs may be associated with or affect animal health and

production traits under recent selection. Bos taurus indicus are

better adapted to warm climates and demonstrate superior re-

sistance to tick infestation than Bos taurus taurus breeds (Porto

Neto et al. 2011). Likewise, beef and dairy cattle breeds display

distinct patterns in selected metabolic pathways related to mus-

cling, marbling, and milk composition traits. It is possible that

CNVs may be associated with these agriculturally important traits.

The availability of two alternative cattle reference genomes

(Btau_4.0 and UMD3.0) (The Bovine Genome Sequencing and

Analysis Consortium 2009; Zimin et al. 2009) has opened new

avenues of cattle genome research. Using the Btau_4.0 assembly,

we previously applied an approach combining MegaBlast and

WSSD to detect cattle SD and discovered 94.4 Mbp of duplicated

sequence in the reference genome (Liu et al. 2009). Our earlier

array-based studies in cattle have also uncovered significant dif-

ferences in CNV frequency among breeds, as well as several genes

associated with CNVs like ULBP and PGR (Liu et al. 2010; Hou et al.

2011). These studies confirm that CNVs are common, associated

with SDs, and often occur in gene-rich regions in cattle. Here, we

describe the first use of NGS data to detect CNVs in the cattle ge-

nome. Using mrsFAST and WSSD, we also analyzed genome-wide

gene copy number estimates in order to explore their potential

functional and evolutionary contributions to breed-specific traits.

By providing the first individualized bovine CNV and SD maps and

genome-wide gene copy number estimates, we enable future CNV

studies into highly duplicated regions in the cattle genome.

Results and Discussion

CNV discovery and data set statistics

We obtained Illumina NGS data for four taurine (three unrelated

Angus, one Holstein) and one indicine (Nelore) cattle (Supple-

mental Table S1). Additionally, we simulated NGS reads using Sanger

sequence reads of the sequenced cow, L1 Dominette 01449, a Here-

ford cow of European descent, and named its result as DTTRACE. The

amount of sequence data for each animal varied from 43 (Hereford

and Holstein) to nearly 203 (Angus and Nelore) coverage, allowing

sufficient power to detect CNVs >20 kbp in length (Table 1). Since

two of our animals (Holstein and Hereford) were sequenced pri-

marily as single sequence reads, and we aimed to provide absolute

genome-wide gene copy number estimates in this study, we used an

RD detection method similar to that previously described (Alkan

et al. 2009). See Methods for full details of mrsFAST alignment and

WSSD CNV discovery parameters. Based on sequence RD against the

reference genome (Alkan et al. 2009; Sudmant et al. 2010), we

detected a total of 1265 unique CNV regions (CNVRs) across all an-

alyzed individual animals (average length = 49.1 kbp), amounting to

55.6 Mbp of variable sequence or 2.1% of the cattle genome (Fig. 1).

A full list of CNV calls can be found in Supplemental Table S2. As

expected, the ‘‘uncharacterized chromosome’’ (chrUn), which con-

sists of sequence that cannot be uniquely mapped to the genome,

contains much variable polymorphic sequence (Liu et al. 2009).

Our analysis indicated that 36.7 Mbp of chrUn (944 regions) may

be copy number variable between individuals. Due to the shorter

Table 1. Sequence data sets and window estimates

Animal
abbreviation Breed Platform

Number
of readsa

Raw X
coverage

Autosome
reads per

5-kbp window

Autosome
reads
STDEV Duplications Deletions

Variable
nucleotides

BINE B. t. indicus Nelore Illumina GAIIx 1,294,595,641 19 1034.65 285.79 803 64 35.3 Mb
BTAN1 B. t. taurus Angus Illumina GAIIx 1,177,885,036 17 1328.19 328.08 793 4 40.3 Mb
BTAN2 B. t. taurus Angus Illumina GAIIx 1,318,356,916 19 1285.88 340.24 801 5 40.6 Mb
BTAN3 B. t. taurus Angus Illumina GAIIx 1,219,531,192 18 1019.7 283.89 798 7 40.5 Mb
BTHO B. t. taurus Holstein Illumina GAIIx 287,255,229 4 237.38 57.76 751 3 37.7 Mb
Dominette

(DTTRACE)
B. t. taurus Hereford Sanger 307,909,731 4 340.25 95.07 668 0 36.4 Mb

aTotal number of reads after filtering for quality scores and sectioning the reads into nonoverlapping 36-bp fragments.
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lengths of the chrUn contigs and the ambiguous mapping of

chrUn sequence reads, candidate CNVRs on chrUn require further

investigation. While our method had sufficient power to detect

duplications, variance in RD across the autosomes—measured in

standard deviations (STDEVs)—limited our discovery to only the

extreme deletion events (Table 1). In the following analyses, we

focused on further characterization of the high-confidence CNVRs

(mostly duplications) from Btau_4.0 known chromosomes.

We constructed duplication maps for each of the six genomes

and estimated the absolute copy number of each 1-kbp genomic

Figure 1. Individualized cattle CNV map. The Btau_4.0 assembly is represented as black bars with assembly gaps indicated by white boxes on the
chromosomes. Larger bars intersecting the chromosomes represent the previously discovered WSSD (red), WGAC (blue), and WSSD/WGAC joint-
prediction (purple) regions. Tracks underneath the chromosomes represent the CNV data sets (in order from top to bottom) for DTTRACE, merged CNVRs
from all data sets, BINE, BTAN1, BTAN2, BTAN3, and BTHO. The colors for each bar in the animal data set tracks represent the average estimated CN for
each CNV as shown in the legend. The merged CNVR track does not have CN information and is uniformly colored brown.

Bickhart et al.
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interval and over 9000 annotated cattle RefSeq genes. We com-

pared the extent of overlap among duplicated sequences and

reclassified duplicated sequences as shared or specific to an in-

dividual based on the predicted copy numbers in the analysis of

these genomes. A significant proportion of the CNVs were shared

among all three Angus (BTAN) individuals (35.7 Mbp out of 45.3

Mbp shared; 78.8%) with BTAN2 having the fewest unique CNVs

(Supplemental Fig. S1). Apart from the RNASE1 (pancreatic ribo-

nuclease) gene, where BTAN10 (BTAN3) has a significant duplica-

tion compared to all other animals (CN of five vs. two for each

animal), most of the CNVs were shared among the Angus in-

dividuals, with few novel CNV events among them. To simplify

discussion, we used BTAN2 as a representative Angus bull in our

comparisons of CNVs across the breeds due to its lower content of

unique CNVs among the Angus individuals. A total of 23.4 Mbp of

large SDs is shared among the four cattle breeds (36% of the in-

tervals and 43% by base pair) (Supplemental Fig. S1).

We found the greatest CNV diversity for the indicine Nelore

individual, BINE, with a total of 245 CNVs corresponding to 5.9

Mbp of sequence (Supplemental Fig. S1). Pairwise comparisons of

BINE to the taurine individuals also yielded consistently lower

shared CNV nucleotide space, suggesting that CNV differences

between subspecies are greater than across the breeds within

a subspecies. DTTRACE and BTAN2 shared a significant proportion

of CNV space (33.9 Mbp out of 55.6 Mbp shared; 61%) and CNVRs

(574 BTAN2 CNVs overlapped with 581 DTTRACE CNVs; 71% and

87%, respectively), likely due to the close relationship between the

Hereford and Angus breeds, both of which are used for beef pro-

duction. The second largest shared space was found in a three-way

comparison of BTAN2, BTHO, and DTTRACE (6.6 Mbp), indicating

that more CNVs are shared among taurine breeds than between

the taurine and indicine subspecies. This result is consistent with

previously reported breed phylogenies based on SNP analyses

(Decker et al. 2009). Additionally, BINE had significantly more

small CNV events (185 CNVs under 15-kbp in length) than the

other animals (94–148 CNVs under 15-kbp in length) (Supple-

mental Fig. S2).

Comparison with published cattle SD results

Using the sequenced Hereford cow Dominette, we compared its

CNV call set (DTTRACE) with our published cattle SD to validate

our method (Liu et al. 2009). We trimmed Dominette’s Sanger se-

quence reads to simulate 36-bp sequence reads similar to those

found in several of our Illumina GAIIx sequenced libraries. Com-

parisons of DTTRACE against autosomal WSSD calls from the

previous study (Liu et al. 2009) revealed 67% (25.8 Mbp/38.5 Mbp

DTTRACE CNV total length) overlap of base pairs (Supplemental

Fig. S3) and a similar amount of duplicated bases across the placed

chromosomes (Supplemental Table S4).

We next assessed the ability of our method to accurately

predict the sizes of published duplicated sequences. We first

extracted and filtered 1020 duplication intervals from duplicated

sequence identified by WGAC (whole-genome assembly compar-

ison) and WSSD from the SD study (Liu et al. 2009), requiring in-

tervals >20 kbp in length with <80% of their sequence occupied by

common repeats. We then compared the 332 remaining SD in-

tervals with similarly filtered CNVs from DTTRACE (Fig. 2A). We

found a strong correlation (r = 0.904) between these two data sets.

This confirmed that large candidate CNV (length >20 kbp) calls

can be made with high confidence as previously reported (Alkan

et al. 2009). Correlations of estimated CNV sizes between the two

studies had better agreement when CNV size predictions were

below 100 kbp (;63% of shared CNVs). By contrast, the original

SD study predicted larger CNV sizes when lengths were above 200

kbp (;37% of shared CNVs). We suspect that merging the dupli-

cation predictions from the two different methodologies used in

our earlier SD study (WGAC and WSSD) increased the size of SD

predictions with respect to our new prediction, overinflating the

predicted sizes for the SDs >200 kbp.

Also, several differences in methods likely contributed to the

discrepancies between the previous SD study and our new data set.

First, different alignment programs were used in these two studies.

The original SD study used MegaBlast to align full-length Sanger

reads to a lightly masked Btau_4.0 assembly. Our method used

Figure 2. Correlation between computational predictions and experimental validations. (A) A good agreement of lengths (r = 0.904) exists between
previously discovered WSSD+, WGAC+, and predicted DTTRACE duplications. (B) Calculated digital aCGH probe values (BTAN2_ngs) were compared
with probe log2 ratios from a whole-genome aCGH (BTAN2_whole). Digital aCGH values were estimated using a log2 ratio of the 1-kbp CN windows from
BTAN2 divided by CN estimates from DTTRACE. A moderate correlation (r = 0.524) was found for aCGH probe values and digital aCGH values within CNV
intervals >20 kbp that had fewer than 80% of their lengths occupied by common repeats.
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mrsFAST (Hach et al. 2010) to align trimmed Sanger reads to

a thoroughly masked Btau_4.0 assembly. Only common repeats

with <10% sequence divergence and bovine-specific repeat se-

quences were masked in the SD study (Liu et al. 2009). By contrast,

we heavily masked Btau_4.0 with RepeatMasker, Tandem Repeats

Finder, and WindowMasker and further extended 36 bp in both

directions to remove edge effects for mapping short reads (see

Methods). Although the smaller (<5 kbp) CNVs that did not

overlap with the previous SD results could represent true duplica-

tions, we could not rule out the potential for mapping differences

resulting from the use of short reads and different alignment

programs. Therefore, we considered these calls separately (as ‘‘ar-

tifacts’’) and removed them from our current call sets to focus on

higher confidence CNVs.

Experimental validation

We performed extensive experimental validation to confirm in-

dividual copy number variants, including aCGH, quantitative PCR

(qPCR), and fluorescent in situ hybridization (FISH). We performed

four aCGH experiments using BTAN1, BTAN2, BTHO, and BINE as

test samples and Dominette as the reference for all experiments. To

test the potential for our method to generate false positive results,

we sought to confirm diploid regions (CN = 2) by our method with

the array results. Since BINE shows the greatest CNV diversity and

the lowest overlap with DTTRACE, it was the most divergent

sample available to test the variability within the predicted two-

copy regions. We selected all 1-kbp genomic regions and excluded

all windows that intersected with known CNVs. Based on their RD

values, we determined that these invariant diploid regions had an

average CN of 1.967 and a STDEV of ;0.215. To make the CN es-

timates comparable to the aCGH results, we created log ratios of

BINE CN estimates with DTTRACE CN estimates similar to the

previously described digital aCGH approach (Sudmant et al. 2010).

We then matched and compared the digital aCGH values with the

actual aCGH probe log ratios based on their proximity to each

other. We defined each intersection as being congruent if both

values were within two STDEVs of the baseline of 0 (indicating

a two-copy state in both individuals). Using this model, we found

that only 8% of the matched ratios were significantly divergent

from the expected baseline. This divergence percentage (;8%)

suggests that our false discovery rate within the unique regions was

low even within a comparison of different subspecies (Bos taurus

indicus vs. Bos taurus taurus). Using the same digital aCGH ap-

proach, we compared our RD predicted CNV intervals with aCGH

results. Based on predicted CN values within filtered CNVs (>20

kbp that contained <80% common repeat content), we generated

digital aCGH values and compared them to aCGH probe log2 ratios

using a linear regression model (Fig. 2B). Pearson’s correlation

values (r) ranged from 0.429 to 0.524 among the taurine in-

dividuals (BTAN1, BTAN2, and BTHO in Supplemental Fig. S4, Fig.

2B, and Supplemental Fig. S5, respectively). The lowest correlation

was found for BINE (r = 0.264) (Supplemental Fig. S6). Discrep-

ancies between the digital and experimental aCGH may be partly

explained by the diminishing ability of aCGH to determine abso-

lute differences between highly duplicated segments (Locke et al.

2003). Additionally, discrepancies for BINE are probably related to

the sequence divergence between the indicine and taurine sub-

species that could have influenced probe hybridization and se-

quence alignment. Indeed, a brief survey of SNPs within our

sequence alignment files indicated that BINE had over twice

the number of SNPs (897,124 SNPs) than the Angus individuals

(average: ;400,000 SNPs) and nearly nine times the amount of

SNPs than BTHO (113,775 SNPs; data not shown). Under our set-

tings, mrsFAST allowed for up to two mismatches in a sequence

read during alignment, which may have influenced BINE pre-

dicted RD in regions of the genome that were divergent from the

taurine reference Btau_4.0 assembly. Another limitation of mrsFAST

is its omission of gapped alignments in order to save computa-

tional time (Hach et al. 2010). However, these limitations were less

likely to influence our CNV calling, as we only focused on the

larger CNVs (>10 kbp). Until a Bos taurus indicus reference genome

assembly is available, our CNV calls for the BINE individual can

only be based on the Btau_4.0 assembly. Even so, CNVs predicted

in BINE were likely to contain fewer false positive CNVs in non-

variable, two-copy regions as demonstrated by the low 8% false

discovery rate (FDR), suggesting our calls likely represent true

variation in the BINE genome.

Quantitative PCR assays were designed to confirm previously

unreported CNVs as well as CNVs within or near annotated genes.

We chose to investigate 12 predicted CNVRs in different animals,

using two distinct primer sets per locus (see Supplemental Table

S4). Our qPCR analysis used a modified ddCT method to determine

relative CN as described previously (Hou et al. 2011). The only

exception was that we used absolute CN estimates from the

DTTRACE data set at each qPCR locus that was not diploid in

Dominette (our control sample). Using this correction, we found

that 82% of our qPCR results (46 confirmed/56 total) agreed with

our CNV predictions in these regions (see Supplemental Table S5).

If we counted CNVs as confirmed only when both qPCR primer

sets were positive, we had 70% agreement (23 confirmed/33 total)

under these stringent criteria. The discrepancies between the qPCR

and WSSD results may represent small CNV events missed in the

WSSD calls. Likewise, instances where SNPs or small indels existed

among individuals may have caused the qPCR assay to report

a different value from the WSSD analysis.

We also attempted to validate CNV calls using FISH; however,

the lack of cell lines from the same individuals forced us to use cell

lines from related animals from the same breeds. We tested CNV

predictions using a FISH analysis on interphase nuclei within three

cell lines derived from Hereford, Angus, and Holstein animals,

respectively, using 51 large insert BAC clone probes that corre-

sponded to predicted CNVRs. Out of 51 tests, 28 probe locations

(;55%) showed a detectable change in CN among the cell lines

(see Supplemental Table S6; Supplemental Fig. S7), showing vari-

able signal numbers either among three cells (8) or between hap-

lotypes (20). The results of all FISH experiments are available

online at http://bfgl.anri.barc.usda.gov/cattleCNV/. All 28 dupli-

cation signals were tandemly clustered. Similar to the mouse and

dog genomes (She et al. 2008; Nicholas et al. 2009), these data

reinforce that tandem distributions of CNVare predominant in the

cattle genome (Fig. 1). Discrepancies between our predicted CNVRs

and the FISH results are most likely due to the difference in animals

used in each analysis. In addition, we also note that BAC-FISH has

a limited ability to detect tandem duplications and duplications

<40 kbp in length.

Other causes, such as the draft status of the cattle genome

assembly, make it difficult to determine CNVs on the sex chro-

mosomes. For example, chrX presented a challenge as all five

studied cattle were bulls, and chrY currently exists only in putative

contigs. Even so, nearly 80% of the CNVRs (69/87) on chrX

identified in the taurine individuals agree with previously pre-

dicted SD regions (Liu et al. 2009). Several predicted CNVs in BINE

were detected near the end of chrX (Fig. 1), which contains the
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pseudoautosomal region (PAR) (Sonstegard et al. 1997). It is pos-

sible that reads from the PAR of chrY were instead mapped to chrX,

thereby inflating RD values within that region of the chromosome.

Copy number polymorphic genes

Using the cattle RefSeq gene annotations, we identified copy

number polymorphic genes and then assigned a CN estimate to

each gene. A total of 413 out of 9571 (4.3%) RefSeq gene transcripts

overlapped putative CNVRs, while 9158 (95.7%) did not. Gene

transcripts outside of predicted CNVRs were found to have a me-

dian CN estimate of 2.01, again reconfirming a low false positive

rate in predicted nonvariable regions. The overlapping gene tran-

scripts were found to be highly variable in CN among individuals

(minimum value: 0.10; maximum: 242; median: 3.77; average:

5.80). Fifteen of the 25 most variable genes had functions related to

the immune response and host defense, such as the interferon,

defensin, and GIMAP (GTPase, IMAP) families (Table 2). High CN

genes often belong to multiple-member gene families, and it is

likely that our CN estimates are actually representative of real du-

plications of these paralogs. For complete lists of CNV gene in-

tersections, see Supplemental Table S7. Of the 413 overlapping

genes, 195 were found to be completely overlapped by CNV in-

tervals. Genes covered by CNVs varied on an individual basis, with

BINE having the most genes intersecting with predicted CNVs (313

genes), BTHO having the least (239 genes), and 178 genes being

shared by all studied animals. Of the 178 shared genes, multiple

members were previously identified in other studies, such as the

olfactory receptors and the beta-defensin gene families (Liu et al.

2010; Hou et al. 2011). Other previously identified CNV-gene

overlaps were detected, such as the BSP30 gene family (Liu et al.

2009). This BPI-like protein gene family has been through several

ruminant-specific amplifications, and each gene family member

encodes a highly transcribed, salivary, anti-microbial peptide

(Haigh et al. 2008). BSP30A and BSP30B are two specific members

of this gene family (Wheeler et al. 2007) found to have CNVR

overlaps (Fig. 3A). All five sequenced animals had predicted CNVs

within the region (average CN: 7–11), with notably smaller CN

values predicted upstream of the BSP30A locus in Dominette (av-

erage CN: 4). These CNV predictions were confirmed by whole-

genome aCGH, with all animals showing consistently higher CN

counts than Dominette near the BSP30A locus. BSP30A and BSP30B

comprise 15%–30% of the total protein content of bovine saliva,

making them an important first defense enzyme against orally

ingested parasites/bacteria (Haigh et al. 2008). Duplications in this

region may be a ruminant-specific response to evolutionary pres-

sures from soil-based parasites and bacteria encountered while

grazing.

In some cases, CN varied widely among individuals especially

within highly duplicated gene families (Table 2). For example, the

transcription factor gene SUHW2 (zinc finger protein 280B) had

a large CN variance among animals (STDEV = 12.6). Dominette

had the fewest copies of SUHW2 at 2.6; BTHO and BINE: 22.2 and

22.9, respectively; and the three Angus bulls each had more than

30 copies of SUHW2. BINE was predicted to have the lowest CN

values for 13 of the top 25 variable genes (P-value <7 3 10�5). Other

CN variable genes of note include CATHL4, KRTAP9-2, LAP, TAP,

and several PAG genes. CATHL4, an antimicrobial peptide coding

gene, was found to have a higher copy number in BINE than in the

taurine animals. Indolicidin, the protein product of CATHL4, can

induce autophagic cell death in the parasite Leishmana donovani,

the causative agent of the parasitic disease Leishmaniasis (Bera

et al. 2003). This is particularly interesting as the indicine breeds

are known for their increased parasite resistance compared to

taurine breeds (Berman 2011). Knockouts of CATH-family genes in

mice have revealed that the antimicrobial peptide products of

Table 2. Top 25 copy number variable genes in sampled individual cattle

Gene ID
RefSeq

accession
Gene size

(bp)
Covered

percentage BINE BTAN1 BTAN2 BTAN3 BTHO DTTRACE

MGC134093 NM_001077070 8620 100 48.2 199.6 176.9 103.8 242.0 215.0
MGC134093a NM_001077070 8653 100 42.4 170.7 149.5 87.8 210.8 182.3
LOC780876 NM_001079796 7960 100 12.2 37.9 33.6 19.1 53.9 47.8
SUHW2 NM_001077935 8466 100 22.9 31.7 34.5 35.6 22.2 2.6
IFNB3 NM_001114297 639 100 38.0 46.9 25.4 23.2 27.5 48.2
IFNB1 NM_174350 637 100 33.0 35.4 22.6 21.7 17.6 30.6
FBXO16 NM_001078119 32,822 100 14.6 29.0 26.1 28.5 22.6 24.1
BNBD-4 NM_174775 1921 100 11.2 16.5 25.2 16.5 11.4 14.0
DEFB1 NM_175703 15,258 100 9.8 15.5 24.3 15.7 11.0 14.4
KRTAP9-2 NM_001105020 1464 100 4.5 9.0 19.0 13.5 14.4 13.0
LOC100126815 NM_001111069 8197 100 20.1 6.8 8.7 9.3 7.8 8.2
DEFB5 NM_001130761 1783 100 9.7 14.2 22.4 14.2 8.9 12.7
GIMAP1 NM_001083677 7827 97.06 5.6 2.1 11.9 13.1 5.7 1.9
ISG12(A) NM_001038050 8891 89.07 3.6 12.3 6.6 13.6 4.9 2.9
LAP NM_203435 1789 100 10.1 15.2 21.2 17.0 10.1 12.5
TAP NM_174776 1819 100 7.4 13.3 18.7 15.2 8.3 11.6
BNBD10 NM_001115084 1677 100 10.4 15.5 21.3 18.4 11.1 13.8
PAG6 NM_176617 9330 100 7.2 16.2 17.5 18.0 12.4 11.3
BNBD10 NM_001115084 1678 100 11.4 15.0 20.3 18.3 11.0 12.9
TUBA1B NM_001114856 3600 100 17.3 8.5 11.6 14.6 9.9 7.6
CATHL4 NM_174827 1374 100 13.5 6.6 7.5 11.6 4.0 6.7
PAG21 NM_176630 9079 100 5.3 13.0 13.5 13.9 9.5 9.6
GIMAP7 NM_001080257 8418 100 6.5 3.6 11.0 10.1 6.1 2.7
GIMAP4 NM_001046060 7149 100 5.7 3.8 10.4 10.4 6.0 2.8
PAG15 NM_176624 8862 100 4.8 12.0 12.9 13.0 8.9 9.1
PAG1B NM_174411 9331 100 5.2 12.0 13.1 13.5 8.9 8.9

aParts of MGC134093 are mapped to Btau_4.0 multiple times.
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these genes influence Leishmaniasis lesion development and tis-

sue colonization of the parasite (Kulkarni et al. 2011). Additionally,

a study on the resistance of indicine cattle to Leishmaniasis found

antibody production with no onset of disease symptoms despite

contact with the sandfly carriers of L. donovani (Alam et al. 2011).

Two other beta-defensin-like molecules, Lingual (LAP) and Tra-

cheal (TAP) antimicrobial peptides, were found to have significant

CNV among individuals. Both the LAP and TAP peptides are acti-

vated in response to bacterial infection and are expressed in a wide

range of epithelial tissues, including mammary epithelial cells

(Isobe et al. 2009; Lopez-Meza et al. 2009). CN changes of these

alleles may influence host resistance to mastitis, which is an im-

portant economic trait in the breeding of dairy cattle. Additionally,

BINE was found to have the lowest CN (4.5) of the KRTAP9-2 gene,

a member of the keratin-associated protein (KAP) gene family.

Since cattle skin is the infestation site for ticks, collagens, keratins,

and their associated proteins have been suggested to play a role in

tick resistance. Wang and colleagues compared gene expression

patterns in response to tick infestation using tick-resistant and

-susceptible cattle skin samples (Wang et al. 2007). They reported

that, in susceptible skins, KRTAP9-2 showed more active transcrip-

tion before infestation and a more dramatic reduction in tran-

scription following infestation. If CN increases at the KRTAP9-2

locus influence the gene expression in vivo, this would be a sig-

nificant allele in the determination of tick resistance in cattle. The

Interferon tau (IFN-tau-c1) and pregnancy-associated glycoprotein

(PAG) loci were also highly variable in CN among individual ani-

mals. These gene families are involved in reproduction, with IFN-

tau-c1 influencing the maternal immune system’s recognition of

conceptus (Walsh et al. 2011) and the PAG genes serving as im-

portant secretory products of trophoblasts (Xie et al. 1997). Several

PAG paralogs were identified as highly variable in CN, including

three members of modern PAG groups (PAG15, PAG6, and PAG21)

(Telugu et al. 2009). Given the detected inter-individual variability,

the PAG family expansion may represent important differences in

fertility and reproduction among the surveyed individuals.

We also detected CN differences for several interesting im-

mune function-related genes in BINE as well as for several genes

related to lipid metabolism and transport in the taurine in-

dividuals. Previous studies have identified ULBP17 as a potential

Figure 3. Computational predictions and aCGH validations of segmental duplication copy number differences for six cattle genomes. Depth-of-
coverage tracks for DTTRACE, BINE, BTAN2, and BTHO are below a UCSC track for each investigated gene region. Regions colored in red on the plot
indicate excessive read depth (> mean + 4 3 STDEV), whereas gray regions indicate intermediate read depth (> mean + 3 3 STDEV). Normal read depth
values are colored green (mean 6 2 3 STDEV). Digital aCGH tracks show the log2 ratio of the copy number of each listed animal compared to DTTRACE,
with high values listed in green (>0.5); low values: red (<�0.5); and nominal values: gray (0.5 > x >�0.5). Whole-genome CGH array experiments, using
Dominette as a reference sample in all cases, are listed below the digital aCGH experiments. Color schemes for the aCGH plots are the same as for the digital
aCGH. Previously detected segmental duplications (SDs) are shown below the UCSC plot, if present in the region. (A) CNVs intersecting the BPIFA2A
(BSP30A) locus (chr13:63364661-63487495). A duplication of this region was predicted for all animals and was confirmed by whole-genome aCGH. (B) In
the ULBP17 locus (chr9:90209622-90499803), BINE was predicted to have a higher copy number than DTTRACE across the region from both read depth
and aCGH experiments. (C ) The promoter region of FABP2 (chr6:6701747-6888288) was a predicted duplication in Dominette (Hereford; beef breed),
BTAN2 (Angus; beef), and BINE (Nelore; dual-purpose) but not in BTHO (Holstein; milk).
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highly duplicated gene in cattle (Liu et al. 2010; Hou et al. 2011).

To our knowledge, this is the first study to assign estimates of CN to

the region on an individual basis (Fig. 3B). While all animals were

predicted to have a CNV overlapping the entire ULBP17 locus,

BINE had the highest predicted CN for the gene by a factor of two

(14 CN compared to ;6–7 CN for taurine breeds). Another in-

teresting CNV-gene intersection within the BINE individual was

found for the last exons of the aldehyde oxidase 1 (AOX1) gene

(Fig. 4A; Supplemental Fig. S8). This CNV is BINE-specific and was

confirmed by whole-genome array and qPCR analysis. Aldehyde

oxidase produces hydrogen peroxide and is often implicated in

drug metabolism and detoxification (Garattini et al. 2009).

Promising breed-differential CNVs associated with lipid trans-

port and metabolism were found in the taurine cattle, though

their potential impacts on beef and milk production remain elu-

sive. An interesting CNV was identified directly upstream of the

FABP2 locus in BTAN1, BTAN2, BTAN3, and Dominette simulation

(Fig. 3C). FABP2 encodes a small, fatty acid-binding protein

expressed in the proximal portion of the intestines and typically

binds bent-conformation fatty acids for transport across cell

membranes (Glatz and van der Vusse 1996). Animals with this

CNV include the taurine beef breeds (BTAN1, BTAN2, BTAN3:

Angus; Dominette: Hereford) and BINE (Nelore, also beef). The

human Ala54Thr allele of FABP2 has been shown to have lower

binding efficiency and a weaker promoter in vitro and is likely to

contribute to the development of insulin resistance and lower lipid

oxidation rates (Formanack and Baier 2004). We hypothesize that

CNVs upstream of FABP2 may be associated with feed efficiency

and lipid uptake, i.e., variation of the FABP2 locus could poten-

tially increase its expression in the intestines and, therefore, in-

crease fatty acid sequestration from feed in beef breeds.

Another lipid metabolism associated gene, apolipoprotein L,

3 (APOL3), was identified as a CNV in all animals (Fig. 4B; Sup-

plemental Fig. S9). APOL3 is expressed in all tissues in humans but

has a higher expression in the prostate and placenta and is in-

volved in the transport of cholesterol (Page et al. 2001). PANTHER

molecular function analysis (Thomas et al. 2003; Mi et al. 2010)

revealed an enrichment of lipid transporter activity proteins in

Figure 4. Cluster analysis of copy number variable genes in individual cattle. (A) Copy number values for each animal were plotted within the AOX1
locus (chr2:93376314-93484307) using the color scheme depicted in the legend. Heatmap boxes represent 1-kbp sliding, nonoverlapping windows in
the region. The dendrogram indicates the hierarchical ordering of animals based on a Pearson’s hierarchical clustering of the CN values within the region.
Within AOX1, the last exons are predicted to have a higher CN in BINE than in any other animal. This observation was confirmed using aCGH and qPCR. (B)
A heatmap of APOL3 reveals significantly higher CN in the three Angus animals (BTAN3, BTAN2, and BTAN1) for the first APOL3 transcript
(NM_001100297) than in the other breeds (chr5:80158821-80417344).
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BTAN1, BTAN2, BTAN3, BTHO, and Dominette (P-value < 5.0 3

10�3) compared to BINE, suggesting that the taurine breeds may

have a larger number of CNV-associated genes in lipid metabolism

and transport functions (see Supplemental Table S8). A network

analysis also revealed enrichment of genes involved in lipid me-

tabolism, supporting the PANTHER analysis results (see Supple-

mental Table S9).

Heatmap analyses

To provide an evolutionary perspective to our analyses, we created

heatmaps with Pearson’s correlation-based hierarchical clustering

using the CN values for regions within selected gene loci. AOX1

was a confirmed difference between BINE and the taurine cattle

and is particularly evident within a CN heatmap analysis (Fig. 4A).

Hierarchical clustering of animals based on CN content within the

AOX1 locus mirrored the evolutionary history of the studied cattle

breeds based on SNP genotyping (Decker et al. 2009), with BINE as

the clear outlier and the Angus individuals in a branching clade.

BTHO and Dominette were arranged sequentially next to Angus

individuals. A hierarchical clustering of CN values near the APOL3

loci again grouped the Angus animals and set BINE as the outlier;

however, the BTHO and DTTRACE lineages split into a separate

clade (Fig. 4B). Therefore, heatmap analyses of breed-specific CNVs

within the sequenced individuals generate cluster trees consistent

with the generally accepted breed history (Decker et al. 2009). We

predict that future sequence-based CNV studies using a larger

sample size and outgroups will find CNV selective sweeps within

the cattle breeds.

While both taurine and indicine individuals had CNVs that

intersected immune function-related genes, the distinct resistance

traits of zebu cattle (Berman 2011) lend great importance to the

study of Bos taurus indicus-specific immune function gene CNVs.

In that regard, we have identified several CNVs that may represent

variations between BINE and the remaining B. t. taurus animals.

ULBP17 and CATHL4 appear to have been recently duplicated in

BINE, suggesting that these gene expansions are in response to

increased viral and bacterial/helminthic pathogens, respectively. It

is also interesting to note the lower copy numbers of KRTAP9-2 and

other genes in BINE.

Overlap with SD and other genomic features

We next sought to categorize the overlap of CNVs with other ge-

nomic features, and we found significant overlap with the pre-

viously identified SD regions (Liu et al. 2009), human disease gene

orthologs, and cattle quantitative trait loci (QTL). We overlapped

CNVRs with SDs and found that 64.5% (35.9 Mbp) of CNVRs

overlapped with SDs. We tested the significance of this result by

generating 1000 random, simulated CNVRs and checked their

proximity to known SD regions (Supplemental Fig. S13). Only

3.0% of the simulated CNVs directly overlapped with SDs, com-

pared to the 46.7% of our observed CNVRs, suggesting a 15.6-fold

enrichment. Increasing the flanking regions of the SDs by 100 kbp

on both sides increased the number of overlapping CNVs (6.6%

simulated and 56.5% of observed CNVRs). We noted that the

tandem cluster pattern of cattle CNVs is a dramatic contrast when

compared to a preponderance of interspersed duplications of hu-

man CNVs. A strong correlation of CNVs and SDs in cattle further

supports the hypothesis that their formation mechanisms are

mainly due to nonallelic homologous recombination (NAHR) (Liu

et al. 2010). Several CNVRs that spanned QTL and human

orthologous Online Mendelian Inheritance in Man annotations

were identified. For instance, multiple CNVRs directly overlapped

with QTL for marbling (intramuscular fat content), carcass weight,

milk yield, and clinical mastitis (see Supplemental Table S10). Out

of 1265 total CNVRs, 211 (16.7%) overlapped genes associated

with human diseases, including intellectual disability, autism,

schizophrenia, and Crohn’s disease. Other overlapping QTL were

involved in many production and reproduction traits, such as

marbling score, calving ease, gestation length, pregnancy rate, and

inseminations per conception. Such regions warrant future study

to determine the extent that CNVs may contribute to QTL.

Conclusions and future directions

Our study presents the first description of sequenced-based CNV

within cattle genomes based on analyzing the genomic sequence

of six individuals. By considering all possible map locations for

a read in an efficient manner, we have been able to leverage the

dynamic range of NGS reads to accurately predict absolute copy

number of some of the most structurally complex regions of the

cattle genome for the first time. We identified a total of 1265

unique CNVRs in five Bos taurus taurus (three Angus, one Hereford,

and one Holstein) and one Bos taurus indicus (Nelore) individuals.

We found the patterns of the bovine SDs vary greatly, with only

40% of the duplications being shared. We also confirmed that the

most extreme CNV corresponds to genes embedded within SDs

(a 15.6-fold enrichment), and most of these differences involve

tandem changes in copy as opposed to duplicative transpositions

to new locations. These results provide a prelude to a 1000 Cattle

Genomes Project, which could lead to a deep catalog of cattle

CNVs by population-scale genome sequencing.

It is important to note that only one individual per each breed

was studied here except for the Angus breed. Any breed level in-

ferences need to be further tested with a larger sample size. While

our study included only one Bos taurus indicus individual, CNVs

identified in BINE reveal promising areas for future research into

indicine-specific CNVs of economic relevance. Given the sequence

divergence of BINE from the taurine animals, it is likely that some

CNV calls may have been missed and/or CN may have been

underestimated by mapping BINE’s reads to a taurine reference

genome. Notwithstanding, our observations that BINE shows the

greatest diversity in CNV (867 events) is consistent with it being

more distantly related. The creation of a separate reference as-

sembly for indicine cattle would facilitate resolving potential dif-

ferences in chromosome and gene structure that may have been

detected by our study.

We have detected 413 complete genes as copy number vari-

able among six cattle. We report breed-specific copy number dif-

ferences in a Nelore individual as excellent candidates for patho-

gen and parasite resistance (CATHL4, ULBP7, and KRTAP9-2). In

addition, copy number differences were detected for several lipid

metabolism and transport genes in the taurine individuals. This

study also provides new CNVs and CN estimates across the cattle

genome, enabling further research into highly duplicated gene

families and chromosome segments. Although these genes war-

rant future investigation, the ability to use NGS to accurately

predict their copy number provides the first step to make genotype

and phenotype correlations in these complex areas of the genome.

The next challenge will be further definition of the sequence

content and structural organization of these dynamic and impor-

tant regions of the cattle genome through population-level se-

quencing including trio (parents and offspring). The long-term
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goal is to identify CNV-associated economic traits and incorporate

them into animal genomic selection systems.

Methods

Sequencing and data acquisition
Based on the breed history and pedigree information, breeds and
individuals were selected as the representatives of the modern
cattle population. The chosen breeds and their origins and features
are summarized in Supplemental Table S1, including three Bos
taurus taurus breeds—Angus, Hereford, and Holstein—and one Bos
taurus indicus zebu breed—Nelore. Genomic DNA samples were
purified from semen or blood as described (Sonstegard et al. 2000).
All DNA samples were analyzed by spectrophotometry and agarose
gel electrophoresis.

Four taurine bulls (BTAN1, BTAN2, BTAN3, and BTHO) and
one indicine bull (BINE) were sequenced using both single- and
paired-end libraries on the Illumina GAIIx; however, most of the
NGS data from BTHO (;57%) and some of the data from BINE
(;24%) were in single-end read libraries. Since two of our animals
(Holstein and Hereford) were sequenced primarily as single se-
quence reads and we aimed to provide absolute genome-wide gene
copy number estimates in this study, we only used an RD detection
method similar to that previously described (Alkan et al. 2009). We
excluded sequence reads if they had a first base quality score of
two. When needed, we trimmed longer reads into nonoverlapping
36 bp to reduce the read length heterogeneity prior to sequence
alignment. For the sequenced Hereford cow, L1 Dominette 01449
(Dominette), we downloaded its Sanger sequence reads from the
NCBI Trace Archives (ftp://ftp-trace.ncbi.nlm.nih.gov/; DTTRACE;
also see Experimental Validation). After clipping identified vector
sequences, we trimmed the remaining Sanger read sequence into
nonoverlapping 36-bp fragments. As detected in previous simu-
lations of increasing coverage (Alkan et al. 2009; Waszak et al.
2010; Mills et al. 2011), a genome coverage greater than fourfold is
sufficient for the RD detections of CNVs.

Sequence alignment

Since most of genome annotations, including our earlier SD
analysis, were based on the Btau_4.0 assembly, we used that ge-
nome assembly to align sequence reads. Repeats were masked us-
ing RepeatMasker (Smit et al. 1996) (using the -s option and cattle
RepBase libraries), Tandem Repeats Finder (Benson 1999), and
WindowMasker (Morgulis et al. 2006). Masked regions were fur-
ther extended by 36 bp in both directions to reduce edge align-
ment effects (Sudmant et al. 2010). We then aligned ;5.3 billion
36-bp reads (;190 gigabases) to the masked Btau_4.0 using
mrsFAST (Hach et al. 2010), allowing up to two mismatches (i.e.,
34/36, ;94.4% sequence identity). Approximately 20% of the raw
reads were mapped to the unmasked portion of the genome
(;40%) with an average mapping count of 1.1 per read.

Read depth analysis

Aligned reads within sliding windows were then processed using
the WSSD pipeline as previously described (Alkan et al. 2009). This
approach uses three different sizes and types of windows to call
CNVs, refine their breakpoints, and determine CNs within a par-
ticular region. Reads were first counted in overlapping, sliding 5-
kbp windows of nonmasked, nongapped sequence. The GC bias of
the Illumina GAIIx platform was corrected using LOESS smoothing
toward a pattern of uniform coverage at all GC percentage bins as
previously described (Alkan et al. 2009). Assuming that most of the

genome is in a diploid state, the corrected RD mean and standard
deviation (STDEV) were calculated for each individual (Table 1).
Since five bulls were used, chrX was analyzed separately, and its RD
value was not used to determine thresholds for CNV calling.

CNV calls were initially made using conservative criteria and
were subsequently refined using higher resolution settings to de-
termine breakpoints. Initial calls were selected if six out of seven or
more sequential 5-kbp overlapping windows had RD values that
varied significantly from the average (duplications > mean + 4 3

STDEV; deletions < mean � 3 3 STDEV). Calls were then refined
using the GC% corrected RD means from 1-kbp overlapping win-
dows, albeit with a less stringent cutoff value (duplications > mean
+ 3 3 STDEV). Deletions were not refined in this fashion, given
their less stringent calling criteria. Only CNV calls >10 kbp in
length were kept in the final data set.

Finally, CN was estimated within 1-kbp nonoverlapping
windows across all placed chromosomes. These nonoverlapping
estimates of CN serve as a good approximation of CN within
nonmasked, nongapped regions of the genome.

DTTRACE simulation and artifact removal

Removal of short-read mapping artifacts was performed using
DTTRACE simulation as previously reported (Alkan et al. 2009). As
described above, clipped and trimmed 36-bp sequence fragments
from the Dominette trace data were aligned to the masked Btau_4.0
assembly using mrsFAST. SD intervals were predicted using the same
parameters used with the real Illumina WGS read sets. We then
compared these predictions to our published cattle duplications (Liu
et al. 2009) and classified any intervals (or subintervals) as short-read
mapping ‘‘artifacts’’ if they did not agree with the known duplica-
tion set. Such regions were subsequently removed from the SDs
predicted in all six cattle genomes. A total of 5.2 Mbp of autosomal
artifact regions was identified and removed from all CNV call sets.

Identification of cattle CNVs using aCGH

Whole-genome high-density CGH arrays manufactured by Nim-
blegen containing ;2,166,464 oligonucleotide probes (NCBI GEO
accession no. GPL11314) were designed and fabricated on a single
slide to provide an evenly distributed coverage on UMD3.0 with an
average interval of ;1.2 kbp between probes. Standard genomic
DNA labeling (Cy3 for samples and Cy5 for references), hybrid-
izations, array scanning, spatial correction, and data normaliza-
tion were performed as previously described (Liu et al. 2010). Since
we aligned to Btau_4.0, probe coordinates were migrated from
UMD3.0 to Btau_4.0 using liftOver (http://hgdownload.cse.ucsc.
edu/admin/exe/). Approximately 95% (2,066,074/2,166,464) of
the probes were successfully converted. Segmentation was per-
formed using the segMNT v1.1 algorithm in NimbleScan ver2.5.
We then tested a series of log2 ratio shifts (0.5 and 0.3) and affected
neighboring probe counts (3 and 5) to evaluate their impact on the
FDR in the self-self control hybridization. We chose the 0.5 log2

shift and three neighboring probe criteria (0.5_3) to call CNVs,
under which no false-positive calls were found in self-self hybrid-
ization experiments. Since all test samples were from bulls (one X
chromosome) and our reference was a cow (two X chromosomes),
we shifted the chrX baselines to negative values. High-confidence
calls were subsequently filtered and merged as previously described
(Liu et al. 2010). Because of the strict filtering criteria, a substantial
false-negative rate was expected.

qPCR validation

Primers were designed using a custom script that incorporated
Primer3 (http://frodo.wi.mit.edu) and Exonerate (http://www.
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ebi.ac.uk/;guy/exonerate/) to identify unique binding sites for
primer design. Only the following Primer3 settings were changed
from default values: The amplicon length was set to 150–250 bp,
and the GC clamp value was set to 2. Primer information is shown
in Supplemental Table S4. qPCR experiments were conducted us-
ing SYBR green chemistry in triplicate reactions, each with a re-
action volume of 25 ml, as previously described (Hou et al. 2011).
Reactions were amplified on a BioRad MyIQ or iQ5 thermocycler.
An intron-exon junction of BTF3 was chosen as a reference loca-
tion for all qPCR experiments. Analysis of resultant crossing cycle
thresholds (CT) was performed using the relative comparative CT

method. Calibrations of CT values were derived from amplification
of reference and test primers on Dominette genomic DNA. The CN
estimates for nonoverlapping 1-kbp windows in the DTTRACE data
set were used as Dominette’s expected copy numbers. The copy
number for each test region was calculated as 2(1+ddCT). Agreement
of the estimated test copy number with the expected reference copy
number was determined using simple heuristics that incorporated
the difference of the DTTRACE predicted CN from a value of two
into the estimated test copy number (Supplemental Figs. S10–S12).
To reduce batch and platform effects, plates were designed to am-
plify the reference gene and Dominette in each experiment.

FISH validation

FISH experiments were performed as previously described (Ventura
et al. 2003; Liu et al. 2009). Fifty-one cattle BAC clones (CHORI-
240) were selected with large ($20 kbp) copy number variable re-
gions. Both interphase and metaphase nuclei were prepared using
three cell lines from Coriell Cell Repositories (AG08501: Hereford
male smooth muscle cell; AG08423: Angus female fibroblast; and
AG10375: Holstein male fibroblast). A single BAC clone (297K6)
was used as a control in each FISH experiment. Differentially la-
beled test and control BAC clones were cohybridized to one slide.
To determine the copy number of the test BAC, we calculated the
ratio between the number of signals of the test BAC and the number
of signals of the control BAC. We counted 40–50 nuclei for each
slide and reported their averages. Metaphase nuclei were examined
to identify the chromosomal origins of FISH signals. More intense
FISH signals, which localized to a single site, were subsequently
examined by interphase nuclei. Interphase analyses were con-
trolled for replication by comparing cells at both G1 and G2 stages
of arrest.

Gene content

Gene content of cattle CNVRs was assessed using Ensembl
genes (ftp://ftp.ensembl.org/pub/current_fasta/bos_taurus/pep/),
the Glean consensus gene set, cattle RefSeq, and in silico mapped
human RefSeq (the UCSC Genome Browser website at http://
genome.ucsc.edu/). We obtained a total of 26,977 bovine peptides
from Ensembl. In addition, using the PANTHER classification
system, we tested the hypothesis that the PANTHER molecular
function, biological process, and pathway terms were under- or
overrepresented in CNVRs after Bonferroni correction (Liu et al.
2010). It is worth noting that a portion of the genes in the bovine
genome have not been annotated or have been annotated with the
designation ‘‘unknown function,’’ which may cause an un-
derestimation of the influence of CNVs on genes/genetic features.

Network identification

In silico mapped human RefSeq genes in CNVRs were analyzed
using Ingenuity Pathways Analysis (IPA) v9.0 (Ingenuity Systems)
as previously described (Hou et al. 2011). The accessions of unique
genes were imported into the software and subsequently mapped
to their corresponding annotations in the Ingenuity Pathways

Knowledge Base. The networks accommodating these unique
genes (also called focus molecules) were identified in compari-
son with the comprehensive global networks developed by IPA.
The molecule network was illustrated with an assigned rele-
vance score, the number of focus molecules, as well as the top
function of the networks. In the process of analysis, each net-
work was set to have a maximum of 35 molecules by default, and
only human was chosen for the species option (vs. human,
mouse, and rat). We used all for the confidence level, including
evidences of experimentally observed, predicted high or mod-
erate confidence. The identified networks were further pre-
sented as a network graph showing the biological relationship
among different molecules in which molecules were represented
as nodes, distinguished by shapes based on the functional cate-
gory, connected by distinct edges according to the interaction
between molecules.

Heatmap hierarchical cluster analysis

Heatmaps were generated using the estimated CN windows for
each animal. The gplots R package (http://cran.r-project.org/web/
packages/gplots/index.html) was used to graph the CN values and
generate hierarchical cluster dendrograms for each animal, using
Pearson’s correlation.

Cattle CNV distribution and association with segmental duplications and
other features

Association between CNVs and SDs was tested by 1000 random
simulations by selecting valid genomic segments from the length
distribution of 1265 CNVs and determining if the segments over-
lapped at least one SD. Additional genomic features were obtained
from public databases. Determination of the overlap between CNVRs
and genomic features was performed as previously described (Liu
et al. 2010).

Data access
All aCGH data have been submitted to the NCBI Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE31018.
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