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We investigate, through the density-matrix renormalization group and the Lanczos technique, the possibility
of a two-leg Kondo ladder presenting an incommensurate orbital order. Our results indicate staggered short-
range orbital order at half-filling. Away from half-filling our data are consistent with incommensurate quasi-
long-range orbital order. We also observed that an interaction between the localized spins enhances the rung-
rung current correlations.
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I. INTRODUCTION

In 1985, it was observed that the heavy fermion supercon-
ductor URu2Si2 presents a second-order phase transition at
17.5 K.1 This phase transition is characterized by sharp fea-
tures in the specific heat1 and several other thermodynamic
properties �see, e.g, Ref. 2 and references therein�. From the
Landau theory, it is expected an ordered moment, due to the
large specific heat jump �entropy� in this transition, to be
about m�0.5�B.3 However, the size of the staggered mo-
ment measured by neutron scattering measurements is m
�0.03�B.1 The order parameter associated with this phase
transition is, at the present moment, not established, and it is
a challenge to discover the nature of the hidden order behind
the transition.

Many theoretical groups have proposed several kinds of
hidden order.2,4–8 But until now, experiments were not able
to establish which is the correct one. Certainly, also from the
theoretical point of view, more studies are needed to clarify
the correct order associated with this mysterious phase tran-
sition. In this front, we present here a numerical study of a
microscopic model for heavy fermion systems.

In this work we focus on the order parameter proposed a
few years ago by Chandra and collaborators.2 They sug-
gested the existence of a hidden incommensurate orbital or-
der in the heavy fermion URu2Si2 below the second-order
phase transition. The orbital order phase is associated with
currents circulating around the plaquettes, as illustrated in
Fig. 1. In the case of URu2Si2, this currents produce a very
weak orbital moment of 0.02�B that explains the large en-
tropy loss.2

Very recently, neutron scattering measurements were un-
able to detect the orbital order in the heavy fermion
URu2Si2.9 Although the orbital order was not detected, it is
not possible yet to discard it as the hidden order due to the
resolution limitation of the experiments performed. Note that
the orbital order signature in the neutron scattering experi-
ments is expected to be 50 times weaker than the spin order
one at ambient pressure.10

Our goal in this work is to investigate the existence of an
incommensurate orbital order in the Kondo lattice model
�KLM�. This model is the simplest one believed to present
the physics of heavy fermions materials11 �see next section�.
Our approach will be numerical, through the density-matrix
renormalization group12 �DMRG� and the Lanczos
technique.13 These techniques are nonperturbative, however

limited by the system size. For this reason, we consider the
two-leg Kondo ladder �2-LKL�, which is the simplest geom-
etry able to present an orbital order.

The orbital order, also called the flux or orbital current
phase, has already been discussed in the context of the high-
temperature superconductors. The standard two-leg t-J lad-
der model presents a short-range orbital order,14 while an
extended version has long-range orbital order for some
parameters.15 A recent detailed discussion of the orbital order
in the context of a Hubbard model can be found in Ref. 16.

We close this section mentioning that a model very simi-
lar to the KLM was used to describe the magnetism of
URu2Si2. Sikkema and collaborators,17 through a mean-field
calculation, showed that the Ising-Kondo lattice model with
transverse field presents a weak ordered moment, similar to
the one observed in experiments. However, the Ising-KLM
model was not able to reproduce the large specific heat jump.

II. MODEL

In order to investigate the heavy fermion systems the
minimum ingredients that a microscopic model must con-
sider are two types of electrons: the conduction electrons in
the s, p, or d, orbital as well the electrons in the inner f
orbitals.18 In the literature there are two well-known standard
models that consider these two kind of electrons: the periodic
Anderson model �PAM� and the KLM.18 In an appropriate
parameter regime �mainly �i� the mobility of the f electrons
is very small, which is relevant for the heavy fermion sys-
tem, and �ii� that the Coulomb interaction of the electrons in
the f orbitals is very large� Schrieffer and Wolff18,19 showed
that the KLM can be derived from the PAM. We consider in
this work the KLM which has fewer degrees of freedom per
unit cell than the PAM and it is easier to explore numerically.
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FIG. 1. �Color online� A schematic representation of the two-leg
Kondo ladder. It also shows the circulating currents around the
plaquettes �in this example a staggered one�.
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The KLM incorporates an interaction between the local-
ized spins and the conduction electrons via an exchange in-
teraction J. To attack this model in two or three dimensions
by unbiased nonperturbative numerical approaches is an im-
possible task at the present moment. However, it is possible
to consider quasi-one-dimensional systems such as the N-leg
ladder model.

We consider the 2-LKL with 2�L sites defined by

HKM = − �
�i,j�,�

�ci,�
† cj,� + H.c.� + J�

j

S j · s j + JAF�
�i,j�

Si · S j ,

�1�

where cj� annihilates a conduction electron in site j with spin
projection �, S j is a localized spin 1

2 operator, s j

= 1
2���cj,�

† ���cj,� is the conduction electron spin density op-
erator, and ��� are Pauli matrices. Here �ij� denote nearest-
neighbor sites, J�0 �when the KLM is deduced from the
PAM one obtains J�0 �Ref. 18�� is the Kondo coupling
constant between the conduction electrons and the local mo-
ments, and the hopping amplitude was set to unity to fix the
energy scale.

We also consider an interaction between the localized
spins JAF; we choose JAF�0 since antiferromagnetism was
observed in URu2Si2.20 The same model above also repre-
sents the manganites when J�0.21 In this latter case, the
interaction between the localized spins seems to be important
to stabilize some phases.21 This is motivation to also con-
sider this interaction. Note that several others terms in the
Hamiltonian could also be included, like the Coulomb inter-
action of the electrons in the conduction band, extra elec-
trons hopping, etc. However, at the present moment, there is
no evidence indicating that such extra terms are relevant to
the low-energy physics of the heavy fermion systems. Up to
now, it has been well established that J is essential to de-
scribe the magnetism observed in the heavy fermion systems.
At small values of J, an antiferromagnetic long-range order
�LRO� is expected due the Ruderman-Kittel-Kasuya-Yosida
interaction, whereas for large J a paramagnetic phase
emerges. Doniach22 was the first to point out the existence of
a quantum critical point �QCP� due the competition between
these two phases.

Unlike other models, such as the t-J model, much less is
known about the Kondo lattice model, even in the one-
dimensional version, where the ground state of the Kondo
chain is quite well known18 �see also Ref. 23�. New phases
have been reported recently, such as a ferromagnetic phase24

inserted into the paramagnetic phase as well as a dimerized
phase at quarter-filling.25 The latter has been questioned re-
cently by Hotta and Shibata.26 Those authors claim that the
dimerized phase is an artifact of the open boundary condi-
tions. Indeed, the boundary condition is very important, as
well as the number of sites considered. In Ref. 26 the authors
observed, mainly, that with an odd number the sites the
dimer state does not exist. The parity of the number of sites
is thus very relevant and an odd number destroys the
dimerization.27

In quasi-one-dimensional systems, such as the N-leg lad-
ders, very few nonperturbative studies have been reported.

Recently, quantum Monte Carlo28 �QMC� and DMRG29 cal-
culations of the half-filled Kondo lattice model in small clus-
ters found the existence of a QCP at J�1.45, in agreement
with previous approximate approaches30,31 �see also Ref. 32�.
Note that the QMC calculations were feasible only at half-
filling, where the famous sign problem is absent. Moreover,
the DMRG results of the N-LKL at half-filling show that the
spin and charge gaps are nonzero for any number of legs and
Kondo coupling J. These results are quite different from the
well known N-leg Heisenberg ladders where the spin gap is
zero for an even number of legs.33

The phase diagram of the 2-LKL has also been explored
numerically.34 In this case, a ferromagnetic phase was ob-
served only for small densities, very distinctively from the
phase diagram of the one-dimensional KLM, where the fer-
romagnetism is present at all electronic densities for large
values of J. However, it is similar to the mean-field phase
diagram of the tridimensional KLM.35 In this sense, the
2-LKL presents a better signature of the phases appearing in
real systems than its one-dimensional version. It is interest-
ing that dimerization was also observed in the 2-LKL34 at
conduction electron densities n=1/4 and n=1/2. As in the
one-dimensional version, the RKKY interaction explains
these unusual spin structures. In fact, in some real heavy
fermion systems some unusual spin order structures have in-
deed been observed.36

Here, we consider electronic densities n larger than 0.4,
where a paramagnetic phase has been observed.34 In particu-
lar, we focus on the electronic densities n=1 and n=0.8. We
choose these densities since the magnitude of the rung-rung
current correlation is larger for larger electronic densities.
We investigate the model with the DMRG technique under
open boundary conditions and use the finite-size algorithm
for sizes up to 2�L=120, keeping up to m=1600 states per
block in the final sweep. The discarded weight was typically
about 10−5–10−7 in the final sweep. We also cross-checked
our results with the Lanczos technique for small systems.

III. RESULTS

Before presenting our results, we briefly discuss the order
parameter associated with a circulating current phase. Such a
phase breaks rotational and translational as well as time-
reversal symmetries. The appropriated order parameter to de-
tect this phase is the current between two nearest-neighbor

sites, i.e., �Ĵl,j�, where the current operator between two near-
est neighbors i and j is given by

Ĵl,j = i�
�

�cl,�
† cj,� − cj,�

† cl,�� ,

Strictly speaking, a spontaneous symmetry breaking only

appears in the thermodynamic limit. Only in this limit �Ĵl,j�
�0 in the ordered phase. The signature of a spontaneous
symmetry breaking appears in the two-point correlation
function of the operator that measures the symmetry. We
utilize this fact to infer the orbital order. If a continuous
symmetry is broken, no long-range order exist at finite tem-
perature in one and two dimensions, as stated by the
Mermin-Wagner-Hohenberg theorem.37 At zero temperature
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true long-range order is still possible in two dimensions,
while in one dimension only a quasi-long-range order can
manifest; i.e., the two-point correlation function decay is al-
gebraic. However, if the translational symmetry �a discrete
symmetry� is broken, even in one dimension a true long-
range order may exist �a famous example is the dimerized
phase of the Majumdar-Ghosh model38–40�. Since the trans-
lational symmetry is broken in the orbital phase, true long-
range order may occurs in the ground state of the 2-LKL.

In order to observe any trace of orbital order in the
ground-state wave function of the 2-LKL, we measure the
rung-rung current correlations defined as

C�l,k� = �Ĵ�l�Ĵ�k�� ,

where Ĵ�l� is the rung current operator for the lth rung given
by

Ĵ�l� = i�
�

�cl2,�
† cl1,� − cl1,�

† cl2,�� �2�

and cl	,� annihilates a conduction electron on rung l and leg
	=1,2 with spins �= ↑ ,↓. Since we work with open bound-
ary conditions, it is convenient to define an averaged rung-
rung current correlation in order to minimize boundary ef-
fects. We have defined the averaged rung-rung current
correlation as

C�l� =
1

M
�

	i−k	=l

�Ĵ�i�Ĵ�k�� , �3�

where M is the number of site pairs �i ,k� satisfying l= 	i
−k	. Typically, M in our calculation varies from 3 to 10.

There is true long-range orbital order if liml→
C�l��0.
Through this criterion, we can infer the existence of the or-
bital order by measuring C�l� at large distances. If C�l� has
an exponential decay, the linear-log plot shows a linear de-
cay. On the other hand, if C�l� has an power law decay, the
log-log plot presents a linear decay.

We also measure the cosine transform of C�l�, i.e.,

N�q� = �
l=1

L

C�l�cos�lq� ,

in order to infer about periodicity of the oscillatory part of
C�l�.

In the next two subsections we investigate these correla-
tions for the 2-LKL at half-filling and close to half-filing. We
did not find any evidence of long-range orbital order in the
ground state of the 2-LKL. Our results show that the rung-
rung current correlation has an exponential decay at half-
filling. Close to half-filling our results indicate an incommen-
surate quasi-long range orbital order.

A. Half-filling

We start presenting some results for the conduction elec-
tron density n=1. We observed, in this case, that the aver-
aged rung-rung current correlation behaves as

C�l� = a0�− 1�l exp�− l/�� �4�

for all values of J and JAF explored in this work. In Fig. 2�a�,
we present a typical example of the magnitude of C�l� at
half-filling for a system size L=30. As we see, our results
indicate strongly that C�l� has an exponential decay due to
the linear decay in the linear-log plot. The inset in Fig. 2�a�
also shows that C�l� is staggered. The solid line in Fig. 2�a�
corresponds to a fit of Eq. �4� with a0=0.06 and a decay
length �=1.43.41 We performed a least-squares fitting, result-
ing in a root mean square �rms� of 0.0018 and a correlation
coefficient of 0.996. We found that C�l� has a very small
dependence on the number m of states retained in the trun-
cation process for J�0.8, as can be observed in Fig. 2�a�. It
is very hard to get accurate results for J�0.8, however, even
for small values of J. We believe we have captured the cor-
rect qualitative behavior. Nevertheless, we present most of
our results for J�0.8, where the results are more accurate.
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FIG. 2. �Color online� �a� The linear-log plot of 	C�l�	 for two
distinct values of m with L=30 at half-filling. The solid line in �a�
corresponds to a fit of Eq. �4� with �=1.43 and a0=0.06; the rms
percent error is 0.18. Inset: C�l� vs distance with m=1000. Only a
few sites are presented. The couplings are J=0.8 and JAF=0. �b�
The cosine transform N�q� of C�l� presented in Fig. 1�a� with m
=1000. �c� The linear-log plot of 	C�l�	 for two distinct size, both
with m=1000. The couplings are J=0.35 and JAF=0.
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The signature of the sign alternation is observed through
the cosine transform of C�l�. In Fig. 2�b�, we show the cosine
transform of C�l� presented in Fig. 2�a� with m=1000.
Clearly, we observe a peak at q=� due the sign alternation
of C�l�. Note that the finite-size effects are small, as can be
seen in Fig. 2�c�. For this reason, we restrict most of our
calculations to system size 2�30 in order to save computa-
tional time.

Our results indicate that for small J, where the RKKY is
expected to be dominant, the rung-rung current correlations
have a larger correlation length as we see in Fig. 3�a�. On the
other hand, for large J, which favors formation of singles, the
correlation length is smaller. This result is expected, since for
J→
 the rung-rung current correlations must go to zero.

The Hamiltonian shown in Eq. �1� with JAF=0 does not
present a long-range orbital order at half-filling, as we have
observed. Since JAF seems to be important to stabilize some
phases for J�0,21 it may be possible that it also stabilizes
the orbital phase for J�0. For these reasons, we also inves-
tigate the effect of JAF in the ground state of the 2-LKL. As
we see in Fig. 3�b�, for small values of J, JAF does not affect
significantly C�l�. On the other hand, for larger J as shown in

Fig. 3�c�, JAF clearly enhances the correlation length. Al-
though JAF enhanced C�l�, at half-filling only short-range
orbital order is observed for several parameters investigated.

At half-filling, for all parameters studied, N�q� always
presents a peak at q=�. In Fig. 4, we present this peak in-
tensity for J=0.8 and J=1.8 as a function of JAF. As we see,
the peak intensity increases with JAF and saturates for large
JAF around �0.45.

Our main conclusion, for the half-filling case, is the ab-
sence of long-range orbital order. Note that it may be pos-
sible that the inclusion of the Coulomb interaction between
the electrons in the conduction band leads the system into a
phase with long-range orbital order, as occurs in an extend
t-J model.15 This is under investigation at the present mo-
ment by one of the authors.

B. Close to half-filling

Away from half-filling the DMRG calculation of C�l� is
less stable; for this reason, we consider system sizes smaller
than 2�40 and keep up to m=1600 states in the truncation
process. Although we obtained results for a couple of densi-
ties away from half-filling, we focus on the density n=0.8
where the magnitude of C�l� is larger. For small densities it
is very hard to get accurate results since the current intensity
is very small. In Fig. 5�a�, we present the log-log plot of
	C�l�	 at conduction electron density n=0.8 for a system size
2�30 with J=0.8 and JAF=1.0 for two different values of m.
Since in the log-log plot we obtain a linear decay �see the
solid line in this figure�, C�l� must have a power law decay.
If we use a linear-log plot, our data do not have a linear
decay. As can be seen from Fig. 5, it is very hard to get good
accuracy even working with m=1600 states. Although we
were not able to obtain the current-current correlations at
large distances with a high accuracy, we believe we have
captured the correct behavior, i.e., a power law decay. The
large oscillations appearing in Fig. 5 are due to the fact that
some values of C�l� are very close to zero.

Since our data of C�l� in the log-log plot strongly suggest
a power law decay close to half-filling �note that for the
half-filling case the decay is exponential�, we tried to fit C�l�
with the function

Cfit�l� = a0
cos�n�l�

l�1
+ a1

cos�2n�l�
l�2

, �5�

where n=0.8 is the density. The dashed curve in Fig. 5�a�
corresponds to a fitting of our data with m=1600. We were
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FIG. 3. �Color online� The linear-log plot of 	C�l�	 for a set of
representative values of J and JAF for L=30 at half-filling. �a� 	C�l�	
for JAF=0 and J=0.35, 0.8 and 1.8. �b� 	C�l�	 for J=0.35 and some
values of JAF. �c� Same as �b� but for J=1.8.
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FIG. 4. �Color online� The peak intensity of N�q� at q=� for
J=0.8 and J=1.8 as a function of JAF for a system size L=30 at
half-filling.
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not able to reproduce C�l� precisely; however, the general
behavior is quite well described.

Note also that finite-size effects are larger away from half-
filing, as we can see by comparing Figs. 5�b� and 2�c�. It is
important to mention that we observed, away from half-
filling and in very few distances l, that the sign of the aver-
aged correlation C�l= 	j−k	� does not has the same sign of
C�j ,k� for some pairs of �j ,k� satisfying l= 	j−k	. This does
not seem to be due to the number of states kept in the trun-
cation process since we also obtained the same effect for
small clusters with exact diagonalization.

In Fig. 6 we present N�q� for a representative set of pa-
rameters at conduction electron density n=0.8. As shown in
Fig. 6, there is no peak at q=�, signaling an absence of
staggered rung-rung current correlations. For the conduction

electron density n=0.8 we observed a cusp at q=n�. These
results indicate that close to half-filling the 2-LKL presents
an incommensurate quasi-long-range orbital order.

IV. CONCLUSION

In this paper, we have investigated the possibility of a
two-leg Kondo ladder presenting an orbital order. In particu-
lar, we focus on the densities n=1 and n=0.8. For the several
couplings investigated we did not find any trace of true long-
range orbital order, which would be relevant to explain the
large entropy loss observed in the second-order phase transi-
tion of URu2Si2. Our data indicate that the half-filling case
presents a staggered short-range orbital order, while close to
half-filling our results are consistent with an incommensurate
quasi-long-range orbital order. Although we did not find evi-
dence of a long-range orbital order in the ground state of the
two-leg Kondo ladder, we cannot yet completely discard this
possibility. It may occur that an extended version of the
Kondo lattice model presents the long-range orbital order. So
we may conclude that either the orbital phase does not exist
and is not the origin of the mysterious phase transition ob-
served in the the heavy fermion URu2Si2 or the standard
Kondo lattice model is not able to reproduce the correct or-
der observed in the experiments.
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