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We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with
arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.
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It has been more than 25 years since it was first realized
by Unruh [1] that the same arguments that lead to Hawking
radiation also predict the emission of a thermal spectrum of
phonons from sonic holes. This new result has opened a
whole research branch, which has been significantly de-
veloped since then (see, e.g., Ref. [2] and references
therein). In addition, the computation of black hole absorp-
tion cross sections has attracted much attention since the
seventies (see, e.g., Refs. [3,4]) up to now (see, e.g.,
Refs. [5,6]). For instance, it was only very recently that
the absorption cross section for the electromagnetic field in
the spacetime of a Schwarzschild black hole has been
computed for arbitrary frequencies [7]. Here, we compute
numerically the absorption cross section for sound waves
with arbitrary frequencies in the spacetime of a canonical
acoustic hole [8].

The canonical acoustic hole is described by the line
element

 ds2
a � f�r�dt2 � �f�r���1dr2 � r2�d�2 � sin2�d�2�;

(1)

where f�r� � 1� r4
H=r

4. This is a spherically symmetric
static spacetime experienced by sound waves in a perfect
irrotational barotropic fluid with constant energy density
and sound velocity. Here rH is the radius corresponding to
the sonic event horizon, i.e. the boundary of the no-return
region for phonons, where the radial velocity of the inward
fluid equals the sound velocity.

The Klein-Gordon equation, �� � 0, can be written in
the spacetime (1) as
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~r2� � 0: (2)

Here ~r2 � ~�ij ~ri ~rj, where i and j denote angular varia-
bles in the unit 2-sphere S2 with metric ~�ij and inverse
metric ~�ij [with signature (��)].

The positive-frequency solutions of Eq. (2) can be cast
in the form

 u!lm � � !l�r�=r�Ylm��;��e
�i!t (3)

with Ylm��;�� being the scalar spherical harmonics and l
and m being the corresponding angular momentum quan-
tum numbers. In the present case, the functions  !l�r�
satisfy the differential equation

 f
d
dr

�
f
d !l
dr

�
� �!2 � Va�r�� !l � 0 (4)

with the following scattering potential:

 Va�r� � f�4r4
H=r

6 � l�l� 1�=r2�: (5)

We plot Va�r� in Fig. 1, where we can see that it goes to
zero as r! rH and r! 1. In terms of the Wheeler-type
coordinate x � x�r� defined by d=dx � fd=dr, Eq. (4) can
be rewritten as

 d2 !l=dx
2 � �!2 � Va�x�� !l � 0:

In order to orthonormalize the solutions of this differ-
ential equation, we use the Klein-Gordon inner product [9]
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FIG. 1. The scattering potential Va [defined in Eq. (5)] is
plotted for different values of the angular momentum l. We
can see that it vanishes at the canonical acoustic hole horizon
(r � rH). As r! 1, Va falls as 1=r6 for l � 0 and as 1=r2 for
l > 0.
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with the conserved current defined as

 J���; � � i��	�r� � � �r��
	� �: (6)

Here d��3� �
�������������
���3�

q
d3x is the invariant volume element

of a Cauchy surface ��3�, n� is the future pointing unit

vector orthogonal to ��3�, and ��3� is the determinant of the
metric restricted to ��3�. We impose that

 �KG�u!lm; u!0l0m0 � � �ll0�mm0��!�!
0�;

�KG�u	!lm; u!0l0m0 � � 0:

The asymptotic forms of the modes incoming from the
past infinity can be written as

  !l�r� 

�
A!lT!le�i!x �r 
 rH�;
A!l!x���i�

l�1h�1�	l �!x� � i
l�1R!lh

1
l �!x�� �r� rH�:

(7)

Here h�1�l �x� are the spherical Bessel functions of the third
kind [10], A!l are normalization constants, jR!lj2 and
jT!lj2 are the reflexion and transmission coefficients, re-
spectively, satisfying the usual probability conservation
equation jR!lj2 � jT!lj2 � 1. (For a study of the reflection
coefficient for superresonant scattering of acoustic distur-
bances from a rotating acoustic hole in the low-frequency
regime see [11].) Note that

 h�1�l �x� � jl�x� � inl�x� 
 ��i�
�l�1�eix=x

�jxj � l�l� 1�=2�:

Hence, we obtain from Eq. (7) that

  !l�r� 
 A!l�e�i!x � R!lei!x� (8)

in the region !x� l�l� 1�=2.
The absorption cross section is given by

 � � �F =JI; (9)

where F is the total absorbed wave flux and JI is the
incident current density.

Since the spacetime of the canonical acoustic hole is
asymptotically flat, we consider an incident plane wave
propagating in the z direction,

 v�x�� � Cei!�z�t�; (10)

where C is a normalization constant. The incident current
density associated with the plane wave (10) is

 JI � 2jCj2!: (11)

In order to find the flux of the absorbed wave, we first
expand the plane wave (10) in terms of Legendre functions
as [12]

 v�x�� � C
X1
l�0

il�2l� 1�jl�!r�Pl�cos��e�i!t;

where Pl�cos�� are the Legendre polynomials and jl�!r�
are the spherical Bessel functions of the first kind [10]. By
using the asymptotic form of jl�!r�:

 jl�x� 

1

x
sin
�
x�

l�
2

�
�
il�1

2x
�e�ix � ��1�leix�;

which is valid for x� l�l� 1�=2, we can write the plane
wave (10) asymptotically as

 v�x�� 
 iC
X1
l�0

��1�l�2l� 1�

2!
�e�i!r � ��1�lei!r�

r

� Pl�cos��e�i!t:

In the case of the canonical acoustic hole the asymptotic
form of the incident plane wave will be given by

 va�x
�� 
 iC

X1
l�0

��1�l�2l� 1�

2!
�e�i!r � R!lei!r�

r

� Pl�cos��e�i!t: (12)

Equation (12) can indeed be obtained, up to a global multi-
plicative constant, by substituting Eq. (8) in Eq. (3), for the
case of an incident wave in the z direction.

The flux associated with the mode (8) is

 F �
I
r!1

d�r2Jr�va; va�:

Using Eqs. (6) and (12), and that

 

Z �

0
Pl�cos��Pl0 �cos�� sin�d� �

2

2l� 1
�ll0 ;

we obtain

 F � �
2�jCj2

!

X1
l�0

�2l� 1��1� jR!lj2�: (13)

Now, from Eqs. (9), (11), and (13), we obtain the total
absorption cross section for the canonical acoustic hole:

 �a �
X1
l�0

��l�a �
�

!2

X1
l�0

�2l� 1�jT!lj2: (14)

In Fig. 2 we plot our results for the partial absorption
cross section ��l�a for l � 0 up to l � 6. The numerical
method used is the same as described in Ref. [13]. We see
that the s wave (l � 0) contribution is responsible for the
nonvanishing cross section in the zero-energy limit.
Moreover, for each value of l > 0, the corresponding par-
tial absorption cross section starts from zero, reaches a
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maximum value ��l�max
a and decreases asymptotically. We

also see that the larger the value of l is (i) the smaller is the
corresponding value of ��l�max

a and (ii) the larger is the
value of ! associated with ��l�max

a . This is all compatible
with the fact that the scattering potential Va is larger for
larger values of l (see Fig. 1).

In Fig. 3 we plot our results for the total absorption cross
section �a. Our numerical result for �a is in excellent
agreement with the expected values both in the low- and
high-frequency limits. There is a general result which
guarantees that the absorption cross section of minimally
coupled massless scalar fields for spherically symmetric
black holes (in asymptotically flat spacetimes) equals the
area of the black hole event horizon in the low-frequency
regime [14]. Therefore, the absorption cross section in the
zero-frequency limit should be

 �lfa � 4�r2
H: (15)

In the opposite limit, following Ref. [15] it can be easily
shown that in the high-frequency (geometrical-optics) re-
gime the absorption cross section is [16]

 �hfa � �3
���
3
p
=2��r2

H: (16)

Both Eqs. (15) and (16) can be explicitly verified in Fig. 3.
It is also interesting to note that the absorption cross

section for the canonical acoustic hole is smaller in the
high-frequency regime than in the low-frequency one. In
the case of a 4-dimensional Schwarzschild black hole we
have just the opposite behavior for the massless scalar and
electromagnetic fields (see Refs. [4,7], respectively). The
total absorption cross section has local maxima corre-
sponding to the maximum of each partial absorption cross
section.

In summary we have numerically computed the absorp-
tion cross section of sound waves for a canonical acoustic
hole for every frequency. Our results are in complete
agreement with the expected low- and high-frequency
limits.
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FIG. 3. The total absorption cross section �a is plotted as a
function of the wave frequency !. The summation in Eq. (14) is
performed up to l � 6. It starts equal to the black hole horizon
area and falls approaching �hfa (see dashed line), in complete
agreement with the results obtained in the low- and high-
frequency approximations.
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FIG. 2. The partial absorption cross section ��l�a is plotted as a
function of the wave frequency !, for l � 0 up to l � 6. Note
that the larger l is, the smaller is the corresponding maximum of
��l�a .
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