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Simulations of Incompressible Fluid 
Flows by a Least Squares Finite 
Element Method 
In this work simulations of incompressible fluid flows have been done by a Least Squares 
Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-
stress formulations, named u-p-ω and u-p-τ formulations respectively. These formulations 
are preferred because the resulting equations are partial differential equations of first 
order, which is convenient for implementation by LSFEM. The main purposes of this work 
are the numerical computation of laminar, transitional and turbulent fluid flows through 
the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-
Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model 
of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark 
problems are solved for validate the numerical code and the preliminary results are 
presented and compared with available results from the literature. 
Keywords: Navier-Stokes equations, large eddy simulation, least-squares finite element, 
fluid flows 
 
 
 

Introduction 
1The finite element method (FEM) is one of the most used 

techniques for numerical solution of partial differential equations in 
engineering and applied sciences. The mathematical foundation of 
the finite element method can be based on the weight residual 
method (WRM), Finlayson, (1972), which originate different 
formulations according to the weight functions used. The main 
versions of the FEM are the Bubnov-Galerkin, Petrov-Galerkin, 
Collocation, Sub-domain and Least-Squares formulations. Another 
classification underlining the variational principle considers three 
major groups: the Rayleigh-Ritz method, The Galerkin Method and 
the Least-squares method. For convection dominated problems the 
Galerkin-based methods present often spurious oscillation of the 
solutions (Jiang, 1998). In recent works, Romão et al. (2003) and 
Romão (2004) applied different versions of the finite element 
method for convection-diffusion problems. Several authors have 
investigated the LSFEM for solution of incompressible and 
compressible fluid flows. Jiang (1998) presented a list of such 
works. Winterscheidt & Surana (1994) also have applied p-versions 
of least-squares finite element method for fluid flows. The least 
squares have also been used for stabilization of the Galerkin finite 
element method. Jansen (1999) presented a work for computing 
turbulent flows in unstructured-grids. In the present work, the least-
squares finite element method (LSFEM), Jiang (1998), has been 
implemented for simulation of laminar, transitional and turbulent 
fluid flows using velocity-pressure-vorticity, u-p-ω and u-p-τ 
formulations which result in a first-order partial differential system 
of equations. The filtered Navier-Stokes equations with the 
Smagorinsky model of eddy viscosity are solved for simulations of 
the lid-driven cavity flow and the backward-facing step flow as 
benchmark problems. Which is of known of the authors the 
large-eddy simulation (LES) was implemented with the velocity-
pressure-stress, u-p-τ, formulation of Navier-Stokes equations by 
Ding & Tsang (2001). We didn’t find in the literature that we had 
access the u-p-ω formulation with LES for fluid flow simulation in 
the way presented here. Although, turbulence is a 3D phenomenon, 
in this preliminary work, only 2D simulations have been considered 
to understand the behavior of the LSFEM in the proposed 
formulations and due to the computational capacity available. 
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Jiang (1998) enumerated several features of the LSFEM, among 
them: universality, efficiency, robustness, optimality, concurrent 
simulation of multiple physics and general-purpose coding. Jiang 
also claimed that no upwind technique is necessary for numerical 
calculation of convection dominated problems, because the resulting 
matrix systems of equations from the LSFEM application are always 
symmetrical and positive-definite. For Galerkin type solutions of 
fluid dynamics, upwind generally has to be applied for stability.  

In this work, the lid-driven cavity and the backward-facing step 
flows have been solved with linear and quadratic quadrilateral 
elements for investigation of different interpolation functions, and 
some values of the Smagorinsky constant have been also tried. The 
refine of the meshes has been investigated, too. The results are 
compared with results from other authors. Beyond of this 
introduction, the paper covers some aspects of formulation of the 
proposed model, presents some results, discussions, conclusions and 
references. 

Nomenclature 

k  = turbulent kinetic energy 
L  = length of reference 
p  = pressure 

2
0u
ppP o

ρ

−
=  = dimensionless pressure 

Re  = Reynolds number 
t  = Time 
u  = component of dimensional velocity in the ix - axis 

direction 
iu  = component of velocity in the ix - axis direction 

0u  = reference velocity 

ouuU = - dimensionless component of velocity in the X-axis 
direction 

iU  = dimensionless component of velocity in the iX -axis 
direction 

v  = component of dimensional velocity in the y -axis direction 

0/ uvV = - dimensionless component of velocity in the Y -axis 
direction 

LxX =  = dimensionless X coordinate 

ix  = ith- axis in Cartesian coordinates 
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LxX ii =  = ith dimensionless coordinate 
LyY =  = dimensionless Y coordinate 

Greek Symbols 
α  = index that indicates local node number inside an element 

ijδ  = Krönecker delta 

θ  = time discretization parameter 
µ  = dynamic viscosity 

tµ  = dynamic eddy viscosity 
ρ  = density 
φ  = any scalar or vector variable 
Φ  = nodal variable in elements 
ψ  = stream function 

jω  = vorticity around the j-axis 

Superscripts 
n = variable evaluated at time t 
n+1 = variable evaluated at time tt ∆+  
Subscripts 
i = direction of the axis in the system of coordinates or 

component 
j = direction of the axis in the system of coordinates or 

component 
k = direction of the axis in the system of coordinates or 

component 

Formulation  

Governing Equations 

The Navier-Stokes equations for incompressible transient fluid 
flows in vector notation can be written as follow: 

 

fu uuu
=∇++⎟

⎠
⎞

⎜
⎝
⎛ •+
∂
∂ 2µρ p

t
∇∇  (1) 

 
0=•u∇  (2) 

 
where ρ  is the fluid density, u  is the velocity vector with 
components iu , p is the pressure, µ  is the dynamic viscosity and 
f  is the body forces vector with components if .  

The Equation (1) is a second order partial differential equation 
and this is not the most appropriated form for solution by LSFEM. 
The LSFEM generally is applied for first order differential 
equations. However, second order partial differential can be 
transformed in first order system by using auxiliary variables. This 
is another advantage of the least-squares method: the direct 
calculation of secondary variables that have physical interpretation 
such as heat and mass fluxes, stresses and vorticity. According to 
Brodkey (1967), using vectorial identities: 

uuuuuu ××−•=• ∇∇∇ 2/)(  and )()(2 uuu ××−•=∇ ∇∇∇∇ , 
the Navier-Stokes can be rewritten as, now in tensorial notation 
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For application of the large-eddy simulation methodology, the 

equations must be filtered for separation of the large scales from the 
sub-grid scales. So, the large scales are simulated by solution of the 
equations for the filtered variables after modeling the sub-grid scales 
terms that come from the filter process. Chidambaram (1998) 
presented different filter functions for LES. The filtered Eq. (3)–(5) 
are of the form  
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The differences between Eqs. (3) and (6) are the additional term 

to the pressure and the fourth term of left hand side of Eq. (6) that 
originated from the convection term of the Navier-Stokes equations. 
These terms correspond to the turbulent kinetic energy and the 
vorticity of the sub-grid scales respectively. The purpose of this 
work is the modeling of the fourth term, by analogy with the 
modeling of the sub-grid scale stresses in the conventional 
formulation of the Navier-Stokes equations. So, it is defined the 
sub-grid scale effects and the turbulent pressure as 
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Now, after modeling of the sub-grid scale effects the 

dimensionless form of the Eqs. (6)-(8) is as follow  
 

i
j

k
tijk

i

t

j

i
j

i S
XReX

P
X
UU

t
U

=
∂
Ω∂

⎟
⎠

⎞
⎜
⎝

⎛ ν+ε+
∂
∂

+
∂
∂

+
∂
∂ 1  ; (10) 

 

0=
∂
∂

i

i
X
U  ; (11) 

 

j

k
ijki X

U
∂
∂

ε=Ω  . (12) 

 
The dimensionless variables in Eqs. (10)-(12) are defined in 

function of the characteristic parameters of length L  and velocity 
0u  as  
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The eddy viscosity is calculated according to the Smagorinsky 

model in the form 
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where sC  is the constant of Smagorinsky and ∆  is the filter width 

defined as: ( ) 3/1zyx ∆∆∆=∆  for 3D or ( ) 2/1yx∆∆=∆  for 2D 
geometry. 

First Order System and Interpolation of Variables 

The first order system (10)-(12) for 2D problems, after 
discretizing the transient term can be written in a compact form as 

 
nn fL =φ +1  ; (14) 

 

where [ ]T,P,V,U Ω=φ is the vector of unknown variables, 

[ ]Tvu ,,S,Sf 00=  is the vector of independent terms and now L is a 
matrix differential operator defined as 
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The source terms uS  and vS  are:  
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and 10 ≤≤ θ  is a parameter of time discretization. 

 
The variable φ  in finite element methods, for equal order 

interpolation of all degrees of freedom, can be interpolated inside an 
element in the form: 
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where jN  is the interpolation function associated to the node j of 

the element and Ne  is the number of nodes. It has been pointed out 
that the LSFEM is not subjected to LBB (Ladyzhenskaya-Babuska-
Brezzi) condition like the Galerkin-based method, Jiang (1998), 
Winterscheidt & Surana (1994). 

 
 

Least-Squares Finite Element Method  

Substituting Eq. (18) in Eq. (14) a residual vector can be defined 
inside an element as 

 

nn fLNR −Φ= +1 . (19) 
 
The application of LSFEM consists in the minimization of a 

functional defined as the integral of the squared residuals. If inside 
an element ones define a functional as ( ) ∫ •=Φ +

eA
Tn

e RdARJ 1 , the 

functional, in the whole domain divided in Nelem elements, can be 
calculated as follow  
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The minimization of the functional requires that ( ) 01 =Φ +nJδ , 
which results in the following matrix system: 

 
FK =Φ  (21) 

 
Now, in Eq. (21), Φ  is the global vector of nodal values. The 

global matrix K is assembled from the element matrices, 
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where eA  is the area of the finite element, T denotes the 

transpose and the global vector F is assembled with the contribution 
of the element vectors 
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in which  
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Results and Discussions for Velocity-Pressure-Vorticity 
Formulation 

Lid-Driven Cavity flow 

In order to validate the proposed model, the classical benchmark 
problem of the lid-driven cavity flow was numerically simulated. 
The convective terms are linearized by successive substitutions in 
each time step and the linear system resulting is solved by the 
frontal method (Taylor & Hughes, 1981). However, a solver like the 
preconditioned conjugate gradient method should be preferred, once 
the matrix from the LSFEM is always symmetric and positive-
definite. The element matrices are obtained using three-point for 
linear quadrilateral elements and nine-point Gaussian quadrature for 
the nine-node finite element. The Reynolds numbers of 100, 400 
1,000 and 10,000 were considered. It has been tested some values 
for the constant of Smagorinsky and the mesh refinement. The 
Figure 1 shows the geometry and boundary conditions. With the aid 
of secondary variables all boundary conditions are of Dirichlet type 
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and in most cases no boundary condition is necessary for the 
vorticity, Jiang (1992). 

Figures 2 to 5 show the results for U velocity component at the 
mid of the cavity for different low Reynolds numbers and a mesh of 
100 x 100 bilinear elements and mesh of 30 x 30 quadratic elements, 
without turbulence model. The four-node elements give poor results 
and the nine-node element give better results, but no so good yet. 
Most probably, the refinement of the meshes could lead to results in 
better agreement with results from literature. 

 

(1,0)

(0,1)

(1,1)

 
Figure 1. Cavity geometry and boundary conditions. 
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Figure 2. Velocity U at X = 0.5, linear element. 
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Figure 3. Velocity U at X = 0.5, quadratic element. 
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Figure 4. Velocity U at X = 0.5, linear element. 
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Figure 5. Velocity U at X = 0.5, quadratic element. 
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Figure 6 shows the component U of velocity for different 
Reynolds numbers for a mesh of 30 x 30 quadratic element and Cs = 
0,1612. When the Reynolds increases the results are not in so good 
agreement with the results of Ghia et al. (1982). Figure 7 shows the 
component V for the same cases of Figure 6 and a similar behavior 
of the velocity field is observed. The Figures 8 and 9 show that 
when the mesh is refined, the agreement between the results is quite 
good. The mesh for the results of Figures 6 and 7 is of 60 by 60 
elements or 121 by 121 grid points. For a high Reynolds, Figure 10 
shows yet some discrepancy between the results. This difference 
may due to the constant of Smagorinsky adopted and a non-
sufficient refinement of the mesh. We are investigating these 
possibilities. 

Results for the stream function are shown in Figures 11 to 14 for 
Reynolds numbers of 100, 400 1000 and 10,000 and turbulence 
model in the simulations. The lengths of the secondary vortexes are 
in agreement to the results from the literature. 
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 Re = 100 (Ghia et al., 1982)
 Re = 400 (Ghia et al., 1982)
 Re = 1000 (Ghia et al., 1982)
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Figure 6. U velocity at X = 0.5 for different Reynolds with turbulence 
model. 
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Figure 7. V velocity at Y = 0.5 for different Reynolds with turbulence 
model. 
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Figure 8. U velocity at X = 0.5 for Reynolds 400 with turbulence model and 
a more refined mesh. 
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Figure 9. U velocity at X = 0.5 for Reynolds 1000 with turbulence model 
and a more refined mesh. 
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Figure 10. U velocity at X = 0.5 for Reynolds 10,000 with turbulence model. 
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Figure 11. Stream function for Re = 100 with turbulence model. 
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Figure 12. Stream function for Re = 400 with turbulence model. 
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Figure 13. Stream function for Re = 1,000 with turbulence model. 
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Figure 14. Stream Function for Re = 10,000 with turbulence model. 

Formulation u-p-τ 

Now it is considered the u-p-τ formulation. Applying a filtering 
process to the Navier-Stokes equation (2.1) result the following 
equations: 
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where the viscous and the sub-grid-scale stresses are defined as 
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The sub-grid-scale stress tensor is modeled through the model of 

Smagorinsky resulting 
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The modeled Navier-Stokes equations, in u-p-τ formulation, 

now have the form 
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In Cartesian coordinates results the following system of 
equations for 2D problems: 
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In the Equations (33)-(38) vu ,  are the components of velocity 

in the axis yx, , respectively; p  is pressure field ijτ  is the stress 

tensor and te µµµ +=  is dynamic effective viscosity. 

Results and Discussions for Velocity-Pressure-Stress 
Formulation 

Lid-Driven Cavity flow 

In this section are presented some results from tests of the u-p-τ 
formulation. Initially, were tried quadrilateral elements to 
discretized the domain. The results don’t converged to the expected 
solution, mainly with the increase of the Reynolds number. The 
results presented in the following, Fig. 17-18, were obtained using 
nine-node elements without turbulence model, the aim here was test 
this kind of formulation that can useful for simulation of Non-
Newtonian fluid flows. For the Reynolds numbers presented the 
agreement between the results of the present work and those ones 
from Ghia et al. (1982) is quite good. The mesh here was of 121 by 
121 grid points while Ghia et al. used 129 by 129 grid points. 
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Figure 15. Velocity U at X = 0.5; linear element. 
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Figure 16. Velocity V at Y = 0.5; linear element. 
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Figure 17. Velocity U at X = 0.5; linear element. 
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Backward-Facing Step Flow 

In this section some results for a laminar backward-facing step 
flow are presented also using the u-p-τ formulation for Reynolds of 
100, 200 and 400. The Reynolds numbers has been based on the 
step height. The ratio of expansion in this case is of 1:2. At the 
entrance of the channel was imposed a parabolic velocity profile of 
the form: [ ]22

0 /)(/)(22/3 ww rhyrhyuu −−−= , where h is the step 
height, wr  is the half spacing of the small channel and in this case 

2/hrw = . Figures 19-21 show profiles of velocity at some stations 
along the channel and Figures 22-24 shows the streamlines for Re of 
100, 200 and 400 respectively. The behavior of the flow has been 
simulated satisfactorily. The non-dimensional reattachment lengths 
are approximately, 4.2, 6.2 and 8 times step height for Re = 100, 
200, 400 respectively. The length reattachment results of Barber & 
Fonty (2003) for a similar flow and the same Reynolds numbers are 
of about 3.5, 5.5 and 8.4 times step height. For the Reynolds number 
of 400 a second vortex next the upper wall appears. Some authors 
say that for Reynolds greater than 400 three-dimensional effects 
appear in the flow. 

 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0,0

0,5

1,0

1,5

2,0

Re 100
 Re = 0,74
 Re = 1,88
 Re = 2,65
 Re = 10,69
 Re = 28,74

Y 

U  
Figure 19. Profiles of velocity at some stations along the channel. 
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Figure 20. Profiles of velocity at some stations along the channel. 
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Figure 21. Profiles of velocity at some stations along the channel. 
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Figure 22. Streamlines for Re = 100. 

 

X

Y

0 10 20 30 40
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

 
Figure 23. Streamlines for Re = 200. 
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Figure 24. Streamlines for Re = 400. 

Conclusions 

A least-squares finite element method with eddy viscosity model 
of Smagorinsky has been implemented in this work for simulation 
of Navier-Stokes equations, in u-p-ω formulation. The four-node 
elements with three-point Gaussian quadrature not lead to good 
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results. The nine-node elements with nine-point Gaussian 
quadrature presented better results with the refinement of the mesh. 
For low Reynolds number even a coarse mesh produces good 
agreement. Since, the interest is to simulate high Reynolds flows, 
more investigation is still necessary for improvement of the model. 
Some points to be investigated are the constant of Smagorinsky and 
filter width. Some aspects of the method were elucidated, but 
several enhancements can still be done. In the LSFEM the 
interpolation functions and the rules of integration must be choose 
with care, this is another point of investigation. According to Jiang 
(1992) troubles with interpolation functions can be overcome with 
the use of the p-version least-squares method. Since turbulence is a 
three-dimensional phenomenon, cases of 3D geometry shall be 
treated in future works. These aspects pointed as possible causes of 
discrepancies between the results are nowadays being investigated.  
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