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ABSTRACT
The paper provides a Bayesian analysis for the zero-inflated regres-
sion models based on the generalized power series distribution.
The approach is based on Markov chain Monte Carlo methods. The
residual analysis is discussed and case-deletion influence diagnostics
are developed for the joint posterior distribution, based on the ψ-
divergence, which includes several divergence measures such as the
Kullback–Leibler, J-distance, L1 norm, and χ 2-square in zero-inflated
general power series models. Themethodology is reflected in a data set
collected by wildlife biologists in a state park in California.

1. Introduction

Zero-inflated count data are commonly encountered in many disciplines including medicine
(Böhning et al., 1999), public health (Zhou and Tu, 2000), environmental sciences (Agarwal
et al., 2002), agriculture (Hall, 2000), and manufacturing applications (Lambert, 1992). Zero-
inflation, a frequent manifestation of overdispersion, means that the incidence of zero counts
is generally greater than anticipated. This is of interest because the incidence of zero counts
frequently has significance. For instance, Ridout et al. (2001) point out that in assessing lesions
on plants, a plant may have no lesions either because it is resistant to disease or it has not been
exposed to it. The derivation of the zero-inflated model is derived by mixing a distribution
degenerate at zero with such distribution baselines as Poisson, negative binomial, and bino-
mial, among others.

The work on the zero-inflated Poisson (ZIP)model, described in Lambert (1992), has been
studied and considered for this type of problem. The data suggest, however, that there is
overdispersion not addressed by that model. In such cases, we may consider the zero inflated
negative binomial (ZINB) model, which mixes a distribution degenerate at zero with a base-
line negative binomial distribution over the ZIPmodel. Overdispersion can result from exces-
sive zeros or other causes. Regardless, the overdispersion arises from an excess of variability.
In some cases, the ZIP model may be inappropriate for use with such data since the Poisson
baseline model does not accommodate overdispersion that results from zero-inflation and
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Figure . Distribution of number fish caught.

it is well known that negative binomial models are more flexible than their simpler Poisson
counterparts in accommodating overdispersion (Lawless, 1987). Ridout et al. (2001) discuss
the ZINBmodel and provide a score test for testing ZIP regressionmodels against ZINB alter-
natives. Mwalili et al. (2008), on the other hand, demonstrate how the ZINB regressionmodel
can be enhanced to correct for misclassifications.

This paper addresses three objectives: (1) to modify the generalized power series (GPS)
model introduced by Cordeiro et al. (2009) to the zero-inflated generalized power series
(ZIGPS) model; (2) to develop Bayesian inference based on Markov chain Monte Carlo
(MCMC) methods for ZIGPS model; and (3) to develop case-deletion diagnostics to detect
influential observations in the joint posterior distributions of parameters of ZIGPS regression
model.

The research examines data collected by wildlife biologists at a state park in California
from groups of people who visited the park. Each group was questioned regarding the num-
ber of fish they caught, the number of people in the group, including the number of children,
and whether they had brought a camper to the park. Thus a person who fished and did not
catch any fish and a person who did not fish were categorized in the same group and conse-
quently accounted for the excess of zeros. Of the 250 groups surveyed, the rate of zeros was
57% as shown in Fig. 1. The fact noted that only one group caught 149 fish could indicate an
influential observation.

The presence of influential observations in data analysis is a well-accepted methodolog-
ical problem, and thus the development of diagnostic measures to detect them is of inter-
est to researchers. Influential observations in a given data set can have a strong impact
on statistical inference. Accordingly, these observations are a significant aspect of the data
and require careful examination, a common way of assessing the influence of an observa-
tion on model fit is case deletion. A common Bayesian diagnostic measure, the Kullback–
Leibler divergence (K.L divergence) is based on case deletion and entails a measure of
discrepancy between posterior distributions with and without a particular observation.
Considerable research has been done for developing case influence diagnostics using K–L
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divergence under various parametric models. Pettit (1986) suggests its use to detect influ-
ential observations. In their review of Bayesian diagnostics, Carlin and Polson (1991) pro-
pose an approach using K–L divergence as an expected utility function to define the influence
of a set of observations in a parametric modeling framework, considering the normal lin-
ear model and mixed models. Weiss and Cook (1992) first applied K–L divergence to assess
the divergence between posteriors in the context of case deletion in generalized linear mod-
els. Arellano-Valle et al. (2000) used K–L divergence to investigate the influence of a given
subset of observations on the posterior distributions of the location and scale parameters
of elliptical regression models. Recently, Cho et al. (2009) used K–L divergence to detect
influential observations in the joint posterior distributions of parameters of survival mod-
els without cure rate. The paper develops case-deletion influence diagnostics for the joint
posterior distributions of the parameters of the ZIGPS regression model, based on the ψ-
divergence measure (Peng and Dey, 1995; Weiss, 1996). The ψ-divergence measure includes
several divergence measures, such as the K–L, J-distance, L1 norm, and χ 2-square divergence
measures.

The paper is organized as follows. In Sec. 2, a brief overview of ZIGPS regression models
is presented, providing some of their properties. In Sec. 3, the inference procedure for the
proposed model is described. Criteria for model comparison, as well as Bayesian residual and
case influence diagnostics, are presented in Sec. 4. An application to a data set is developed in
Sec. 5. Finally, Sec. 6 concludes the paper with general remarks.

2. The zero-inflated generalized power series distribution

The discrete random variableY is said to have a generalized power series (GPS) distribution
(Cordeiro et al., 2009) with mean μ > 0 and dispersion parameter φ ≥ 0 if the probability
mass function (pmf) can be given as

P(Y = y) = a(y, φ)c(μ, φ)y

A(μ, φ)
, y ∈ S, (1)

where S is a subset of positive integers, a(y, φ) > 0 is positive, and the analytic functions
c(μ, φ) and A(μ, φ) =∑y∈S a(y, φ)c(μ, φ)

y (of the mean parameter μ and the dispersion
parameter φ) are positive, finite, and twice differentiable functions. Some distributions of
importance belonging to this class are the binomial, Poisson, negative binomial, and general-
ized Poisson distributions. For example, if k is a positive integer, a(y, φ) = (ky) andA(μ, φ) =
(1 + μ

k−μ )
k, c(μ, φ) = μ

k−μ , and S = {0, 1 . . . , k} then (1) defines the binomial distribution.
Examples the remaining distributions in this work, where S = {0, 1 . . . , } are as follows:

a(y, φ) = 1/y!, c(μ, φ) = μ and A(μ, φ) = eμ : Poisson,

a(y, φ) = �(φ−1 + y)
y!�(φ−1)

; c(μ, φ)

= μ

φ−1 + μ
and A(μ, φ) =

(
1 − μ

μ+ φ−1

)−1/φ

: negative binomial ,

a(y, φ) = (1 + φy)y−1

y!
,

c(μ, φ) = μe−μφ(1+μφ)−1

1 + μφ
and A(μ, φ) = eμ(1+μφ)

−1
: generalized Poisson .
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Figure . Variance functions for the ZIP, ZINB, and ZIGP models.

The zero-inflated generalized power series (ZIGPS) distribution is the result of mixing a
GPS distribution (1) and a degenerate distribution at zero (Johnson et al., 2005). Then the
random variableY is ZIPSG distributed if its pmf is given by,

f (y;μ, φ, θ ) =

⎧⎪⎨⎪⎩
θ + (1 − θ )

a(0,φ)
A(μ,φ) , y = 0

(1 − θ )
a(y,φ)c(μ,φ)y

A(μ,φ) , y = 1, 2, . . . ,
˘ (2)

where θ is the zero-inflated or zero-deflated parameter, which can take negative values.
Note that a zero-inflated model has 0 ≤ θ < 1 and a zero-deflated model arises when
−a(0, φ)/[A(μ, φ)− a(0, φ)] ≤ θ < 0. The model in (2) is referred to as ZIGPS model,
which is denoted by ZIGPS(μ, φ, θ ). The ZIGPS models include the ZIP, ZINB, and zero-
inflated generalized Poisson (ZIGP) models, among others. For θ = 0, it reduces to a GPS
model. The mean and variance of the ZIGPS model are, respectively,

E(Y ) = (1 − θ )μ and Var(Y ) = θ (1 − θ )μ2 + (1 − θ )
c(μ, φ)
c′(μ, φ)

,

where the primes denote differentiation with respect to μ. Plots of the variance function for
ZIGPS distributions in (2) with θ = 0.6, φ = 0.5, and μ ∈ (0, 10) are given in Fig. 2, where
we observe that the variance of ZINB and ZIGP models is greater than ZIP model.

3. Bayesian inference

A Bayesian methodology for determining inference is developed for the ZIGPS model. The
approach is based onMCMCmethods. Suppose that y1, . . . , yn are independent random vari-
ables from the ZIGPS(μ, φ, θ ) model. Let δi = 1 if yi = 0 and δi = 0, if yi = 1, 2, . . . , then
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the likelihood function of μ, φ, and θ is given by

L(μ, φ, θ |D) = [θ + (1 − θ )a(0, φ)/A(μ, φ)]n0 (1 − θ )n−n0
n∏

i=1

(
a(yi, φ)c(μ, φ)yi

A(μ, φ)

)1−δi
, (3)

where n0 =∑n
i=1 δi and D = {n, y, δ}, with y = (y1, . . . , yn) and δ = (δ1, . . . , δn). The ith

element of the set of observations that are zeros come from two different groups, the degener-
ated distribution at zero or f (0;μ, φ, θ ). Suppose we define a latent variable� that indicates
this event. Let�i be a ith latent variable given as

�i =
{
1, w.p. P(μ, φ, θ ),

0, w.p. 1 − P(μ, φ, θ ),

where w.p. is the abbreviation for “with probability,” i = 1, . . . , n0, and P(μ, φ, θ ) = θ{θ +
(1−θ )a(0,φ)

A(μ,φ) }−1. Then the likelihood function based on the augmented data D∗ = (D,�),
where � = (�1, . . . , �n0 ) is given by

L(μ, φ, θ |D∗) = θT (1 − θ )n−T
[
a(0, φ)
A(μ, φ)

]n0−T n∏
i=1

(
a(yi, φ)c(μ, φ)yi

A(μ, φ)

)1−δi
, (4)

where T =∑n0
i=1�i ∼ Binomial(n0, P(μ, φ, θ )). This likelihood function suggests a natural

choice for the following independent priors : θ ∼ Beta(a, b) (beta distribution) and (μ, φ) ∼
π(μ, φ), with all the hyperparameters are specified.

Combining the prior distribution and the likelihood function in Eq. (4), the joint posterior
distribution for μ, φ, and θ is given by

π(μ, φ, θ |D∗) = θT+a−1(1 − θ )n−T+b−1
[
a(0, φ)
A(μ, φ)

]n0−T n∏
i=1

(
a(yi, φ)c(μ, φ)yi

A(μ, φ)

)1−δi
π(μ, φ).(5)

Distribution (5) is analytically intractable but MCMC methods such as Gibbs sampler and
Metropolis–Hasting algorithm can be used to draw samples, from which features of marginal
posterior distribution of interest can be inferred. In addition, MCMC sampling enables us
to make inferences for any sample size without resorting to asymptotic calculations. The full
conditional distributions for MCMC algorithm from the posterior distribution of μ, φ, and
θ are given by

π(θ |μ, φ,D∗) ∼ Beta(T + 1, n − T + b)

π(μ, φ|θ,D∗) ∼
[
a(0, φ)
A(μ, φ|)

]n0−T n∏
i=1

(
a(yi, φ)c(μ, φ)yi

A(μ, φ)

)1−δi
π(μ, φ). (6)

The Metropolis–Hastings algorithm is needed to simulate samples of μ and φ for all models
except the ZIP model.

In case of this model, ifμ ∼ Gamma(c, d) (gamma distribution), the steps for the MCMC
algorithm are as the following two steps:

(1) Given (μ( j), θ ( j)) at the j-stage, we sampleT ( j+1), frombinomial(n0, P(μ( j), θ ( j))with
P(μ( j), θ ( j)) = θ ( j)/[θ ( j) + (1 − θ ( j))e−μ( j)]

(2) Given T ( j+1), samples are obtained from θ ( j+1) ∼ Beta(T ( j+1) + 1, n − T ( j+1) + b),
and μ( j+1) ∼ Gamma(

∑n
i=1(1 − δi)yi + c, n − T ( j) + d).

A ZIGPS regression model can be defined as follows. Let y1, . . . , yn be independent ran-
dom variables such that each yi, for i = 1, . . . , n, has a probability function (2) with param-
eters θ = θi, μ = μi and φ. We then relate the θi to the covariates xi = (xi1, . . . , xip1 ) by the
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logistic link and μi to the covariates zi = (zi1, . . . , zip2 ), by the logarithmic link, respectively,
that is,

log
(

θi

1 − θi

)
= x�

i α, and log(μi) = z�
i β, (7)

where α = (α1, . . . , αp1 )
� and β = (β1, . . . , βp2 )

� are unknown parameters associated with
the covariates xi and zi, respectively. Then, the likelihood function of ϑ = (φ,α,β) is given
by

L(ϑ|D) =
n∏

i=1

(
θi + (1 − θi)

a(0, φ)
A(μi, φ)

)δi (
(1 − θi)

a(yi, φ)g(μi, φ)
yi

A(μi, φ)

)1−δi
, (8)

where D = {n, y,X,W , δ} with X = (x1, . . . , xn)� and Z = (z1, . . . , zn)� is the matrix of
covariates of order n × p1 and n × p2, respectively, and δ = (δ1, . . . , δn).

To complete the Bayesian specification of the model, we need only consider the prior dis-
tribution for all the unknown parameters. Since we have no prior information from historical
data or from the previous experiment, we assume prior independence among the parameters
α, β, and φ, that is, π(ϑ) = π(α)π(β)π(φ), where α ∼ Np1 (0, �1), β ∼ Np2 (0, �2), and
φ ∼ Gamma(a, , b) with Nk(0, �) and Gamma(a, b) denoting the (k)-variate normal distri-
bution and theGammadistributionwithmean a/b, respectively.Here all the hyperparameters
are specified in order to express non informative priors

Combining the prior distribution and the likelihood function in (8), the joint posterior
distribution for ϑ is obtained as π(ϑ|D) ∝ L(ϑ;D)π(ϑ). This joint posterior density is ana-
lytically intractable. Accordingly, we based our inference on MCMC simulation methods. In
particular, the Gibbs sampler algorithm (see Gelfand and Smith, 1990) has proved to be a
powerful alternative. To this end, we observed that there is no closed form expression avail-
able for any of the full conditional distributions needed to implement Gibbs sampler. Thus the
Metropolis–Hastings algorithm was used instead. We begin by making a change of variables
to ξ = (log(φ),α,β). This transforms the parameter space to Rp1+p2+1 (which is necessary
to work with Gaussian proposal densities). In light of the Jacobian of this transformation, the
joint posterior or target density is now

π(ξ|D) ∝ L(ξ;D)π(ξ) exp {ξ1} .
To implement the Metropolis–Hastings algorithm, we proceed as follows:

(1) start with any point ξ(0) and stage indicator j = 0,
(2) generate a point ξ′ according to the transitional kernelQ(ξ′, ξ j) = Np+2(ξ j, �̃), where

�̃ is covariance matrix of ξ is the same at any stage,
(3) update ξ( j) to ξ( j+1) = ξ′ with probability p j = min{1, π(ξ′|D)/π(ξ( j)|D)}, or keep

ξ( j) with probability 1 − p j,
(4) repeat steps (2) and (3) by increasing the stage indicator until the process reaches a

stationary distribution.
This computational program is available from the authors’ request.

3.1. Predictive distribution

The distribution of a future observation conditional on the observed data D is given by its
posterior predictive distribution (Gelman et al., 2004). For the ZIGPS regression model, the
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predictive distribution for ith individual yip is defined as follows:

f (yip|D) =
∫

f (yip|ϑ)π(ϑ|D)dϑ, (9)

where f (yip|ϑ) is ZIGPS model in (2) with θi and μi given in (7). Computing (9) proceeds
using composition sampling; given samples ϑ(1), . . . ,ϑ(Q) from the posterior distribution
π(ϑ|D), we sample yip from f (yip|ϑ = ϑ( j)) for i = 1, . . . , n and j = 1, . . . ,Q. The samples
y(1)ip , y

(2)
ip , . . . , y

(Q)
ip from the posterior predictive distribution of the ith subject, via f (yip|D).

4. Diagnostic methods

Generally, when regression modeling is considered, to perform a sensitivity analysis is
strongly advisable since itmay be sensitive to the underlyingmodel assumptions. Cook (1986)
uses this idea to motivate his assessment of influence analysis. He suggests that more confi-
dence can be put in a model which is relatively stable under small modifications. The best
known perturbation schemes are based on case deletion (Cook andWeisberg, 1982) in which
the effects are studied by completely removing cases from the analysis. This reasoning will
form the basis for our Bayesian global influence methodology and in doing so it will be pos-
sible to determine which subjects might be influential for the analysis. Thus, model checking
and adequacy play an important role in count data modeling with excess of zeros. In this sec-
tion, some model comparison criteria, a Bayesian residuals, and a local influence measure
from a Bayesian perspective are proposed to check the underlying model and to identify the
presence of outliers and/or influential observations.

4.1. Model comparison criteria

There exist a variety of methodologies to compare several competing models for a given
data set and to select the one that best fits the data. Here we consider one of the most used
in applied Bayesian researches, which is derived from the conditional predictive ordinate
(CPO) statistic. For a detailed discussion on the CPO statistic and its applications to model
selection, see Gelfand et al. (1992) and Geisser and Eddy (1979). Let D = {n, y,X,W , δ}
be the full data and D(−i) = {n − 1, y(−i),X (−i),W (−i), δ(−i)} denote the data with the ith
observation deleted. In our model, for an observed zero, δi = 1, we have from Sec. 2 that
f (yi|ϑ) = θ + (1 − θ )

a(0,φ)
A(μ,φ) and, for δi = 0, f (yi|ϑ) = (1 − θi)

a(yi,φ)g(μi,φ)yi
A(μi,φ)

. We denote the
posterior density of ϑ givenD(−i) by π(ϑ|D(−i)), i = 1, . . . , n. For the ith observation,CPOi

can be written as

CPOi =
{∫

ϑ

π(ϑ|D)
f (yi|ϑ) dϑ

}−1

. (10)

A Monte Carlo estimate of CPOi can be obtained by using a single MCMC sample from the
posterior distribution π(ϑ|D). Let ϑ(1), . . . ,ϑ(Q) be a sample of size Q of π(ϑ|D) after the
burn-in. A Monte Carlo approximation ofCPOi (Dey et al., 1997) is given by

ĈPOi =
⎧⎨⎩ 1
Q

Q∑
q=1

1
f (yi|ϑ(q))

⎫⎬⎭
−1

,
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where

f (yi|ϑ(q)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ
(q)
i + (1 − θ

(q)
i )a(0, φ(q))

A(μ(q)i , φ
(q))

, for δ1 = 0

(1 − θ
(q)
i )a(yi, φ

(q)
i )g(μ(q)i , φ

(q))yi

A(μ(q)i , φ
(q))

, for δi = 1

with θ (q)i = exp
{
x�
i α(q)

}
(1 + exp

{
x�
i α(q)

}
)−1, andμ(q)i = exp{z�

i β(q)}. Formodel compari-
son, we use the log pseudomarginal likelihood (LPML) defined by LPML =∑n

i=1 log(ĈPOi).
The larger is the value of LPML, the better is the fit of the model.

Other criteria as, the deviance information criterion (DIC) proposed by Spiegelhalter et al.
(2002), the expected Akaike information criterion (EAIC; Brooks (2002)), and the expected
Bayesian (or Schwarz) information criterion (EBIC; Carlin and Louis (2001)) can also be used.
These criteria are based on the posterior mean of the deviance, which can be approximated by
d =∑Q

q=1 d(ϑq)/Q, where d(ϑ) = −2
∑n

i=1 log
[
f (yi|ϑ)

]
. The DIC can be estimated using

the MCMC output by D̂IC = d + ρ̂d = 2d − d̂, with ρD is the effective number of parame-
ters, which is defined as E{d(ϑ)} − d{E(ϑ)}, where d{E(ϑ)} is the deviance evaluated at the
posterior mean and is be estimated as

D̂ = d

⎛⎝ 1
Q

Q∑
q=1

φ(q),
1
Q

Q∑
q=1

α(q),
1
Q

Q∑
q=1

β(q)

⎞⎠ .
Similarly, the EAIC and EBIC criteria can be estimated by means of ̂EAIC = d + 2#(ϑ)

and ̂EBIC = d + #(ϑ) log(n), where #(ϑ) is the number of model parameters.

4.2. Bayesian residual

The Bayesian standardized residual (Gelfand et al., 1992), ri based in the conditional predic-
tive ordinate distribution is defined by

ri = yi − E(yi|D(−i))√
Var(yi|D(−i))

, (11)

where E(yi|D(−i)) andVar(yi|D(−i)) are mean and variance, respectively, with respect to dis-
tribution of yi|D(i). Large |ri|’s cast doubt upon the model but retaining the sign of ri allows
patters of under or over fitting to be revealed.

AMonte Carlo estimate of E(yi|D(−i)) andVar(yi|D(−i)) can be obtained by using a single
MCMC sample from the posterior distribution π(ϑ|D). Let ϑ(1), . . . ,ϑ(Q) be a sample of
sizeQ of posterior distribution, π(ϑ|D), for ZIGPS model. A Monte Carlo approximation of
E(yi|D(−i)) andVar(yi|D(−i)) are given, respectively, as

Ê(yi|D(−i)) = ̂CPOi
1
Q

Q∑
j=1

E(yi|ϑ( j))

f (yi|ϑ( j)) , (12)

and

V̂ar(yi|D(−i)) = ̂CPOi
1
Q

Q∑
j=1

E(y2i |ϑ( j))
f (yi|ϑ( j)) − [Ê(yi|D(−i))

]2
. (13)
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The quantities E(yi|ϑ) and E(y2i |ϑ) are expressible in closed form for ZIGPS model. Hence,
for a sampleMCMC of sizeQ from parameters of ZIGPS regressionmodel, this quantities are

given by E(yi|ϑ(q)) = (1 − θ
(q)
i )μ

(q)
i and E(y2i |ϑ(q)) = (1 − θ

(q)
i )[(μ(q)i )

2 + c(μ(q)i ,φ(q) )

c′(μ(q)i ,φ(q) )
], with

θ
(q)
i = exp x�

i α(q)
}
(1 + exp x�

i α(q)
}
)−1, and μ(q)1 = exp{z�

i β(q)},, i = 1, . . . , n, q = 1, l −
dots,Q. Using (12) and (13), the Monte Carlo estimate the Bayesian standardized residual,
ri is given by

r̂i = yi − Ê(yi|D(−i))√
V̂ar(yi|D(−i))

.

4.3. Bayesian case influence diagnostics

Let Dψ (P, P(−i)) denote the ψ-divergence between P and P(−i), where P denotes the posterior
distribution of ϑ for full data, and P(−i) denotes the posterior distribution of ϑ without the ith
case. Specifically,

Dψ (P, P(−i)) =
∫
ϑ∈�

ψ

(
π(ϑ|D(−i))

π (ϑ|D)
)
π(ϑ|D) dϑ,

where ψ is a convex function with ψ(1) = 0. Several choices of ψ are given in Dey and Bir-
miwal (1994). For example,ψ(z) = − log(z) defines K–L divergence,ψ(z) = (z − 1) log(z)
gives J-distance (or the symmetric version of K–L divergence),ψ(z) = 0.5|z − 1| defines the
variational distance or L1 norm, and ψ(z) = (z − 1)2 defines the χ 2-square divergence.

The relationship between the CPO (10) and the ψ-divergence measure is given by

Dψ (P, P(−i)) = Eϑ|D

[
ψ

(
CPOi

f (yi|ϑ)
)]
, (14)

where the expected value is taken with respect to the joint posterior distribution π(ϑ|D).
In particular, the K–L divergence can be expressed by

DK–L(P, P(−i)) = −Eϑ|D
{
log(CPOi)

}+ Eϑ|D
{
log
[
f (yi|ϑ)

]}
= − log(CPOi)+ Eϑ|D

{
log
[
f (yi|ϑ)

]}
. (15)

From (14), we can be compute Dψ (P, P(−i)) by sampling from the posterior distribution of
ϑ via MCMC methods. Let ϑ(1), . . . ,ϑ(Q) be a sample of size Q of π(ϑ|D). Then, a Monte
Carlo estimate of K(P, P(−i)) is given by

D̂ψ (P, P(−i)) = 1
Q

Q∑
q=1

ψ

(
ĈPOi

f (yi|ϑ(q))
)
. (16)

From (16) a Monte Carlo estimate of K–L divergence DK−L(P, P(−i)) is given by

D̂K–L(P, P(−i)) = − log(ĈPOi)+ 1
Q

Q∑
q=1

log
[
f (yi|ϑ(q))

]
. (17)

TheDψ (P, P(−i)) can be interpreted as theψ-divergence of the effect of deleting of ith case
from the full data on the joint posterior distribution of ϑ.As pointed by Peng and Dey (1995)
and (Weiss, 1996) (see also Cancho et al., 2010, 2011), it may be difficult for a practitioner to
judge the cutoff point of the divergence measure so as to determine whether a small subset of
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Table . Posterior summaries of the parameters for the ZIGPS regression model.

ZIP model ZINB model ZIGP model

Parameter Mean HPD (%) Mean HPD (%) Mean HPD (%)

φ — — . (., .) . (., .)
α1 . (., .) . (− ., .) . (− ., .)
α2 − . (− .,−.) − . (− .,−.) − . (− .,−.)
β1 . (., .) . (., .) . (., .)
β2 − . (− .,−.) − . (− .,−. ) − . (− .,−.)
β3 . (., .) . (., .) . (., .)

observations is influential or not. In this context, we will use the calibration proposal given by
Peng and Dey (1995) and Weiss (1996).

5. Application

To illustrate our proposed modeling discussed so far, we consider the data set that were col-
lected by wildlife biologists in a state park of California, which can be found in the web site:
“http://www.ats.ucla.edu/stat/data/fish.csv”, on groups of visitors that went to park, as already
stated in Sec. 1. The number of observation is 250 groups that went to a park. The response
variable is how many fish each group caught (count) and the independent variables are how
many children were in the group (child), how many people were in the group (persons), and
whether or not they brought a camper to the park (camper).

To this data, we fit some members of ZIGPS regression model described in Sec. 2 such as,
the ZIP, ZINB, and ZIGP regression models with

θi = exp
(
α0 + α1peoplei

)
1 + exp

(
α0 + α1peoplei

) , and log(μi) = β0 + β1childi + β2camperi, i = 1, . . . , 250.

The following independent priors were considered to perform the Metropolis–Hasting algo-
rithm: α j ∼ N(0, 102) j = 0, 1, 2, βk ∼ N(0, 102), k = 0, 1, 2, and φ ∼ Gamma(1, 0.001)
for ZINB and ZIGP regression models. Thus our choice is to assume a minimally but infor-
mative prior. Since, our prior is proper the posterior is proper. After a burn-in, we consid-
ered 40,000MCMCposterior samples.Wemonitored convergence of theMetropolis–Hasting
algorithm using the method proposed by Geweke (1992), as well as trace plots. Every 20th
sample from the 40,000MCMCposterior sampleswas used to reduce the autocorrelations and
yield better convergence results. Themean and 95%highest posterior density (HPD) intervals
for the parameters of the ZIP, ZINB, and ZIGP regression models are shown in Table 1. Note
that for thesemodels, the covariate number of peoples has a significant effect on the reduction
of the fraction of the visitors that caught no fish (fraction of zeros). Thus, the covariates child
and camper have significant effect on the mean fish caught by groups of visitors that went to
park.

The quality of fit and presence of possible outliers can be observed by examining the
Bayesian residuals (defined in Sec. 2.2) plotted against Ê(yi|D(−i)). These plots are presented
in Fig. 3. Note that the residuals for the three models considered, almost all residuals ran-
domly distributes around zero. Also it is noted almost all that residuals for the ZIP model
exhibit greater variability than the ZINB and ZIGPmodels. Furthermore, the observation 138
stands out from the rest of the data in the three models. In the ZIP model, the observation 89
also stands out of the rest of the data sets, so that these two observations can be considered as

http://www.ats.ucla.edu/stat/data/fish.csv


COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 6563

Figure . Plot of Bayesian residuals of the ZIGPS regression model.

possible outliers. The sum of squared residuals for the ZIP, ZINB, and ZIGP models resulted
2,008.071, 1,029.894, and 824.9694, respectively, indicating that the ZIGPmodel is the best fit
for the data set.

The models fit is also examined using DIC, EAIC, EBIC, and LPMP criteria and their pre-
dictive probabilities of resulting counts are comparedwith observed counts (Table 2). All crite-
ria favor the ZIGP model over the other considered models; however, there is little difference
between the ZINB (−442.088) and ZIGP (−440.118) values computed by LPML. Figure 4
shows the probability integral transformation (PIT) histogram (Czado et al., 2009) for ZIP,
ZINB, and ZIGP regression models. The PIT histogram for the ZIP indicates underdisper-
sion while the PIT histogram of ZINB indicates overdispersion. The PIT histogram of ZIGP
regression model, however, does not evidence neither under or overdispersion.

Using the samples from the posterior distributions of the parameters of the ZIGPS regres-
sion models, the ψ-divergence measures described in Sec. 4.3 are computed. The calibra-
tion proposed by Peng and Dey (1995) is used; for example, if we use K–L divergence, we
can consider the ith case as an influential observation when DK–L > 0.22. Similarly, using
the J-distance, or L1 norm, or χ 2 square divergence, an observation which DJ > 0.42 or
DL1 > 0.30, or Dχ2 > 0.36 can be considered as influential, respectively. Table 3 shows sub-
jects having large ψ-divergence measures values compared to the other subjects in the data
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Table . Observed frequency distribution and predicted frequencies of ZIGPS models for the real data sets.

Count Observed ZIP ZINB ZIGP

  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
  . . .
≥  . . .
DIC ,. . .
EAIC ,. . .
EBIC ,. . .
LPML − ,. − . − .

Figure . Probability integral transformation histogram for the fish data of the ZIP, ZINB, and ZIGP models.
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Table . Estimates of theψ -divergence measures for the fish data fitting the ZIGPS models.

ZIP model ZINB model ZIGP model

Group Count DK–L DJ DL1
D
χ2 DK–L DJ DL1

D
χ2 DK–L DJ DL1

D
χ2

  . . . . . . . . . . . .
  . . . . . . . . . . . .
  . . . . . . . . . . . .

sets. For the ZIP, ZINB, and ZIGP models, case 138 is identified as the most influential.
Case 89 is also identified as likely influential observation in the ZIP and ZINB models, cases
100, 160, 186, and 207 only for the ZIP model and case 219 solely for the ZINB model.
Figure 5 shows the index plot of the four L1-divergence measure for ZIGPS model. To reveal
the impact of this observation on the parameter estimates, we refitted the model under
this situation.

The relative percentage changes for each parameter estimate, defined by RCϑ j = |(ϑ̂ j −
ϑ̂ j(I))/ϑ̂ j| × 100, where ϑ̂ j(I) denotes the posterior mean of ϑ j, with j = 1, ..., 6, after the
observations I = {89, 138, 219} has been removed. Relative changes in posterior means and

Figure . Index plots ofψ -divergence measures for the fish data.
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Table. Posteriormeanand relative changeof themeanvaluewith respect to themean calculatedomitting
some cases for the fish data fitting the ZIGPS models.

Parameter

Model Drop φ α1 α2 β1 β2 β3

ZIP {} — . . . . .
— (., .) (−.,−.) (. .) (−. -.) (., .)

{} — . . . . .
— (., .) (−.,−.) (., .) (−.,−.) (., .)

{} — . . . . .
— (., .) (−.,−.) (., .) (−.,−.) (., .)

{, } — . . . . .
— (., .) (−.,−.) (., .) (−.,−.) (., .)

ZINB {} . . . . . .
(., .) (−., .) (−.,−.) (., .) (−.,−.) (., .)

{} . . . . . .
(., .) (−., .) (−., -.) (., .) (−.,−.) (., .)

{} . . . . . .
(., .) (−., .) (−.,−.) (., .) (−.,−.) (., .)

{, } . . . . . .
(., .) (−., .) (−.,−.) (., .) (−.,−.) (., .)

ZIGP {} . . . . . .
(., .) (−., .) (−.,−.) (., .) (−.,−.) (., .)

{} . . . . . .
(., .) (−., .) (−.,−.) ( ., .) (−.,−.) (., .)

{} . . . . . .
(., .) (−., .) (−.,−.) (., .) (−.,−.) (., .)

{, } . . . . . .
(., .) (−., .) (−.,−.) (., .) (−.,−.) (., .)

the corresponding 95% HPD intervals for the parameters of ZIGPS regression model are dis-
played in Table 4. Note that there are little relative changes in posterior mean with exception
in α1 after dropping the observations {89} and {89,138}, but there are no changes of the infer-
ences in the coefficients.

6. Final remarks

In this paper, we proposed a general class of zero-inflatedmodel, the ZIGPS regressionmodel,
as an alternative means do model count data with an excess of zeros. This model contains the
ZIP, ZINB, ZIGP, and other regression models. We use MCMCmethods to obtain a Bayesian
inference for the proposed model. The model can be tested for the best fitting in a straightfor-
ward way. Further, we propose a Bayesian residual and case influence diagnostic procedure
based on the variational distance, J-distance, K–L divergence, and χ 2-square divergence, to
study the sensitivity of the Bayesian estimates under perturbations in the model/data. Finally,
we fitted ourmodel to a real data set to show the significant potential of themethodology, and
establish that the ZIGP regression model is the best fit for this data set.
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