Capturing Transition Paths and Transition States for Conformational Rearrangements in the Ribosome

Nenhuma Miniatura disponível

Data

2014-12-16

Autores

Noel, Jeffrey K.
Chahine, Jorge [UNESP]
Leite, Vitor Barbanti Pereira [UNESP]
Whitford, Paul Charles

Título da Revista

ISSN da Revista

Título de Volume

Editor

Cell Press

Resumo

To reveal the molecular determinants of biological function, one seeks to characterize the interactions that are formed in conformational and chemical transition states. In other words, what interactions govern the molecule's energy landscape? To accomplish this, it is necessary to determine which degrees of freedom can unambiguously identify each transition state. Here, we perform simulations of large-scale aminoacyl-transfer RNA ( aa-tRNA) rearrangements during accommodation on the ribosome and project the dynamics along experimentally accessible atomic distances. From this analysis, we obtain evidence for which coordinates capture the correct number of barrier-crossing events and accurately indicate when the aa-tRNA is on a transition path. Although a commonly used coordinate in single-molecule experiments performs poorly, this study implicates alternative coordinates along which rearrangements are accurately described as diffusive movements across a one-dimensional free-energy profile. From this, we provide the theoretical foundation required for single-molecule techniques to uncover the energy landscape governing aa-tRNA selection by the ribosome.

Descrição

Palavras-chave

Como citar

Biophysical Journal. Cambridge: Cell Press, v. 107, n. 12, p. 2872-2881, 2014.