Adaptive Reverberation Suppression Techniques for SHM in Composite Materials

Nenhuma Miniatura disponível

Data

2015-01-01

Autores

Rosa, Vinicius [UNESP]
Lopes, Vicente [UNESP]
Flynn, Eric
Todd, Michael
Farrar, Charles
Chang, F. K.
Kopsaftopoulos, F.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Destech Publications, Inc

Resumo

This paper introduces a new method for Structural Health Monitoring using error functions computed from guided waves reflected from damage. The approach is experimentally tested on anisotropic specimens such as composite plates. The baseline and test signals of each sensing path (between two PZT transducers) are measured and the energy of the scattered signal for each path is calculated in a given frequency range. Assuming that there is damage in the evaluated position, the wave will reflect at this point and travel to the next transducer. According to the distance between the first transducer to the evaluated point plus the distance between same point to the second transducer (pitch-catch configuration) the time-of-flight is calculated for each grid point on the structure. The wave speeds in anisotropic specimens are propagation direction dependent. The wave speed for different angles were experimentally computed and incorporated in the algorithm in order to calculate the proper time-of-flight. The energy of the scattered signal is computed in a time range based on the time of flight of each analyzed position. Finally, a resultant error function for an estimation of the damage location in the monitoring area is applied. As the error function is based on the interference of the damage in the propagation of guided waves, the higher value of the error implies the less likelihood of damage in that position. An image is generated with an error value for each mesh position in the plate. This error function compares the energy in the given ranges for each pair of transducers. The experiment was performed in a 500x500x2mm carbon/epoxy composite formed by 10 plain-weave layers with 9 PZT transducers in the surface. The resultant error function at each driving frequency is calculated as a sum of all error functions. In addition, several frequencies were tested and the results for each one were combined in order to get a better result.

Descrição

Palavras-chave

Como citar

Structural Health Monitoring 2015: System Reliability For Verification And Implementation, Vols. 1 And 2. Lancaster: Destech Publications, Inc, p. 1787-1797, 2015.

Coleções