Publicação: Combinatorial approach to Mathieu and Lame equations
Carregando...
Arquivos
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Inst Physics
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Based on some recent progress on a relation between four dimensional super Yang-Mills gauge theory and quantum integrable system, we study the asymptotic spectrum of the quantum mechanical problems described by the Mathieu equation and the Lame equation. The large momentum asymptotic expansion of the eigenvalue is related to the instanton partition function of supersymmetric gauge theories which can be evaluated by a combinatorial method. The electro-magnetic duality of gauge theory indicates that in the parameter space, there are three asymptotic expansions for the eigenvalue, and we confirm this fact by performing the Wentzel-Kramers-Brillouin (WKB) analysis in each asymptotic expansion region. The results presented here give some new perspective on the Floquet theory about periodic differential equation. (C) 2015 AIP Publishing LLC.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal Of Mathematical Physics. Melville: Amer Inst Physics, v. 56, n. 7, 22 p., 2015.