Logotipo do repositório
 

Publicação:
Combinatorial approach to Mathieu and Lame equations

Carregando...
Imagem de Miniatura

Autores

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Amer Inst Physics

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Based on some recent progress on a relation between four dimensional super Yang-Mills gauge theory and quantum integrable system, we study the asymptotic spectrum of the quantum mechanical problems described by the Mathieu equation and the Lame equation. The large momentum asymptotic expansion of the eigenvalue is related to the instanton partition function of supersymmetric gauge theories which can be evaluated by a combinatorial method. The electro-magnetic duality of gauge theory indicates that in the parameter space, there are three asymptotic expansions for the eigenvalue, and we confirm this fact by performing the Wentzel-Kramers-Brillouin (WKB) analysis in each asymptotic expansion region. The results presented here give some new perspective on the Floquet theory about periodic differential equation. (C) 2015 AIP Publishing LLC.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal Of Mathematical Physics. Melville: Amer Inst Physics, v. 56, n. 7, 22 p., 2015.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação