Logo do repositório
 

Birth of limit cycles from a 3D triangular center of a piecewise smooth vector field

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

We consider a piecewise smooth vector field in R3, where the switching set is on an algebraic variety expressed as the zero of a Morse function.We depart from a model described by piecewise constant vector fields with a non-usual center that is constant on the sliding region. Given a positive integer k, we produce suitable nonlinear small perturbations of the previous model and we obtain piecewise smooth vector fields having exactly k hyperbolic limit cycles instead of the center. Moreover, we also obtain suitable nonlinear small perturbations of the first model and piecewise smooth vector fields having a unique limit cycle of multiplicity k instead of the center. As consequence, the initial model has codimension infinity. Some aspects of asymptotical stability of such system are also addressed in this article.

Descrição

Palavras-chave

Bifurcation, Limit cycles, Periodic solutions, Piecewise smooth vector fields

Idioma

Inglês

Citação

IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), v. 82, n. 3, p. 561-578, 2017.

Itens relacionados

Unidades

Unidade
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação