Number of stems and plant density in mini watermelon grown in a protected environment

Carregando...
Imagem de Miniatura

Data

2019-01-01

Autores

Gomes, Rafaelle Fazzi
Santos, Lucas da Silva
Braz, Leila Trevisan [UNESP]
Nascimento Andrade, Francisco Laurimar do
Ferreira Monteiro, Silvia Marcela

Título da Revista

ISSN da Revista

Título de Volume

Editor

Univ Federal Goias

Resumo

Watermelon farming has a high economic and social importance. In parallel, the consumer's demand for distinctive products has led to niche markets, where mini watermelons stand out. This study aimed to assess the agronomic performance and fruit quality of mini watermelon grown in coconut husk fiber, as a function of number of stems per plant and plant density. The Smile hybrid was used, as well as a randomized block design, in a 2 x 2 factorial scheme, with eight repetitions, being the first factor the number of stems per plant (1 or 2) and the second the number of plants per pot (1 or 2). Characteristics related to yield, physiological parameters and fruit quality were assessed. Interaction between number of stems and plant density was only observed for leaf area, average fruit fresh weight, total yield and percentage of large fruits. The factors were evaluated separately for the remaining traits. Two-stemmed training systems, at a density of one plant per pot, produce the highest yield, without compromising the quality of the fruits, being, in these conditions, the most suitable method for farmers.

Descrição

Palavras-chave

Citrullus lanatus, coconut husk fiber, intraplant competition

Como citar

Pesquisa Agropecuaria Tropical. Goiania Go: Univ Federal Goias, v. 49, 8 p., 2019.