Heat Transfer Enhancement in a Flat-Plate Solar Water Heater Through Longitudinal Vortex Generator

Nenhuma Miniatura disponível

Data

2019-08-01

Autores

Silva, F. A.S. [UNESP]
Salviano, L. O. [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

The solar energy is a renewable source that has a great potential for conversion into thermal energy or for generation of electric power through photovoltaic panels in Brazil. Concerns about environmental impacts and the fossil resources scarcity have motivated the technological development of renewable alternatives to fill out the energy matrix. The flat-plate solar water heater is an equipment used for domestic or commercial applications to heat fluids, which can minimize the demand for electric energy and, consequently, decrease the electrical bill. However, the development of technologies to increase the conversion of solar energy into thermal energy remains a challenge in order to increase the efficiency of these devices. Thus, passive techniques to enhance heat transfer have been applied and those results seem to be promissory. Among them, delta-winglet longitudinal vortex generator (VG) is a consolidated passive technique currently applied on compact heat exchangers, although few works have been applied this technique on the solar water heater. By a computational fluid dynamics approach, in this work, we analyze the augmentation of heat transfer through delta-winglet longitudinal vortex generator inside a tube of a flat-plate solar water heater. For the Reynolds numbers 300, 600, and 900, the better ratio between the heat transfer and the pressure drop penalty is found for the attack angle of the delta-winglet of 30 deg, while the highest heat transfer was to the attack angle of 45 deg. Moreover, the first vortex generators showed significant impact only on the friction factor and could be eliminated of the solar water heater with no penalty to the heat transfer.

Descrição

Palavras-chave

enhancement of heat transfer, longitudinal vortex generator, solar energy, solar water heater

Como citar

Journal of Solar Energy Engineering, Transactions of the ASME, v. 141, n. 4, 2019.

Coleções