Logo do repositório
 

Semi-supervised learning with connectivity-driven convolutional neural networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods.

Descrição

Palavras-chave

Convolutional neural networks, Optimum-path forest, Semi-supervised learning

Idioma

Inglês

Citação

Pattern Recognition Letters, v. 128, p. 16-22.

Itens relacionados

Unidades

Unidade
Faculdade de Ciências
FC
Campus: Bauru


Cursos de graduação

Programas de pós-graduação