Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications

Carregando...
Imagem de Miniatura

Data

2020-03-09

Autores

Ricco, Luciano Henrique Siliano

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Resumo

In the last years, the seeking for Majorana quasiparticles has been one of the hottest topics in condensed matter physics, owing to its potential application for achieving fault-tolerant quantum computing pro- cesses. Such exotic quasiparticles emerge as bound states at the ends of one-dimensional (1D) spinless p-wave superconductors within topologically protected phases. An indicative of this so-called Majorana bound states (MBSs) in these 1D systems is given by the emergence of a robust zero-bias conductance peak (ZBCP) in tunneling spectroscopy measurements. However, other physical phenomena can give rise to such a peak, as Kondo effect, disorder and Andreev bound states (ABSs), for instance. Concerning this later, such states can stick at zero energy even when parameters as magnetic field or chemical potential are changed, thus perfectly mimicking the MBSs hallmark. Hence, distinguishing between trivial ABSs and topologically protected MBSs is one of the current key issues in the filed of Majorana detection. Aiming to enlarge the discussion concerning the MBS-ABS distinction, in this thesis we study the electronic transport features of a hybrid device composed by a quantum dot coupled to a topological superconducting nanowire hosting MBSs at the ends, wherein the so-called degree of Majorana nonlocality is taken into account. In this scenario [Phys. Rev. B 98, 075142 (2018)], we analyze the role of the Fano interference phenomenon in the well-known Majorana oscillations, showing that both shape and amplitude of such oscillatory patterns depend on the bias voltage, degree of MBSs nonlocality, and Fano parameter of the system. We also demonstrate that the spin-resolved density of states of the dot responsible for the zero-bias conductance peak strongly depends on the separation between the MBSs and their relative couplings with the dot [Phys. Rev. B 99, 155159 (2019)], suggesting that spin-resolved spectroscopy can be used as a tool for discriminating between ABSs and MBSs. It is worth noticing that in both works we recover experimental profiles, at least qualitatively. Moreover, along the current thesis we propose a quantum bit storing/reading mechanism [Phys. Rev. B 93, 165116 (2016)] and a thermoelectrical hybrid device [Sci. Reports, 8, 2790 (2018)], both based on MBSs properties.
Nos últimos anos, a busca pelas denominadas quasipartículas de Majorana tem sido um dos tópicos que mais tem atraído atenção na área de Física da Matéria Condensada. Esse fato deve-se à sua po- tencial aplicação em processos de computação quântica imunes a fenômenos de decoerência e portanto, tolerante à falhas. Tais quasipartículas emergem como estados ligados, localizados nas bordas de super- condutores spinless unidimensionais do tipo p-wave, quando esses encontram-se em uma fase topologi- camente protegida. Nesses tipos de sistemas, em aparatos experimentais que envolvem espectroscopia de tunelamento eletrônico, o surgimento de um pico na condutância, localizado na voltagem zero e robusto perante variação de parâmetros do sistema, é um indicativo da presença dos chamados estados ligados de Majorana. No entanto, outros fenômenos físicos, tais como efeito Kondo, desordem e estados ligados de Andreev, por exemplo, podem dar origem a tal pico. No que diz respeito aos estados ligados de Andreev, os mesmos podem permanecer na voltagem zero com certa robustez à variação de campo mag- nético e potencial químico, emulando perfeitamente a assinatura dos estados de Majorana. Sendo assim, distinguir experimentalmente os estados de Andreev triviais dos estados de Majorana topologicamente protegidos é uma das questões fundamentais relacionadas a detecção de quasiparticulas de Majorana a serem sanadas. Levando em conta tal cenário, na presente tese analisaram-se teoricamente as características de transporte eletrônico de um sistema híbrido, composto por um ponto quântico acoplado a um nanofio supercondutor topológico com estados ligados de Majorana localizados em suas bordas, em que o denominado grau de não-localidade de Majorana foi levado em consideração. Em uma primeira abordagem [Phys. Rev. B 98, 075142 (2018)], estudou-se qual o papel da interferência Fano nas chamadas oscilações de Majorana, onde pode-se constatar que a forma e a amplitude de tais oscilações são moduladas por alguns fatores, tais como a voltagem aplicada no ponto quântico, o grau de não-localidade de Majorana e o parâmetro de Fano em questão. No mesmo tipo de sistema [Phys. Rev. B 99, 155159 (2019)], demostrou-se também que o tipo de spin da densidade de estados no ponto quântico responsável pelo pico em voltagem zero (assinatura Majorana) depende fortemente da separação entre os dois estados de Majorana nas bordas do fio, bem como dos acoplamentos entre o nanofio e o ponto quântico. Essa dependência sugere que medidas de transporte eletrônico com resolução de spin podem ser utilizadas para identificar qual o mecanismo responsável pelo surgimento do pico em voltagem zero. Vale a pena ressaltar que, em ambos os trabalhos, perfis experimentais conhecidos foram qualitativamente obtidos em nossas simulações. Ademais, ao longo da presente tese foi proposto um mecanismo de armazenamento e leitura de bit quântico [Phys. Rev. B 93, 165116 (2016)], além de um dispositivo termoelétrico híbrido [Sci. Reports, 8, 2790 (2018)], ambos baseados nas propriedades exóticas dos estados ligados de Majorana.

Descrição

Palavras-chave

Majorana bound states, topological superconducting nanowires, quantum dot, hybrid systems, Majorana nonlocality, zero-bias conductance peak, Estados ligados de Majorana, Nanofios supercondutores topológicos, Ponto quântico, Sistemas híbridos, Não-localidade de Majorana, Pico de condutância em voltagem zero

Como citar