Schlieren and PLIF imaging for hydrogen-air detonations

Carregando...
Imagem de Miniatura

Data

2019-12-13

Autores

Rojas Chavez, Samir Boset

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Resumo

Application technologies based on the detonation cycle has proven a significant impact on the overall efficiency. However, detonation engines are not currently available on the markets due to the lack of physical and chemical knowledge of the detonation phenomenon. The present study aims to provide new insights by studying the pressure and velocity, the density gradient of the detonation wave, and the OH distribution on the reaction zone of hydrogen-air detonation. Three strategies were proposed to obtain repeatable detonation events. The strategies vary on the geometry of the obstacle and the amount of spark plug to ignite the mixture. Pressure and velocity were recorded to determine if the transition from deflagration to detonation is successful. To image the density gradient of the shock wave, the optical technique called Schlieren was adapted to the detonation test bench. The OH radical distribution was studied by the optical diagnostic technique called planar laser-induced fluorescence. The pressure trace results showed high peaks in the regimen of Chapman-Jouguet state for detonation, unlike fast flames. The velocity results showed a considerable influence of the obstacle geometry to enhance the velocity of the wave, although the repeatable detonation events and the steadiness of the velocity were not boosted. The third strategy proved that adding more energy to a transient detonation wave, enhanced the stability and the consistent production of detonation events. The Schlieren images revealed the coupling between the reaction and shock wave for detonation, unlike fast flames. Fast flames close to 83% of the Chapman-Jouguet velocity underwent weak decoupling compared to the fast flame with velocities in the range of 40% of the Chapman-Jouguet velocity. The detonation density gradient images, obtained by using a bandpass filter, revealed an irregular cellular structure for different conditions when detonation occurs. The single image obtained by the technique planar laser-induced fluorescence at 0.5 bar, 293 K, and stoichiometric mixture showed the influence of the cellular structure of the shock wave into the reaction zone since an irregular cellular structure was captured at the beginning of the reaction zone. The fluorescence intensity profile registered the maximum values at the beginning of the reaction zone, followed by a fast decrease of the intensity.
Aplicações tecnológicas baseadas no ciclo de detonação provou um enorme impacto na eficiência geral. No entanto, atualmente, os motores de detonação não estão disponíveis nos mercados devido à falta de conhecimento físico e químico do fenômeno de detonação. O presente estudo tem como objetivo fornecer novas idéias, estudando a pressão e a velocidade, o gradiente de densidade da onda de detonação e a distribuição do radical OH na zona de reação das detonações de hidrogênio e ar. Três estratégias foram propostas para obter eventos de detonação repetíveis. As estratégias variam na geometria do obstáculo e a quantidade de vela de ignição para inflamar a mistura. Pressão e velocidade foram registradas para determinar se a transição da deflagração para a detonação é bem-sucedida. Para visualizar o gradiente de densidade da onda de choque, a técnica óptica chamada Schlieren foi adaptada ao banco de testes de detonação. A distribuição do radical OH foi estudada pela técnica de diagnóstico óptico chamada fluorescência induzida por laser planar. Os resultados do traço de pressão revelaram altos picos no regime do estado de Chapman-Jouguet para detonação, diferentemente das chamas rápidas. Os resultados da velocidade permitiram revelar uma influência considerável da geometria do obstáculo para aumentar a velocidade da onda, embora os eventos repetitivos de detonação e a firmeza da velocidade não tenham sido aumentados. A terceira estratégia provou que adicionar mais energia a uma onda de detonação transitória melhorava a estabilidade e a produção consistente de eventos de detonação. As imagens da Schlieren revelaram o acoplamento entre a reação e a onda de choque para detonação, ao contrário das chamas velozes. As chamas rápidas perto de 83% da velocidade de Chapman-Jouguet sofreram desacoplamento fraco em comparação com a chama rápida com velocidades na faixa de 40% da velocidade de Chapman-Jouguet. As imagens de gradiente de densidade de detonação, obtidas com o uso de filtro passa-banda, revelaram uma estrutura celular irregular para diferentes condições quando ocorre a detonação. A única imagem obtida pela técnica fluorescência induzida por laser planar em condições 0,5 bar, 293 K e mistura estequiométrica mostrou a influência da estrutura celular da onda de choque na zona de reação, uma vez que uma estrutura celular irregular foi capturada no início da zona de reação. O perfil de intensidade de fluorescência registrou os valores máximos no início da zona de reação, seguidos por uma rápida diminuição da intensidade.

Descrição

Palavras-chave

Detonation, Hydrogen-air, PLIF, Schlieren, Fast flames, Chamas rápidas, Detonações, Hidrogênio

Como citar