Short-term temporal changes of soil carbon losses after tillage described by a first-order decay model

Nenhuma Miniatura disponível

Data

2008-04-01

Autores

La Scala, N. [UNESP]
Lopes, A. [UNESP]
Spokas, K.
Bolonhezi, D. [UNESP]
Archer, D. W.
Reicosky, D. C.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Resumo

Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.

Descrição

Palavras-chave

Soil respiration, soil tillage, No-till, soil organic matter, labile carbon decay, CO2 flux

Como citar

Soil & Tillage Research. Amsterdam: Elsevier B.V., v. 99, n. 1, p. 108-118, 2008.