Logotipo do repositório
 

Publicação:
Study on Machine Learning Techniques for Botnet Detection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee-inst Electrical Electronics Engineers Inc

Tipo

Artigo

Direito de acesso

Resumo

This paper presents a study on the application of machine learning techniques for botnet detection, compromised computer networks controlled by an attacker in order to perform malicious activities, such as distributed denial-of-service attacks (DDoS), data theft and others. The study aims to evaluate the efficiency of commonly used classifiers in the literature for botnet traffic classification and, to this end, we compare the results obtained from each classifier using two different approaches for feature selection, the first one taking into account the most frequently used features in problems of this nature, based on previous works, and the second one taking into account features selected by the Recursive Feature Elimination algorithm, a relatively unexplored feature selection method in the botnet detection area.

Descrição

Palavras-chave

Botnet, Machine Learning, Recursive Feature Elimination

Idioma

Inglês

Como citar

Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 5, p. 881-888, 2020.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação