Logotipo do repositório
 

Publicação:
Modelos lineares generalizados: abordagens “clássica” e “bayesiana” com aplicação na doença arterial coronariana

Carregando...
Imagem de Miniatura

Orientador

Moala, Fernando Antonio

Coorientador

Pós-graduação

Curso de graduação

Estatística - FCT

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Trabalho de conclusão de curso

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

A doença arterial coronariana (DAC) é uma doença cardíaca que ocorre pela barragem nas artérias coronárias, causado geralmente, por placas de gordura. Com o objetivo de identificar fatores que expliquem o evento de um indivíduo vir a doença arterial coronariana em futuros 10 anos, o trabalho apresenta uma aplicação de regressão logística com base na teoria de modelos lineares generalizados (MLG), e utiliza duas abordagens para a estimação dos parâmetros (“clássica” e bayesiana). Na estimação “clássica”, a técnica utilizada é a de máxima verossimilhança com a ajuda do método numérico Newton – Raphson para encontrar as soluções das equações de verossimilhança. Na estimação bayesiana, são utilizadas prioris normais independentes, com médias 0 e variância alta (semelhante ao uso de prioris não informativas). O método de MCMC é utilizado na aplicação como forma de se obter as densidades a posterioris marginais.

Resumo (inglês)

Coronary heart disease (CHD) is a heart disease that occurs by the damming in the coronary arteries, usually caused by fatty plaques. With the objective of identifying factors that explain the event of an individual coming to coronary artery disease in the future 10 years, the work presents an application of logistic regression based on the theory of generalized linear models (GLM), and uses two approaches for the estimation. parameters (“classical” and Bayesian). In the “classical” estimation, the technique used is the one of maximum likelihood with the help of the Newton – Raphson numerical method to find the solutions of the likelihood equations. In Bayesian estimation, independent normal priors are used, with means 0 and high variance (similar to the use of non-informative priors). The MCMC method is used in the application as a way to obtain marginal posterior densities.

Descrição

Palavras-chave

Modelos lineares, Análise de regressão logística, Doenças cardíacas, Artérias coronarianas, Linear models, Logistic regression analysis, Cardíac deseases, Coronary arteries

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação