Publicação: A novel approach for solving constrained nonlinear optimization problems using neurofuzzy systems
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
Descrição
Palavras-chave
Artificial neural networks, Biological system modeling, Computational modeling, Computer networks, Constraint optimization, Design optimization, Equations, Fuzzy logic, Neural networks, Neurons
Idioma
Inglês
Como citar
Proceedings - Brazilian Symposium on Neural Networks, SBRN, v. 2000-January, p. 213-218.