Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis

Carregando...
Imagem de Miniatura

Data

2005-04-11

Autores

de Paula, R. M.
Wilson, W. A.
Roach, P. J.
Terenzi, H. F.
Bertolini, Maria Celia [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Resumo

Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K-m (4.41 mu M) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN. (c) 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Descrição

Palavras-chave

glycogen, glycogenin, site-directed mutagenesis, mass spectrometry, beast complementation, Neurospora crassa

Como citar

Febs Letters. Amsterdam: Elsevier B.V., v. 579, n. 10, p. 2208-2214, 2005.