Kinetic Analysis of Gill (Na+,K+)-ATPase Activity in Selected Ontogenetic Stages of the Amazon River Shrimp, (Decapoda, Palaemonidae): Interactions at ATP- and Cation-Binding Sites

Nenhuma Miniatura disponível

Data

2012-04-01

Autores

Leone, Francisco Assis
Masui, Douglas Chodi
de Souza Bezerra, Thais Milena
Garcon, Daniela Pereira
Valenti, Wagner Cotroni [UNESP]
Augusto, Alessandra da Silva [UNESP]
McNamara, John Campbell

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Resumo

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.

Descrição

Palavras-chave

(Na+,K+)-ATPase activity, Gill microsome, Cation-binding site, Macrobrachium amazonicum, Ontogenetic stage, Environmental salinity

Como citar

Journal of Membrane Biology. New York: Springer, v. 245, n. 4, p. 201-215, 2012.