Greenhouse gas mitigation potential from green harvested sugarcane scenarios in São Paulo State, Brazil

Nenhuma Miniatura disponível

Data

2013-09-20

Autores

de Oliveira Bordonal, Ricardo
Barretto de Figueiredo, Eduardo
Aguiar, Daniel Alves
Adami, Marcos
Theodor Rudorff, Bernardo Friedrich
La Scala, Newton

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Brazil is a major sugarcane producer and São Paulo State cultivates 5.5 million hectares, close to 50% of Brazil's sugarcane area. The rapid increase in production has brought into question the sustainability of biofuels, especially considering the greenhouse gas (GHG) emissions associated to the agricultural sector. Despite the significant progress towards the green harvest practices, 1.67 million hectares were still burned in São Paulo State during the 2011 harvest season. Here an emissions inventory for the life cycle of sugarcane agricultural production is estimated using IPCC methodologies, according to the agriculture survey data and remote sensing database. Our hypothesis is that 1.67 million hectares shall be converted from burned to green harvest scenarios up to years 2021 (rate 1), 2014 (rate 2) or 2029 (rate 3). Those conversions would represent a significant GHG mitigation, ranging from 50.5 to 70.9 megatons of carbon dioxide equivalent (Mt CO2eq) up to 2050, depending on the conversion rate and the green harvest systems adopted: conventional (scenario S1) or conservationist management (scenario S2). We show that a green harvest scenario where crop rotation and reduced soil tillage are practiced has a higher mitigation potential (70.9 Mt CO2eq), which is already practiced in some of the sugarcane areas. Here we support the decision to not just stop burning prior to harvest, but also to consider other better practices in sugarcane areas to have a more sustainable sugarcane based ethanol production in the most dense cultivated sugarcane region in Brazil. © 2013 Elsevier Ltd. All rights reserved.

Descrição

Palavras-chave

Burning harvest, Ethanol production, Inventory, Management strategies, N-fixing crop, Reduced tillage

Como citar

Biomass and Bioenergy.