Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils

dc.contributor.authorSilva, M. J. [UNESP]
dc.contributor.authorSanches, A. O. [UNESP]
dc.contributor.authorMedeiros, E. S.
dc.contributor.authorMattoso, L. H. C.
dc.contributor.authorMcMahan, C. M.
dc.contributor.authorMalmonge, J. A. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal da Paraíba (UFPB)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionARS
dc.date.accessioned2014-12-03T13:11:51Z
dc.date.available2014-12-03T13:11:51Z
dc.date.issued2014-07-01
dc.description.abstractCellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 A degrees C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young's modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.en
dc.description.affiliationUNESP Univ Estadual Paulista, Fac Engn, Dept Fis & Quim, Ilha Solteira, SP, Brazil
dc.description.affiliationUniv Fed Paraiba, Dept Engn Mat, BR-58059900 Joao Pessoa, Paraiba, Brazil
dc.description.affiliationEmbrapa Instrumentacao CNPDIA, LNNA, Sao Carlos, SP, Brazil
dc.description.affiliationARS, Western Reg Res Ctr, USDA, Albany, CA 94710 USA
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Fac Engn, Dept Fis & Quim, Ilha Solteira, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent387-392
dc.identifierhttp://dx.doi.org/10.1007/s10973-014-3719-1
dc.identifier.citationJournal Of Thermal Analysis And Calorimetry. Dordrecht: Springer, v. 117, n. 1, p. 387-392, 2014.
dc.identifier.doi10.1007/s10973-014-3719-1
dc.identifier.issn1388-6150
dc.identifier.urihttp://hdl.handle.net/11449/113650
dc.identifier.wosWOS:000338120100045
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofJournal of Thermal Analysis and Calorimetry
dc.relation.ispartofjcr2.209
dc.relation.ispartofsjr0,587
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectCellulose nanofibrilsen
dc.subjectCotton celluloseen
dc.subjectPolyanilineen
dc.subjectNatural rubberen
dc.titleNanocomposites of natural rubber and polyaniline-modified cellulose nanofibrilsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt

Arquivos