Cryptochrome 1a depends on blue light fluence rate to mediate osmotic stress responses in tomato

dc.contributor.authorD'Amico-Damião, Victor [UNESP]
dc.contributor.authorLúcio, José Clebson Barbosa [UNESP]
dc.contributor.authorOliveira, Reginaldo [UNESP]
dc.contributor.authorGaion, Lucas Aparecido
dc.contributor.authorBarreto, Rafael Ferreira
dc.contributor.authorCarvalho, Rogério Falleiros [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Marília (UNIMAR)
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.date.accessioned2021-06-25T11:12:03Z
dc.date.available2021-06-25T11:12:03Z
dc.date.issued2021-03-01
dc.description.abstractThe participation of plant cryptochromes in water deficit response mechanisms has been highlighted in several reports. However, the role of tomato (Solanum lycopersicum L.) cryptochrome 1a (cry1a) in the blue light fluence-dependent modulation of the water deficit response remains largely elusive. The tomato cry1a mutant and its wild-type counterpart were grown in water (no stress) or PEG6000 (osmotic stress) treatments under white light (60 μmol m−2 s-1) or from low to high blue light fluence (1, 5, 10, 15 and 25 μmol m−2 s-1). We first demonstrate that under nonstress conditions cry1a regulates seedling growth by mechanisms that involve pigmentation, lipid peroxidation and osmoprotectant accumulation in a blue light-dependent manner. In addition, we further highlighted under osmotic stress conditions that cry1a increased tomato growth by reduced malondialdehyde (MDA) and proline accumulation. Although blue light is an environmental signal that influences osmotic stress responses mediated by tomato cry1a, specific blue light fluence rates are required during these responses. Here, we show that CRY1a manipulation may be a potential biotechnological target to develop a drought-tolerant tomato variety. Nevertheless, the complete understanding of this phenomenon requires further investigation.en
dc.description.affiliationDepartment of Biology Applied to Agriculture São Paulo State University (UNESP)
dc.description.affiliationUniversity of Marília (UNIMAR)
dc.description.affiliationFederal University of Mato Grosso do Sul (UFMS)
dc.description.affiliationUnespDepartment of Biology Applied to Agriculture São Paulo State University (UNESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/26130-9
dc.identifierhttp://dx.doi.org/10.1016/j.jplph.2021.153374
dc.identifier.citationJournal of Plant Physiology, v. 258-259.
dc.identifier.doi10.1016/j.jplph.2021.153374
dc.identifier.issn0176-1617
dc.identifier.scopus2-s2.0-85101213276
dc.identifier.urihttp://hdl.handle.net/11449/208429
dc.language.isoeng
dc.relation.ispartofJournal of Plant Physiology
dc.sourceScopus
dc.subjectAbiotic stress
dc.subjectBlue light fluence
dc.subjectcry1a mutant
dc.subjectCryptochrome 1a
dc.subjectOsmotic stress
dc.subjectSolanum lycopersicum L. (Tomato)
dc.titleCryptochrome 1a depends on blue light fluence rate to mediate osmotic stress responses in tomatoen
dc.typeArtigo
unesp.author.orcid0000-0002-0974-0537[3]
unesp.author.orcid0000-0003-4246-1975[4]

Arquivos