DFT studies on PbO2 and binary PbO2/SnO2 thin films

dc.contributor.authorFabris, G. S.L.
dc.contributor.authorAzevedo, D. H.M. [UNESP]
dc.contributor.authorAlves, A. C. [UNESP]
dc.contributor.authorPaskocimas, C. A.
dc.contributor.authorSambrano, J. R. [UNESP]
dc.contributor.authorCordeiro, J. M.M. [UNESP]
dc.contributor.institutionFederal University of Rio Grande do Norte
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:47:04Z
dc.date.available2022-04-28T19:47:04Z
dc.date.issued2022-02-01
dc.description.abstractPeriodic quantum mechanics DFT calculations have been employed to investigate surface and electronic properties of β-PbO2 thin films and binary β-PbO2/SnO2 thin films with crystallographic planes (001), (010), (101), and (110) in both cases. The results show significant increases in the band gap energy of the pure PbO2 films compared to that of the bulk, due to a marked increase in the minimum energy of the conduction band. The relative surface stability follows the sequence (110) > (101) > (010) > (001). The surfaces become more unstable, and with a more accentuated ionic character after coating with SnO2, however, the relative stability of the surfaces does not change. Thus, the preferential growth direction and the crystalline shape of the coated films are maintained. The SnO2 coating causes significant changes in the band gap, with increases in the films with (001) and (010) surfaces, while a decrease is noticed in the band gap energy of the films with (110) and (101) surfaces.en
dc.description.affiliationDepartment of Materials Engineering Federal University of Rio Grande do Norte
dc.description.affiliationDepartment of Physics and Chemistry School of Natural Sciences and Engineering São Paulo State Universtiy (UNESP)
dc.description.affiliationModeling and Molecular Simulation Group São Paulo State University
dc.description.affiliationUnespDepartment of Physics and Chemistry School of Natural Sciences and Engineering São Paulo State Universtiy (UNESP)
dc.description.affiliationUnespModeling and Molecular Simulation Group São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2013/07296-2
dc.description.sponsorshipIdFAPESP: 2019/08928-9
dc.description.sponsorshipIdCNPq: 307236/2018-8
dc.description.sponsorshipIdCNPq: 308548/2014-0
dc.description.sponsorshipIdCNPq: 446126/2014-4
dc.description.sponsorshipIdCNPq: 46126-4
dc.description.sponsorshipIdCNPq: 482473/2010-0
dc.description.sponsorshipIdCAPES: 787027/2013
dc.description.sponsorshipIdCAPES: 8881.068492/2014-01
dc.description.sponsorshipIdCAPES: 88887.467334/2019-00
dc.identifierhttp://dx.doi.org/10.1016/j.physe.2021.115037
dc.identifier.citationPhysica E: Low-Dimensional Systems and Nanostructures, v. 136.
dc.identifier.doi10.1016/j.physe.2021.115037
dc.identifier.issn1386-9477
dc.identifier.scopus2-s2.0-85118827469
dc.identifier.urihttp://hdl.handle.net/11449/222831
dc.language.isoeng
dc.relation.ispartofPhysica E: Low-Dimensional Systems and Nanostructures
dc.sourceScopus
dc.subjectBinary films
dc.subjectDFT
dc.subjectPbO2
dc.subjectSemiconductors
dc.subjectSnO2
dc.subjectSurface stability
dc.titleDFT studies on PbO2 and binary PbO2/SnO2 thin filmsen
dc.typeArtigo
unesp.author.orcid0000-0002-0830-5787[1]
unesp.author.orcid0000-0002-5178-8534[2]

Arquivos

Coleções