Nebular gas drag and planetary accretion with eccentric high-mass planets

dc.contributor.authorChanut, T. G G [UNESP]
dc.contributor.authorWinter, O. C. [UNESP]
dc.contributor.authorTsuchida, M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:53Z
dc.date.available2014-05-27T11:28:53Z
dc.date.issued2013-04-08
dc.description.abstractAims.We investigate the dynamics of pebbles immersed in a gas disk interacting with a planet on an eccentric orbit. The model has a prescribed gap in the disk around the location of the planetary orbit, as is expected for a giant planet with a mass in the range of 0.1-1 Jupiter masses. The pebbles with sizes in the range of 1 cm to 3 m are placed in a ring outside of the giant planet orbit at distances between 10 and 30 planetary Hill radii. The process of the accumulation of pebbles closer to the gap edge, its possible implication for the planetary accretion, and the importance of the mass and the eccentricity of the planet in this process are the motivations behind the present contribution. Methods. We used the Bulirsch-Stoer numerical algorithm, which is computationally consistent for close approaches, to integrate the Newtonian equations of the planar (2D), elliptical restricted three-body problem. The angular velocity of the gas disk was determined by the appropriate balance between the gravity, centrifugal, and pressure forces, such that it is sub-Keplerian in regions with a negative radial pressure gradient and super-Keplerian where the radial pressure gradient is positive. Results. The results show that there are no trappings in the 1:1 resonance around the L 4 and L5 Lagrangian points for very low planetary eccentricities (e2 < 0.07). The trappings in exterior resonances, in the majority of cases, are because the angular velocity of the disk is super-Keplerian in the gap disk outside of the planetary orbit and because the inward drift is stopped. Furthermore, the semi-major axis location of such trappings depends on the gas pressure profile of the gap (depth) and is a = 1.2 for a planet of 1 MJ. A planet on an eccentric orbit interacts with the pebble layer formed by these resonances. Collisions occur and become important for planetary eccentricity near the present value of Jupiter (e 2 = 0.05). The maximum rate of the collisions onto a planet of 0.1 MJ occurs when the pebble size is 37.5 cm ≤ s < 75 cm; for a planet with the mass of Jupiter, it is15 cm ≤ s < 30 cm. The accretion stops when the pebble size is less than 2 cm and the gas drag dominates the motion. © 2013 ESO.en
dc.description.affiliationUniv. Estadual Paulista - UNESP Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12516-410, SP
dc.description.affiliationUniv. Estadual Paulista - UNESP DCCE - IBILCE, São Jose do Rio Preto, 01405900 SP
dc.description.affiliationUnespUniv. Estadual Paulista - UNESP Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12516-410, SP
dc.description.affiliationUnespUniv. Estadual Paulista - UNESP DCCE - IBILCE, São Jose do Rio Preto, 01405900 SP
dc.identifierhttp://dx.doi.org/10.1051/0004-6361/201118629
dc.identifier.citationAstronomy and Astrophysics, v. 552.
dc.identifier.doi10.1051/0004-6361/201118629
dc.identifier.file2-s2.0-84875723646.pdf
dc.identifier.issn0004-6361
dc.identifier.issn1432-0746
dc.identifier.lattes3560557415176717
dc.identifier.scopus2-s2.0-84875723646
dc.identifier.urihttp://hdl.handle.net/11449/75080
dc.identifier.wosWOS:000317912000066
dc.language.isoeng
dc.relation.ispartofAstronomy and Astrophysics
dc.relation.ispartofjcr5.565
dc.relation.ispartofsjr2,265
dc.relation.ispartofsjr2,265
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectAccretion, accretion disks
dc.subjectMinor planets, asteroids: general
dc.subjectPlanets and satellites: formation
dc.subject1 : 1 resonances
dc.subjectAccretion , accretion disks
dc.subjectLagrangian points
dc.subjectMinor planets , asteroids: generals
dc.subjectNewtonian equations
dc.subjectNumerical algorithms
dc.subjectRestricted three-body problem
dc.subjectAlgorithms
dc.subjectAngular velocity
dc.subjectAsteroids
dc.subjectCentrifugation
dc.subjectDrag
dc.subjectGases
dc.subjectOrbits
dc.subjectPlanets
dc.subjectPressure gradient
dc.subjectResonance
dc.subjectSatellites
dc.titleNebular gas drag and planetary accretion with eccentric high-mass planetsen
dc.typeArtigo
dcterms.licensehttp://www.aanda.org/index.php?option=com_content&view=article&id=902&Itemid=298
unesp.author.lattes3560557415176717
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84875723646.pdf
Tamanho:
379.63 KB
Formato:
Adobe Portable Document Format