Mass Spectral Similarity Networking and Gas-Phase Fragmentation Reactions in the Structural Analysis of Flavonoid Glycoconjugates

dc.contributor.authorPilon, Alan Cesar [UNESP]
dc.contributor.authorGu, Haiwei
dc.contributor.authorRaftery, Daniel
dc.contributor.authorBolzani, Vanderlan Da Silva [UNESP]
dc.contributor.authorLopes, Norberto Peporine
dc.contributor.authorCastro-Gamboa, Ian [UNESP]
dc.contributor.authorCarnevale Neto, Fausto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversity of Washington
dc.contributor.institutionEast China Institute of Technology
dc.contributor.institutionFred Hutchinson Cancer Research Center
dc.date.accessioned2019-10-06T16:42:57Z
dc.date.available2019-10-06T16:42:57Z
dc.date.issued2018-01-01
dc.description.abstractFlavonoids represent an important class of natural products with a central role in plant physiology and human health. Their accurate annotation using untargeted mass spectrometry analysis still relies on differentiating similar chemical scaffolds through spectral matching to reference library spectra. In this work, we combined molecular network analysis with rules for fragment reactions and chemotaxonomy to enhance the annotation of similar flavonoid glyconjugates. Molecular network topology progressively propagated the flavonoid chemical functionalization according to collision-induced dissociation (CID) reactions, as the following chemical attributes: aglycone nature, saccharide type and number, and presence of methoxy substituents. This structure-based distribution across the spectral networks revealed the chemical composition of flavonoids across intra- and interspecies and guided the putatively assignment of 64 isomers and isobars in the Chrysobalanaceae plant species, most of which are not accurately annotated by automated untargeted MS2 matching. These proof of concept results demonstrate how molecular networking progressively grouped structurally related molecules according to their product ion scans, abundances, and ratios. The approach can be extrapolated to other classes of metabolites sharing similar structures and diagnostic fragments from tandem mass spectrometry.en
dc.description.affiliationNúcleo de Bioensaios Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) Departamento de Química Orgânica Instituto de Química Universidade Estadual Paulista (UNESP)
dc.description.affiliationNúcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS) Departamento de Física e Química Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo
dc.description.affiliationNorthwest Metabolomics Research Center Department of Anesthesiology and Pain Medicine University of Washington, 850 Republican Street
dc.description.affiliationJiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China Institute of Technology
dc.description.affiliationPublic Health Sciences Division Fred Hutchinson Cancer Research Center
dc.description.affiliationUnespNúcleo de Bioensaios Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) Departamento de Química Orgânica Instituto de Química Universidade Estadual Paulista (UNESP)
dc.identifierhttp://dx.doi.org/10.1021/acs.analchem.8b05479
dc.identifier.citationAnalytical Chemistry.
dc.identifier.doi10.1021/acs.analchem.8b05479
dc.identifier.issn1520-6882
dc.identifier.issn0003-2700
dc.identifier.scopus2-s2.0-85070677822
dc.identifier.urihttp://hdl.handle.net/11449/189509
dc.language.isoeng
dc.relation.ispartofAnalytical Chemistry
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.titleMass Spectral Similarity Networking and Gas-Phase Fragmentation Reactions in the Structural Analysis of Flavonoid Glycoconjugatesen
dc.typeArtigo
unesp.author.orcid0000-0002-7598-5022[2]
unesp.author.orcid0000-0003-2467-8118[3]
unesp.author.orcid0000-0001-7019-5825[4]
unesp.author.orcid0000-0002-8159-3658[5]
unesp.author.orcid0000-0002-9364-933X[7]

Arquivos